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Abstract

The change in meaning of data over time poses sig-
nificant challenges for the use of that data. These chal-
lenges exist in the use of an individual data source and
are further compounded with the integration of multi-
ple sources. In this paper, we identify three types of
temporal semantic heterogeneities. We propose a solu-
tion based on extensions to the Context Interchange
framework, which has mechanisms for capturing se-
mantics using ontology and temporal context. It also
provides a mediation service that automatically re-
solves semantic conflicts. We show the feasibility of
this approach with a prototype that implements a sub-
set of the proposed extensions.

1. Introduction

Effective management of temporal data has become
increasingly important in application domains from
day-to-day record keeping to counterterrorism efforts.
It is often even required by law for organizations to
store historical data and make sure it is accurate and
easy to retrieve'. While temporal databases can be used
to manage the data, ensuring that the retrieved data is
meaningful to the users is still an unsolved problem
when data semantics changes over time.

As an example, suppose an arbitrage analyst in New
York needs to compare Daimler-Chrysler’s stock prices
at New York and Frankfurt exchanges. He retrieved the
data from Yahoo’s historical database, see Figure 1.
Two anomalies caught his eyes at a quick glance at the
data. First, prices at two exchanges differ substantially;
and second, the price at Frankfurt dropped by almost
50% at the turn from 1998 to 1999!

! See Robert Sheier on “Regulated storage” in ComputerWorld,
37(46), November 17, 2003. Health Insurance Portability Act re-
quires healthcare providers keep records till two years after death of
patients; Sarbanes-Oxley Act requires auditing firms retain records
of financial statements.
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Date Open High Low Close “alume Close*
6-Jan-99 1058.25 105.74 103.82 105.13 2,061,200 90.49
5-Jan-99 89.05 103.43 98.93 103.31 2 B34 600 8892
4-Jan-59 99.66 100.62 98.08 98.99 3,441,400 8520
31-Dec-38 94.43 94.55 93.21 9351 506,900 80.49
30-Dec-28 94.97 95.34 94.18 9418 391300 §1.068
28-Dec-38 96.13 96.25 9564 95.95 1,185,700 8258
28-Dec-28 95.64 96.43 95.18 95.64 1,707 800 §2.32

6-Jan-99 90.10 92.40 §9.30 92.30 13,950 500 86.67

5-Jan99 85.60 838.60 85.10 B86.80 12,329 300 81.51

4-Jan-59 83.50 88.50 82.50 87.50 13,660 200 82,16
30-Dec-38 16B.30 16730 16450 16450 4934820 15447
28-Dec-35  166B.00 16650 16480 16500 5033660  154.94
28-Dec-28 15950  167.80 15930 16650 9743480  1596.34

* Close price adjusted for dividends and splits.

Figure 1. Historical stock prices for Daimler-
Chrysler. Top: New York; Bottom: Frankfurt

These anomalies result from unresolved semantic
conflicts between the data sources and the data re-
ceiver. In this case, not only are the currencies for stock
prices different at the two exchanges, but the currency
at Frankfurt also changed from German Marks to Euros
at the beginning of 1999. Once the data is normalized
using this knowledge, it can be seen there is neither
significant arbitraging opportunity nor abrupt price
plunge for this stock. We call metadata knowledge such
as the currency for price context knowledge, and the
history of time varying metadata temporal context.

To allow data receivers like the analyst to effec-
tively use data from temporally heterogeneous sources,
we need to represent temporal context knowledge and
incorporate it into data integration and query answering
systems. Temporal database research has primarily
focused on management of temporal data in a homoge-
neous constant context environment. Semantic data
integration techniques developed so far are based on
snapshot data models that ignore the time dimension.

The objective of this research is to fill this gap by
developing techniques to effectively resolve temporal
semantic conflicts between data sources and receivers.
Specifically, we extend the Context Interchange
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(COIN) framework [5, 9] with temporal contextual
knowledge representation and reasoning capability.

2. Challenges of temporal data integration

2.1. A simple integration example

A temporal database is one that supports some as-
pect of time, not counting user-defined time such as
birthday and hiring date [12]. This rather informal
definition is due to the fact that the temporal dimen-
sions are often application specific, therefore it is either
difficult or unnecessary to support all aspects of time.
Nevertheless, most femporal data can be viewed as
time-stamped propositions and represented as relational
tuples with timestamps. Table 1 gives an example of
some time series data for a company.

Table 1. Company time series data

Year | Num_Employee | Profit | Tax
1999 | 5100 4.2 1.1
2000 | 12000 13000 | 2500
2001 | 25.3 20000 | 4800
2002 | 30.6 353 7.97

Intuitively, the example describes how the values of
several attributes change over time. Each tuple repre-
sents a fact that can be viewed as a predicate with a
timestamp argument and other non-temporal argu-
ments. However, there are other unspecified metadata
attributes, such as currency type and scale factor, that
critically determine the truth value of each predicate.
We call the specification of metadata attributes context
knowledge. For metadata attributes whose value
changes over time, a specification of their history is
termed temporal context.

Table 2. Examples of temporal context

Source Receiver
Currency Francs(FRF), year <2000 | USD,
Euros, year>2001 always
Scale factor for | 1M, year =< 1999 1K, always
profit and tax 1K, 2000<year<2001
1M, year>2002
Scale factor for | 1, year<2001 1K, always
Num_Employee | 1K, year>2002
Profit Exclude tax, year<2000 Include tax,
Include tax, year>2001 always

Table 2 gives examples of the context knowledge in
a simple integration scenario involving the source in
Table 1 and a receiver. The receiver context can be
time varying as well. Semantic conflicts arise because
the source and the receiver have different contexts,

which need to be reconciled for the receiver to mean-
ingfully use the data. Imagine the complexity of scenar-
ios that involve dozens of sources and receivers, each
with time varying heterogeneous contexts. We need
effective technologies to manage this complexity.

2.2. Temporal semantic heterogeneities

We see at least three categories of issues in the inte-
gration of temporal data.

Representational heterogeneity — the same rela-
tional attribute may be represented differently in the
time span of a data source. In addition to currency
changes for monetary concepts like profit and tax, there
are also scale factor changes, as described in Table 2.

Ontological heterogeneity — the ontological concept
represented by an attribute may change over time. In
Table 2, profit on and before 2000 excludes taxes, af-
terwards it includes taxes. There are also cases where
the entity referred to by an identifier changes over time.
For example, stock symbol “C” used to refer to Chrys-
ler but changed to refer to Citigroup on December 4,
1998 after Chrysler merged with Daimler-Benz. The
derivation method of concepts, such as unemployment
rate, often change over time.

Heterogeneity in temporal entity — the abstraction
and representation of time domain differs across sys-
tems and time. Although a temporal entity is just an-
other data type, it has special properties and operations
that warrant a category of its own. The example in Ta-
ble 1 uses point representation for the timestamp attrib-
ute year. Another system may choose to use intervals,
e.g., [1/1/1999, 12/31/1999] for the year 1999. Differ-
ences in calendar systems, time zones, and granularities
present many challenges for integration.

The semantics of the association between proposi-
tions described by the non-temporal attributes in a tuple
and the temporal entity may differ across attributes.
How the truth of a proposition over an interval is re-
lated to its truth over subintervals is described by the
proposition’s heredity properties [21]. Recognizing this
property is useful for temporal query language design.
For example, if in a bank account database the balance
over an interval is known and the user queries the bal-
ance at a time within the interval, the query language
should use the liquidity property of balance attribute to
infer the result [3]. We observe that heredity is often
attribute dependent and does not change over time or
across data sources. Thus we need not consider hetero-
geneity of this property in the data integration setting.

In an effective integration framework, data receivers
should not be burdened by these context heterogenei-
ties; rather, it should be a system service to record con-
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text and use it to reconcile context differences before
delivering data to the receiver. Our temporal extension
to COIN framework will provide such a solution.

3. Review of Related Research

Related research can be found in the areas of tempo-
ral database, temporal reasoning, and data integration.
Although each provides useful concepts and tech-
niques, none address all the temporal semantic hetero-
geneity problems identified in this paper. The follow-
ing brief review is not intended to summarize or criti-
cize the findings in each area; rather, it is to identify the
most relevant results and show what is missing from a
temporal semantic data integration point of view.

Temporal databases. The time domain is often rep-
resented as time points with certain granularities. An
interval is a set of contiguous points and can be repre-
sented as a pair of begin and end points. A time point
may have a duration and thus is not an instant in time
ontology [10].

Over 40 temporal data models have been proposed
[20]. Many of the models let the system manage time-
stamps, which effectively hide the timestamp attribute
from the user. This approach is inconsistent with rela-
tional theory [4]. As commonly practiced, databases
that store temporal data often have a schema with ex-
plicit timestamp attribute(s); standard SQL is used to
retrieve data and temporal operations are selectively
implemented in the application layer. Our framework
will target the common situation where data sources
have limited temporal support.

As in the case of conventional databases, temporal
databases also fail to facilitate context knowledge man-
agement. As a result, context is often hard-coded into
data transformations in data warehouses. This ad-hoc
approach lacks flexibility and scalability.

Temporal reasoning. While a restricted set of tem-
poral logics can be executed using logic programming,
there seems to be a trend where temporal logics are
transformed into temporal constraints to take advantage
of the efficiency of constraint solvers. The framework
provided in [16] combines qualitative and quantitative
(metric) temporal relations over both time points and
time intervals. These relationships can be considered as
temporal constraints in constraint logic programming.
Therefore, temporal reasoning can be treated as a con-
straint solving problem, to which a number of con-
straint solving techniques [11] can be applied. We will
use a solver implemented using constraint handling
rules (CHR) [8] as demonstrated in [6].

Temporal granularity research, both logic [17] and
algebraic [3] based, has developed techniques for rep-

resenting and reasoning about granularities and user-
defined calendars. Conversions between granularities
[2] will be useful in dealing with heterogeneities in
temporal entity.

Data integration. Approaches to achieving data in-
tegration largely fall into tight-coupling and loose-
coupling categories depending on whether a global
schema is used [5, 9]. In these approaches, intended
data semantics in sources and receivers are explicitly
incorporated in either the view definitions or the user
queries. The computation complexity [14] in rewriting
user queries for the former approach and the user’s
burden of writing complex queries for the latter limit
the flexibility and scalability of these approaches.

COIN [5, 9] is a middle ground approach that,
avoids these shortcomings by encapsulating data se-
mantics into a context theory and maintaining accessi-
bility of source schema by users. In COIN, a user is-
sues queries as if all sources are in the user’s context
and a mediator is used to automatically rewrite the que-
ries to resolve semantic differences.

Unfortunately, existing approaches, including
COIN, use a static data model and ignore temporal
context. Consequently, temporal concepts are missing
in the ontologies used in these systems. This research
will focus on the representation and reasoning of tem-
poral context. Our framework incorporates context into
the query evaluation process to automatically detect
and reconcile temporal semantic conflicts. By combin-
ing the concepts and techniques from the three relevant
research areas, we develop a scalable solution to tem-
poral heterogeneity problems.

4. Temporal COIN approach

A recent extension to COIN demonstrates its new
capability in solving ontological heterogeneity prob-
lems [5]. With various temporal representation and
reasoning techniques, we can further extend COIN to
handle temporal semantic heterogeneities.

4.1. The COIN framework

The COIN framework [5] uses an ontology as a for-
mal mechanism for representing context knowledge
and a mediation service to dynamically detect and rec-
oncile semantic conflicts in user queries. Implemented
in abductive constraint logic programming (ACLP)
[14], the mediator generates mediated queries (MQs)
that serve as intensional answers to the user. A distrib-
uted query executioner generates a query plan and
brings extensional answers to the user. Conversion
functions defined internally or externally are called
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during query execution stage to convert extensional
dataset from its source context into receiver’s context.
The existing COIN uses a snapshot data model that
does not allow temporal context representation; the
mediator also lacks temporal reasoning capability.

4.2. Temporal extensions to representation

The extended framework admits temporal data
sources, which are assumed to be relational with an
explicit timestamp attribute in their schema. They ac-
cept SQL queries with usual comparison operators (=,
>, <, efc.) on timestamp domain.

Definition An onfology defines a common seman-
tic domain that consists of semantic data types and their
relationships, including 1) is-a relation, indicating a
type is a subtype of another; and 2) named attribute
relation, indicating the types that correspond to the
domain and the range of the attribute.

The ontology is augmented with temporal concepts
as defined in the time ontology [10]. The most general
one is Temporal Entity, which can be further special-
ized as Instant or Interval. Each element in the source
schema is mapped to a corresponding semantic data
type in the ontology by an elevation axiom. A time-
stamp can be elevated to Temporal Entity or a subtype.
For types whose values are time dependent, we relate
them to a temporal entity type via temporal attribute.

There are two kinds of attributes in the ontology. A
regular attribute represents a relation in source schema
and obtains its value from the extensional database
(EDB). A contextual attribute, also called a modifier,
is an implicit attribute whose value, defined by context,
functionally determines the interpretation and the value
of the regular attribute [20]. For example, currency in
Table 1 is a contextual attribute for profit and tax.

Definition The temporal context of a data source or
a receiver is a specification of the history of all contex-
tual attributes in the ontology. Mathematically, it is set
of <contextual attribute, history> pairs, where history is a
set of <value, valid_interval> pairs.

In existing COIN, a context is simply a set of <con-
textual_attribute, value> pairs. The temporal extension
allows us to represent the entire history of each contex-
tual attribute. If the value does not change over time,
the fistory set is simply a singleton with the
valid_interval covering entire time span of interest. We
achieve backward compatibility by treating <contex-
tual_attribute, wvalue> as the shorthand for <contex-
tual_attribute, {<value, entire_time_span>}>.

Temporal entity type may also have contextual at-
tributes, e.g., granularity, time zone, etc., to account for
various contexts.

1530-1311/04 $20.00 © 2004 1IEEE

4.3. Temporal extensions to mediation

Given a user query expressed in user’s context, the
mediator detects and reconciles semantic differences by
examining involved contextual attributes and applying
appropriate conversion functions if the values differ
between any source and the receiver. With temporal
extensions, contextual attributes are no longer singly
valued. However, at any point in time, there is only one
valid value for each attribute. The mediator needs to
find the maximum time interval over which all involved
contextual attributes are singly valued. Over this inter-
val, a MQ can be generated as in the case of existing
COIN; the interval appears in the MQ as additional
constraints over the attribute of temporal entity type.

The mediator translates fistory pairs for contextual
attributes into temporal constraints, which are posted
into a constraint store concurrently solved by solvers in
CHR. Through back tracking, all intervals over which
contextual attributes are singly valued are found.

In our framework, contexts are declaratively defined
using First Order Logic rules. The mediator is a general
abductive reasoner. When new sources are added, we
only need to add context rules for them. External func-
tions can be called to convert between contexts. These
features lend COIN great flexibility and scalability.

5. Prototype and preliminary results

We are able to solve a range of temporal heteroge-
neity problems exemplified in Section 2 by implement-
ing a fraction of the suggested extensions.

5.1. Representation and mediation

Representation. Figure 2 shows the ontology for
the example. Here, we use the most general concept
temporal entity. Using elevation axioms, we create the
mappings between attributes in data source and the
types in the ontology.

-------- basic —izieeo

caleFactor
|
4
S

i tempAttr] A

sem_number tempAtty temporalEntity monetaryValue ‘:

i ’,'\ype
profit !

Year | Num_Employee | Profit | Tax

Legend

1999 | 5100 4.2 1.1 [] Semantic type

2000 | 12000 13000 | 2500 — Subtype rel.

2001 | 25.3 20000 | 4800 —» Attribute

2002 | 30.6 353 [7.97 --+Contextual attr.
Elevation

Figure 2. Example ontology and elevation
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We model the time line as discrete and unbounded
with both points and intervals as primitives. The past
and future infinities are represented by constants bottom
and top. We implement the < relation between points
as a tle constraint. The contains relation between an in-
terval and a point is translated into tfe constraints; the
overlaps relation between intervals are also translated
into tfe constraints.

This simple model has sufficient expressive power
to represent the temporal knowledge needed in Table 2.
For example, internally we use the following Prolog
statements to represent the source context for currency:

modifier (monetaryValue, O, currency,c_src,M) : -
containObj ( [bottom, 2000], O),
cste(basic, M, c_src, "FRF").
modifier (monetaryValue, O, currency,c_src,M) : -
containObj ([2001, top]l,O),
cste(basic, M, c_src, "EUR").
The head of the statement reads: O of type monetary-
Value has a contextual attribute (i.e., modifier) currency,
whose value in source context ¢_src is M. Its body has
two predicates. containObject(I, O) will use the tempAttr
of O to obtain its temporal attribute 7 (which corre-
sponds to Jear attribute in the EDB) of type temporalEn-
tity and add constraint contains(I, 7). The helper predi-
cate cste specifies the primitive value of M in ¢_src con-
text. Thus, the history of each contextual attribute is

now a set of pairs <%, I>, where JI; = [bottom, top].

For context that does not change over time, we
could have used [bottom, top] interval in containObj
predicate. Since the translated constraints are always
true, we will not include this predicate for this case.

Mediation. As described earlier, the mediation ser-
vice needs to find the maximum interval over which all
contextual attributes are singly valued. Figure 3 helps
visualize this task by graphically representing the con-
text knowledge in Table 2. For example, [bottom, 1999/
is such an interval where the source context can be de-
scribed with a set of singly valued contextual attributes:

{<monetaryValue.currency, “FRF”>,
<monetaryValue.scale, “1000000”>,
<profit.type, “taxExluded”s,
<sem _num.scale, “1”>}.

c_src: source context
monetaryValue profit sem_num

c_target: receiver context
monetaryValue profit sem num

currency  scale type scale currency scale  type scale
1 |
Excl
1999 FRF Tax .
2000 Ioel
— — uUsD 1K 1K

Tax

n

1K

001
Incl

002 | | EUR

:| w ||k

Figure 3. Visualization of temporal context

n

Recall that we translate all temporal relations into tle
constraint over points. Each contextual attribute will
generate two tle constraints for the temporal variable.
The above problem is thus turned into to a problem of
solving the constraints generated by all the contextual
attributes, which is solved concurrently using a solver
implemented in CHR.

Constraints over bottom and top can be removed us-
ing simplification rules so that these two literals do not
appear in the list of abducted predicates. Constraints
over other time points can be pair-wise simplified. We
also implement overfaps to simplify tle constraints over
four points at a time. These rules tighten the bounds of
the temporal variable or signify a failure if inconsisten-
cies are found.

Along with rules that handle equality constraint, this
point based temporal constraint solver covers the 13
relations for temporal intervals in Allen [1]. Relations
before, after, meets, and met_by generate a failure, all the
rest relations are subsumed into overfaps.

Through backtracking, the recursive algorithm finds
all intervals over which contextual attributes are singly
valued. Conversions are applied as in the case of exist-
ing COIN implementation. This simple temporal con-
straint based extension transforms a temporal context
problem into a set of non-temporal problems, thereby
allows us to reuse the non-temporal implementation of
the COIN mediator.

5.2. Preliminary results

These temporal extensions to COIN framework en-
able semantic interoperability for the integration exam-
ple. The prototype can generate MQs that reconcile
temporal context differences.

As an example, suppose a user in the receiver con-
text wants to retrieve data from the company time se-
ries relation named Financials in Table 1 using the
following SQL query:

Select Year, Num Employee,
From Financials;

Profit

and expects the returned data to be in his context. The
query is translated into a well formed Datalog query in
our prototype. The extended COIN mediator takes this
query and the representation of the integration as input,
and produces the following mediated query in Datalog
(which COIN eventually converts to SQL):

%$1. =<1999: currency, scale, type;scale
answer ('Vv32', 'V31l', 'V30') :-
'V29' is 'v28' * 1000.0, 'v31l' is 'V27' * 0.001,

olsen("FRF", "USD", 'V26', 'V32'),
V28" is 'V25' * 'V26',
financials ('V32', 'V27', 'V25', 'V24'),

'V32' =< 1999, 'V23' is 'V24' * 'V26',
'v22' is 'V23' * 1000.0, 'V30' is 'V29' + 'V22'.
%2. 2000: currency and type;scale
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answer (2000, 'v21l', 'v20') :-
'v21' is 'V19' * 0.001, 'vV20' is 'V15' + 'V14',
financials (2000, 'V19', 'vV1s', 'V1i7'),
olsen ("FRF", "USD", 'V16', 2000),
'Vl5' is 'V18' * 'V1e', 'V14' is 'V17' * 'V1e'.
%3. 2001: currency;scale
answer (2001, 'v1i3', 'vi2') :-
'v1i3' is 'V1ll' * 0.001, 'Vvi2' is 'V1i0' * 'v8!',

financials (2001, 'V1l', 'vV10', 'V9'),
olsen("EUR", "USD", 'vV8', 2001).

%4. >=2002: currency,scale;none

answer ('V7', 'Ve', 'V5') :-

olsen ("EUR", "USD", 'V4', 'V7'),
financials ('V7', 'V6', 'V3', 'v2'),

2002 =< 'V7', 'V1' is 'V3' * 'Vv4!',

'Vs5' is 'V1l' * 1000.0.

The mediated query has four subqueries, each re-
solves a set of semantic conflicts that exist in the time
specified by the timestamp attribute. Note that olsen
predicate corresponds to a currency conversion data
source introduced by the conversion function for cur-
rency contextual attribute. These subqueries resolve all
the semantic conflicts in Table 2 or in Figure 3.

6. Discussion and future plan

We identified three types of semantic heterogeneity in
the integration of temporal data. There is an ever in-
creasing need to efficiently handle temporal heteroge-
neities as more historical data is used for auditing,
forecasting, investigation, and many other purposes.
We proposed temporal extensions to the COIN frame-
work. A prototype of the extensions shows that our
approach is capable of solving temporal context prob-
lems. With its declarative knowledge rule base and its
capability of calling external functions, this approach is
flexible and extensible.

Our future research aims to develop this approach
in several aspects. Current representation of temporal
context explicitly compares an interval with the tempo-
ral attribute of an object. The representation may be
made cleaner by using an annotated temporal constraint
logic [7]. We need to investigate how this logic can be
integrated with the ACLP based COIN mediator.

An important part of future research will be focused
on the heterogeneities of temporal entities. We plan to
add various contextual attributes to the temporal entity
type in the ontology and use external functions to con-
vert between contexts. If this is not expressive enough
to represent the diversity of time, a richer time ontol-
ogy may be necessary. We also need to incorporate
metric temporal reasoning, which often involves com-
putations of one or more calendars. We will investigate
the feasibility of leveraging web services like those in
[2]. This is a challenging and important research area
because misunderstanding date and time can have seri-
ous consequences, as history has shown in an 1805
event [15] where the Austrian troops were forced to

1530-1311/04 $20.00 © 2004 1IEEE

surrender largely because of the misunderstanding of a
date in two different calendar systems.
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