
Context Mediation on Wall Street

Allen Moulton Stuart E. Madnick Michael D. Siegel
MIT Sloan School of Management
Cambridge, Massachusetts 02139

{amoulton, smadnick, msiegel}@mit.edu

Abstract
This paper reports on a practical implementation of a
context mediator for the fixed income securities industry.
We describe industry circumstances and the data and
calculation services (DCS) mediator developed and
deployed in the early 1990s. The mediator was designed
as an interpretive engine controlled by a static
declarative knowledge structure and client preference
data. In addition to heterogeneous, autonomous data
sources, the mediator integrated autonomously developed
local and remote procedural components. Client access to
both data and computational resources were provided
through an active conceptual model. Structural and
semantic context conversions were used to integrate
disparate components and to support varying client
needs. Lessons learned from the implementation and
usage of this mediator provide insight into the
requirements for a successful context mediator.

1. Introduction.

The fixed income securities industry is an environment
with potential for major benefits from rapid and effective
interchange of semantically heterogeneous information
among autonomous entities. Many firms in the industry
develop specialized, and often proprietary, knowledge.
That knowledge is more valuable when used in
combination with knowledge from other specialists.
Although standardization can facilitate knowledge
interchange, the rapid evolution of financial products,
transactions, and markets characteristic of the fixed
income securities industry suggests that a dynamic
context mediator approach may have significant value.

The challenge of the Data and Calculation Services
(DCS) mediator product described here was to bring
together six highly competitive firms to cooperate in
providing decision support information to their customers
while retaining autonomous control of proprietary data
and analytic resources. Wiederhold [1][2] described
mediators as an extra software layer to provide client

applications with access to the integrated knowledge
available from heterogeneous, autonomous data servers.
The DCS mediator extended the definition to include
computational resources as well as data sources.

Context refers to the implicit assumptions that add
meaning to symbols. Autonomous organizations often
develop different contexts, resulting in semantically
heterogeneous representations of the same knowledge[3].
In making investment decisions, it is vital the information
conveyed among parties be understood by all. In the fixed
income industry, regulators, industry associations, and
publications, such as Fabozzi's series of books (e.g., [4])
disseminate common theories and practices. Context
mediation can fill the gap where industry association and
regulatory standards leave off.

In COIN [5][6][7], source and receiver contexts are
independently described to the mediator, which uses
metadata to detect conflicts in data representation and
interject conversion operations in the query plan. The
DCS mediator supported context definition and automatic
conversions for parameters and values of computational
functions as well as source and receiver data. In addition,
the DCS mediator experimented with context conversions
among different representations of security valuation
related through abstract models, often implemented in
proprietary analytic software.

The DCS mediator employed a domain model of
information applicable to fixed income decision-making.
SIMS [8], Information Manifold [9], Infomaster [10], and
Garlic [11] also employ a domain-specific ontology. In
DCS and these other projects, data sources are integrated
through a shared model of knowledge specific to the
problem domain. Users access information through the
mediator by working directly with the domain model.
DCS differs from the approach of TSIMMIS [12], which
uses an ontology-free approach where data is integrated
and delivered in its own terms, from Carnot [13][14]
which draws on an ontology of general common-sense
knowledge, and from Benaroch's [15] use of macro-level
ontological knowledge to integrate disparate knowledge-
based systems for financial risk management.

2. The fixed income securities industry.

Information is the critical resource in the fixed income
securities industry – information about securities and their
issuers, information about markets, information about
economic conditions and events, and information about
methodologies and models (see Figure 1). Billions of
dollars of debt instruments trade every week. Firms on the
“buy side” (institutional investors and investment
managers) manage capital on behalf of investors and
benefit plan sponsors. Firms on the “sell side”
(investment banks, brokers, and dealers, often known as
“Wall Street”) bring new securities to market and interact
to create capital markets. While the popular connotation
of sell-side firms is of great wealth, the capitalization of
these firms is actually relatively low. The big money is on
the buy-side. The sell-side makes money from a small
commission or price spread on large volumes of
transactions. The sell-side offers buy-side managers
access to its skill, expertise, and knowledge in
anticipation of purchase and sale orders.

Bonds and other fixed income securities are
obligations to pay sums of money at points in time over
the life of the security. Unlike equity securities, an
investor has no stake in the financial entity that issued the
security. To an investor, a fixed income security
represents a stream of future cash flows. A purchase
decision trades present money for future payments. There
may be optional events that change the cash flow stream
and there may be risk of default. In essence, however, all
fixed income securities are interchangeable commodities
from the point of view of an investor. The cash flows

from one or more obligations may even be repackaged by
selling off rights to payments or by combining rights to
payments into new composite securities. This
repackaging, or “financial engineering” can produce
securities known as “derivatives.” Faced with a vast array
of combinations of cash flows, risks, and optional events,
every industry participant needs timely information and
effective methods for determining investment value from
raw data.

In 1990, six major Wall Street investment banking
firms formed a partnership establishing an “Electronic
Joint Venture” aimed at using advanced technology to
improve communication with their buy-side clients.
During the 1970s and 1980s, fixed income investment
management had become substantially more complex.
Interest rates had fluctuated over a wide range. Huge
quantities of new debt instruments had been issued. New
securities products had been regularly introduced.
Analytic methodologies had advanced to cope with the
new complexities. Markets had become more globally
integrated and moved at a faster pace.

To cope with the new complexity, sell-side firms hired
bright young “rocket scientists” with mathematical and
engineering backgrounds into “fixed income research”
departments. They developed databases with detailed
descriptive information about securities as well as
historical prices, interest rates, and economic statistics.
Proprietary real-time broadcast networks brought current
market information and news to trader and investment
analyst desktops. Application software was built to
display securities data, perform securities and portfolio
analytics, and apply the models developed by financial
engineers. Information technology had also been

Security
sales

Security
purchases

INVESTORS
&

PLAN
SPONSORS

Funds invested

Benefit payments &
funds withdrawn

Large investment
capital with low

transaction volume

BUY SIDE

Investment
Managers

Institutional
Investors

SELL SIDE

Brokers

Investment
Banks

Dealers

Small capitalization with
high transaction volume

ISSUERS

MARKETS

Underwriting

Trades

Information

Figure 1. The fixed income securities industry

advancing rapidly. Business mainframes stored databases,
supercomputers performed the most complex calculations
on an overnight basis, while a combination of dumb
terminals, PCs, and workstations were piled high on
trading and sales desks.

In the midst of this jumble of technology, buy-side
firms began to demand direct access to data, analytics,
and models. Previously, the sell-side would offer ideas
and supporting analysis on the phone and by FAX. The
buy-side wanted more control over the analysis used to
make investment decisions. Investors recognized that the
sell-side had the knowledge that was needed. Investors
wanted to be able to integrate proprietary sell-side data,
analytics, and models with their own internal data,
analytics, and models so that they could make better
decisions. The sell-side firms were willing to provide
information resources to the buy-side, but wanted to
protect proprietary information from being passed on to
competitors. The sell-side also hoped to receive
information from the buy-side about positions held in
their portfolios in order to be able to make better trading
recommendations.

Investment management involves buying, selling, and
swapping securities in order to improve the performance
of an investment portfolio while meeting the sponsor's
objectives. In fixed income, quantities of securities are
generally measured in face value. Prices, interest, yields
and many other values are usually expressed as a
percentage of face value. The price (or valuation) of a
security depends on the general interest rate market and
the security's predicted cash flow compared to other
investments on the market. A variety of methodologies,
such as internal rate of return (IRR), horizon rate of return
(ROR), and option-adjusted spread (OAS), are regularly
used to assist in investment decision-making. An
investment manager needs to be able to apply the same
methodology to all securities held in a portfolio and all
potential investments. A requirement for an effective
decision support tool is the ability to apply a common
methodology across diverse securities. An effective tool
must also be extensible to new kinds of securities
invented by financial engineers and give investment
decision-makers access to and control over assumptions
and models used in valuation methodologies.

The mission of the Venture was to provide the
infrastructure to facilitate the interchange of information
between buy-side and sell-side firms. The technology plan
involved six major areas: physical connectivity via a
proprietary network, a desktop workstation platform, a
suite of standard applications, standard databases,
standard analytic calculations, and the data and
calculation services (DCS) mediator. By offering
"generic" or industry standard applications, databases, and

analytic calculation software, the venture would be able to
replace duplicative efforts on the part of clients and its
partner firms. All Venture-supplied applications,
databases, and calculations were required to be designed
on an open architecture that would allow partner firms
and clients to develop their own proprietary extensions
and substitute parts. For example, a partner firm might
provide a proprietary application that would use and
extend the Venture's standard databases and calculation
software. A partner firm might alternatively supply a
proprietary algorithm for use within a standard
application.

3. Architecture of the DCS mediator.

The DCS mediator (see Figure 2) was designed as a
demand-driven general interpretive engine controlled by a
static declarative knowledge. The declarative knowledge
structure included a domain model for fixed income
securities and analytics, database retrieval and calculation
function wrapper specifications, and a dependency graph.
The declarative knowledge was prepared in a definition
language script compiled into a binary structure for run-
time interpretation. Application software accessed the
mediator through a C-language application-programming
interface (API). Ad-hoc user access was provided through
a spreadsheet interface. Generic wrapper interfaces were
developed for the Sybase relational DBMS, C function
libraries, an object technology contributed by one of the
partner firms, and remote procedure calls (RPC).

Client preferences and assumptions were contained in
global data objects that could be viewed and manipulated
though the Control Panel application. By changing values
in these global objects, the user could set the financial
assumptions, data sources, and analytic models used by
the mediator in responding to other application queries. In
essence, the Control Panel allowed the user (and the client
firm's management) to define the context, the implicit
assumptions, of information to be received.

3.1. A fixed income securities domain model

The core of the domain model was a DCS conceptual
model, which defined an abstract view of the entities,
attributes and relationships available through the mediator
and served as a shared ontology for integrating
heterogeneous, autonomous data and calculation
resources. Publication of the conceptual model served as
the principal documentation of the data and analytic
functionality available from the mediator. Each entity
class defined a collection of attributes accessible through
"get" and "put" operations provided in the API. No object
methods or parameterized procedures were allowed.

Figure 2. DCS mediator architecture

Proprietary
data

Standard
data

Client
data

Proprietary
analytics

Standard
analytics

Client
analytics

Control
panel

Client
apps

Standard
apps

Proprietary
apps

Spread
sheet

C
API

DCS
mediator
engine

Static Declarative
Knowledge Structure

• Conceptual model
• Action specs

Client Context
Control Objects

• Financial
assumptions

• Source selection
preferences

Sybase
wrapper

C call
wrapper

RPC
wrapper

Object
wrapper

Assumptions

Security IssuerPyCalc

Valuation

subclasses subclasses

Figure 3. Abstract classes and relationships

Application and spreadsheet developers worked directly
with conceptual model objects to access DCS resources.
The user asked for information from the DCS mediator.
The mediator decided whether that information would be
calculated or obtained from a data source.

Figure 3 shows some of the abstract classes for in the
conceptual model for fixed income securities and analytic
methodologies. In the center is the Security class,
representing the generic fixed income security with a
many-to-one relationship to the Issuer class with
information about the issuing financial entity. There is
also a one-to-many relationship to Valuation, which
contains information about end of day prices from various
sources. The PyCalc (price-yield calculator) class
represents information about an actual or hypothetical
trade in a security and analytic measures describing the
trade. The Assumptions class holds user and client
financial assumptions, and control information about data
sources, and analytic models for use by the mediator in
responding to application queries.

The DCS domain model supported single inheritance
and dynamic polymorphic subclassing. Figure 4 shows a

sample of the polymorphic subclasses of the Security and
PyCalc abstract classes. In each case, the subclass is
determined by the value of a meta-attribute in the parent
class. Security subclasses correspond to different kinds of
descriptive data relevant to each type of security: SecBond
for bonds, SecPool for mortgage pools, SecMGen for a
generic mortgage model, and SecTranche for a tranche of
a collateralized mortgage obligation (CMO). For the
SecTranche subclass, the security is related to a
CMODeal entity and in turn to a set of Collateral, each of
which may be a position in a pool or a generic mortgage.

Subclasses of PyCalc correspond to alternative
procedures for performing the functionality of the abstract
class depending on the type of security involved. In some
cases, a PyCalc subclass might also provide extended
functionality specific to that type of security. Figure 4
shows subclasses PyBond for bonds, PyMort for mortgage
generics and pools, and PyTranche for CMO tranches.
The subclass of PyCalc is derived from the type of
Security entity referenced by the "sec" attribute in the
calculator. Dotted lines indicate the association of PyCalc
subclasses with Security subclasses.

SecTranche

Collateral

CMODeal

PyBond

PyMort

PyTranche

SecBond

SecPool

SecMGen

SecurityPyCalc
sec

Figure 4. Polymorphic class relationships

Enumerated metavalue domains provided a standard
terminology for mediating among different representa-
tions of security and calculation features. For example,
the description of coupon interest payment frequency and
interest accrual convention for a security used metavalues.
Similarly, the yield calculation conventions in the
Security and PyCalc classes used metavalues. The context
definition for a data source or computational function
library included relations to map context-specific
representations to the DCS domain model standard. The
mediator used these mapping relations to convert
representation across contexts.

DCS context conversion also helped alleviate one of
the pesky problems of fixed income software
development by providing automatic conversion among
different representations of percentage quantities.
Securities are priced at a percent of face value, interest
rates and yields are percentages, as are spreads between
two prices or yields, the interest accrued on a unit
investment as of some point in time, and many other
quantities. Figure 5 shows five alternative representations
of the same 2.75%. The "fraction" form is favored by
spreadsheets and many programmers. Basis points
(hundredths of a percent) are handy for talking about
small spreads. The "32nds" and "64ths" forms are used
for bond markets that trade in those increments. The DCS
domain model provided types for alternative
representations of percentages and automatic conversion
among them.

Figure 6 shows a sample of the "placemat" depiction of
the generic Security class, showing some attributes and
data types. The type attribute in the lower right provides
an explicit representation of the type of the security. Type
may be implied (because a source is limited to a single
type) or derived from stored information. The maturity
and coupon boxes inside the diagram are internal
structures describing the maturity and the coupon interest
payments of the security. Attributes declared as percent
could be filled with any form of percentage quantity.
Many-to-one relationships are shown as role attributes,
such as issuer, referring to a single object. One-to-many
relationships appear as role attributes, such as valuation,
referring to a set of objects.

An object of the Security class could be used as a
hypothetical security, with attribute values filled in by the
application program. More often, a Security object would
be associated with stored data using key attributes such as
cusip, ticker, or assetID. CUSIP is an industry standard
identifier used in the United States and Canada [16]. An
assetID was an artificially constructed globally unique
key for all security data objects accessible through DCS.
Venture-supplied databases were designed with assetID.
Autonomous databases are made accessible by extracting
the primary keys of each security record into a lookup
table and assigning a unique assetID to each. The assetID
also contained codes indicating the source for the data and
the security type.

The PyCalc class (Figure 7) provided both IRR and
OAS analytics for a real or hypothetical trade in a
security. The sec attribute provides a reference to a
security object. The assumed attribute connects to an
Assumptions object with data about user preferences and
financial assumptions. The type attribute is derived from
the security's type and controls subclassing. Subclasses of
PyCalc primarily represent different methods of
computing standard analytic results based on the class of
security involved.

One of the requirements of the DCS mediator was
delivery of a common analytical framework across all
kinds of securities. Many of these calculations are
specified in detail by industry conventions or regulatory
agencies. Since the characteristics of securities vary
widely, the parameters and procedures for calculations
also vary widely. In some cases, security cash flow must
be projected using a predictive model and financial
assumptions. For example, an attribute of the PyMort
subclass controlled the choice of prepayment model used
in projecting cash flow for SecMGen and SecPool
securities. If no value was set by the application, the value

real number

percentage
quantity

percent fraction basis pts 32nds 64ths

2.75 .0275 275 2.24 2.48

Figure 5. Representations of percentages

sec : ref Security
assumed : ref Assumptions
settleDate : date
price : percent
accruedInterest : percent
fullPrice : percent
type : enum PyType

spread : basis points
. . .

optionAdjusted

yield : string
yieldType : enum YieldType
nominalSpread : basis points

Figure 7. Generic PyCalc class placemat

source : string
assetID : dbid
cusip : string
ticker : string
description : string
standardYieldType : enum YieldType
issuer : ref Issuer
valuation : set Valuation

date : date
price : percent

maturity
rate : percent
frequency : enum

 CouponFreq

coupon

type : enum SecType

Figure 6. Generic Security class placemat

for that attribute was obtained from the user's setting in
the Assumptions object, allowing the prepayment model
to be varied without the application's knowledge.

The calculation of price from yield, and yield from
price, are so common and important that regulators and
industry standards bodies have set down precise rules for
computations and precision of results. For bonds, bills,
strips, and other straightforward securities, there are
closed form analytic formulas for computing present
value. Mortgages and mortgage-backed securities require
prediction of the cash flow stream using a prepayment
model followed by a general discounted cash flow
method. Calculating yield from price requires a root-
finding algorithm for most securities. Industry standards
specify the root finding algorithm and the initial and
terminating conditions. As some programmers have
learned the hard way, a "more accurate" result is
worthless if it differs from what everyone else in the
industry expects.

3.2. Integrating databases.

DCS did not include a full query-writing capability for
databases. Instead, it relied on pre-coded SQL statements
provided in database "retrieval packages." Each package
was associated with a class in the conceptual model.
Attribute references were specified using path names
relative to that base class (e.g., "coupon.rate" based on
Security). Each package included a list of attribute paths
for required parameters, which could be associated with
parameter slots in the SQL statement. Each element in the
SELECT clause of the SQL statement, mapped to a
corresponding attribute path where retrieved data would
be stored. The mediator would not execute the SQL in a
package until all required parameter values were present.

3.3. Integrating computational functions

Computational functions and simple arithmetic
expressions could be associated with attributes of classes
in the domain model. When the value of an attribute was
requested, the mediator would first check to see if a value
had previously been set or derived. If not, the expression
or function would be evaluated and the result value
assigned to the requested attribute. Inputs to the
calculation were specified as attribute paths based on the
containing object. Intermediary results were held in
"value packages" along with metadata describing the DCS
domain model type. In preparing a computational function
call, the mediator consulted the function declaration and
performed necessary data conversions. Independently
supplied functions did not need to be changed when

integrated into DCS, since the mediator would
automatically handle conversion of input data from its
original context to the context of the called function. The
value returned was held in a value package until the
context of its destination was determined.

 DCS required the domain model designer or the
function integrator to specify each calculation alternative
for mutually dependent attributes. The five attributes of
PyCalc shown in Figure 8 are financially equivalent
representations of security valuation. For example,
fullPrice is equal to the sum of price and accruedInterest.
Given any two values, the third can be calculated. To
represent this situation, all three expressions are declared.
Given a request for price, for example, the mediator
would select the expression subtracting accruedInterest
from fullPrice, proceed to find either constraints or other
expressions to determine values for these two attributes,
then take the difference. The mediator tracked attributes
visited to detect cycles and return an error.

3.4. The DCS C and spreadsheet APIs

The DCS API supplied four basic operations: create or
delete object and get or put attribute value. The create
operation (dcsNew) returned a handle to a runtime object
of an entity class in the Conceptual Model. Get and put
operations (dcsGet and dcsPut) accessed the value of an
attribute referenced by a dotted path name relative to an
object handle. The C API provided variants of the get and
put operations for common C data types (e.g., dcsGetInt,
dcsGetString), as well as specially defined types, such as
"percent." Where possible and necessary, data values
were automatically converted between the C data type
used in the application and the representation in a source.

Figure 9 shows a fragment of code using the C API.
Programs would perform a series of put operations to
initialize the runtime object with parameters or search
criteria. Get operations would then be used to obtain the
results of calculations or data retrieval. For the spread-
sheet interface, the sequence of put operations was
replaced by a range of name-value pairs passed to an
object declaration function which returned a spreadsheet
handle to a DCS object. Individual get functions were
used in each cell where an output value was required.

security
valuation

price fullPrice yield nominalSpread OAS

Figure 8. Representations of valuation

4. The DCS mediator in use.

After about a year of design and development, a beta
version of the DCS mediator was made available to
application developers in 1991. Product release was in
mid-1992. After the initial development of the mediator
engine, the efforts of the DCS development team focused
primarily on extending the domain model, verifying the
correctness of calculations and data integrated through the
mediator, and documentation. Documentation included
"placemat" diagrams of object classes similar to the small
samples in Figures 6 and 7, along with explanations of the
semantics of each attribute. A glossary of fixed income
terminology (still available on the web at [17]) clarified
definitions and semantics as used in the domain model.

The DCS mediator eliminated the need for application
developers to understand the individual semantics of each
database and calculation program library. The procedure
that would have been required to integrate the separate
components was part of the mediator declarative
knowledge rather than each application program.
Application developers were freed to focus on the
business problem, the user's needs, and user interface
design relying on the mediator to find and integrate the
necessary data and calculation components.

As new types of securities, new calculation libraries,
new analytic methodologies, or new data sources became
available, additional classes and subclasses could be
added to extend the DCS domain model without requiring
changes in application software. Using the Control Panel
application, the end user could swap calculation methods
and data sources used by other running applications.

The DCS mediator offered the appearance of a large
database capable of providing integrated answers to a
broad range of application queries. A few small examples
may be helpful in understanding how DCS worked. The
code in Figure 9 represents a small fragment of the sort of
query that might be used in a "portfolio review" type of
application, which scans through a list of securities
displaying some descriptive information along with
several valuation measures for each. A portfolio review
application must be able to retrieve indicative data from
an appropriate database and apply appropriate calculation

procedures for each kind of security found in the
portfolio. Restated in an SQL-like query language, the
DCS request in Figure 9 might look like:

SELECT sec.description, yield, price
FROM PyCalc
WHERE sec.cusip='887315AT'
 AND nominalSpread=275

4.1. Retrieving security indicative data

Much of the information about a security is stored data
that can be obtained from a database directly. For
example, the first part of the sample query above asks for
a text string (sec.description) describing the security
whose CUSIP number is given (sec.cusip). For CUSIP
number 887315AT, the string might be:

TIME WARNER 7.48% DEB 01/15/2008

Some securities databases may store a description
string; others may not, since the description is redundant
with other information stored for the security. The
description begins with the name of the issuer (Time
Warner), which in a normalized database would appear in
a related Issuer table. The other elements of the string are
the coupon interest rate (7.48%), the type of security
(debenture), and the maturity date (01/15/2008).

Without DCS, the application developer would have to
determine whether the database contained a descriptive
text field. If the field were missing, the developer would
have to retrieve the other four attributes and write a
program to combine them into a descriptive string.

Using DCS, the application developer can request the
security's description and leave the details to the mediator.
If the database stores the description, DCS acts as name-
mapping view. If the database does not contain a suitable
description attribute, the mediator uses the declarative
knowledge structure to find a "calculation" function to
produce a description from other available attributes.

4.2. Working with valuation measures

The five measures of security valuation shown in
Figure 8 are alternative representations used to express
how much a security is worth as of a given settlement
date. For analytic purposes, the settlement date is the date
when a hypothetical sale of the security would take place.
Price is the percentage of face value to be paid for the
principal of the security. Full price adds the amount of
interest accrued from the last payment through the
settlement date. For analytic models, full price can also be
considered the present value of a future cash flow stream.
Yield is the parameter used for discounting future cash
flows in the internal rate of return valuation model.

hCalc = dcsNew("PyCalc");
dcsPutString("sec.cusip", hCalc, "887315AT");
pDescr = dcsGetString("sec.description", hCalc);
dcsPutBasisPoints("nominalSpread", hCalc, 275);
yield = dcsGetPercent("yield", hCalc);
price = dcsGetFraction("price", hCalc);
dcsRelease(hCalc);

Figure 9. API example

Nominal spread measures the difference between the
yield on the security and the yield for a benchmark
security of similar maturity. The benchmark yield may be
taken from an actual security or from a point on a yield
curve. The notion of spread is that one security may be
valued relative to another or relative to an approximation
of the market captured in a yield curve. The most
common benchmark is the U.S. Treasury yield curve,
which is taken as a proxy for the yield curve for risk free
investments.

The final measure, option adjusted spread (OAS),
measures the expected value based on the probability
distribution of future interest rates. OAS is also a relative
value measure based on a time-varying risk free
investment return rather than the single yield used in
nominal spread. For complex securities with cash flows
that depend on future interest rates, the calculation of
OAS can be complicated and compute-intensive.

The sample query illustrates how the DCS mediator
assists the application developer for valuation measures.
The query asks for yield and price given nominal spread.
To calculate yield, a benchmark yield is needed. Since the
benchmark is not provided in the query, the mediator
consults the financial context to find which yield curve or
security to use. The value returned to the application will
depend on the context setting controlled by the user.

Once the yield has been found, the mediator must then
apply the appropriate yield-to-price calculation algorithm
for the security involved. In addition, the mediator
retrieves the additional security descriptive data needed
for the calculation. Both the algorithm and the data
required vary with the security. The final ingredient for
calculating price is a settlement date, which was not
specified in the query. The financial context can provide a
default settlement date for a series of queries.

While valuation measures are generally thought of as
calculations, many systems pre-calculate and store values
that are frequently needed. For example, an overnight
pricing program may calculate yield, nominal spread,
OAS, and other measures for all securities in a database
based on the closing price for the day. When a portfolio
manager asks for a morning review, the data can be
retrieved from the database instead of calculated. By
using the mediator, the decision to calculate or retrieve is
transparent to the application.

The security valuation measures also illustrate the
contextual basis of representational equivalence. Price,
nominal spread, and OAS are equivalent measure of value
given a nominal or option-adjusted abstract model of
relative security value based on another abstract model of
return on investment. Nevertheless, specifying one or
another valuation measure may have different operational
implications. For example, specifying the price may mean

that the expected selling price of a particular security is
known. Alternatively, by specifying nominal spread, the
price is left to fluctuate with changes in the market or
changes in user assumptions, both of which are
represented by the benchmark yield curve. The DCS
domain model allowed the application developer and the
user to control and work with valuation models as
circumstances required.

5. Conclusions.

DCS proved the concept of context mediation in the
pragmatic world of an information-intensive and highly
competitive industry. When the original design was
presented to clients, response was enthusiastic.
Developers liked the idea of integrating data and
calculations, allowing them to avoid the work of
connecting components together in software. They found
the notion of treating computational results as data to be
appealing.

Producing a mediator for production business use
required a major focus on quality assurance and training.
The major quality assurance effort was not directed at the
mediator itself. Clients saw the results delivered through
the mediator as the responsibility of the mediator. In
consequence, the mediator development team spent most
of a year testing and fixing calculation software as it was
integrated. Considerable effort was also devoted to
documentation and training, including a manual on
domain model design using a tennis shoe sales example.

The DCS context mediator was similar in some ways
to an object broker approach. The difference was a design
based on declarative knowledge used to dynamically
decide on methods to materialize elements of the
conceptual model.

For some users, the structure imposed by the standard
conceptual model was helpful. More advanced developers
and client shops, however, wanted to be able to specify
their needs as user views or in their own conceptual
models. The mediator would need to go beyond context
conversion for individual pieces of data, to be able to map
the central domain model into the structure of client views
and models. Clients also wanted to be able to treat the
components of the domain model as building blocks that
could be arranged to suit their purposes. For example,
clients would have liked to pose queries that combined
entities as needed rather than using pre-planned
relationships. A query language like SQL or OQL would
have been helpful in place of the cumbersome API.

The DCS mediator offered a new paradigm for
financial application development. Traditionally, the
application programmer retrieves data and sets up calls to
calculation libraries. With DCS, the application

programmer works at a higher level of abstraction, in
terms of the results of applying analytic methodologies.
The mediator takes responsibility for finding and meshing
the right programs and data to fulfill the application's
needs.

By decoupling applications from the methods and data
used in computing analytic information, DCS allows plug
'n play dynamic substitution of functionally equivalent
components. For example, mortgage prepayment models
are critical to projecting performance on portfolios
holding derivative securities. When a Wall Street firm
refines its prepayment model, it wants to make that new
knowledge available to its customers quickly. Buy-side
portfolio manages may have preferred portfolio analysis
application tools that can gain immediate benefit from the
new model delivered through the mediator. The mediator
can also facilitate the sell-side analyst in developing
proposed trades by bringing buy-side portfolio holdings
data into the analyst's applications. Improving information
flow between buy-side and sell-side can also improve
capital market efficiency.

Experience with DCS suggests the potential value of
further research on query processing reasoning algorithms
for mediating among application developers' conceptual
models and component supplier models using industry-
specific abstract knowledge.

References

[1] G. Wiederhold, "Mediators in the architecture of future
information systems," IEEE Computer, March 1992, pp.
38-49.

[2] G. Wiederhold, "Mediation in information systems," ACM
Comp. Surveys vol. 27, no.2, June 1995, pp. 265-267.

[3] S. Madnick, "Are we moving toward an information
superhighway or a Tower of Babel? The challenge of large-
scale semantic heterogeneity," Proc. IEEE International
Conference on Data Engineering, 1996, pp. 2-8.

[4] F. Fabozzi, ed., The Handbook of Fixed Income Securities,
3rd ed., Irwin, Homewood, Illinois, 1991.

[5] C. Goh, "Representing and reasoning about semantic
conflicts in heterogeneous information systems," Ph.D.
Thesis, MIT Sloan School of Management, 1996.

[6] C. Goh, S. Bressan, S. Madnick, and M. Siegel, "Context
interchange: representing and reasoning about data
semantics in heterogeneous systems," MIT Sloan School of
Management Working Paper #3928, Dec. 1996.

[7] M. Siegel and S. Madnick, "A metadata approach to
resolving semantic conflicts," Proc. 17th International
Conference on Very Large Data Bases, 1991, pp. 133-145.

[8] Y. Arens and C. Knobloch "Planning and reformulating
queries for semantically-modeled multidatabase," Proc. of
the Intl. Conf. on Information and Knowledge
Management, 1992.

[9] A. Levy, A. Rajaraman, and J. Ordille, "Query answering
algorithms for information agents," Proc. 13th National
Conf. on Artificial Intelligence, Aug. 1996, pp. 40-47.

[10] M. Genesereth, A. Keller, O. Duschka, "Infomaster: an
information integration system," Proc. 1997 ACM
SIGMOD Conference, May 1997, pp. 539-542.

[11] Y. Papakonstantinou, A. Gupta, and L. Haas "Capabilities-
based query rewriting in mediator systems," Proc. 4th Intl.
Conf. on Paralled and Distributed Information
Systems,1996.

[12] H. Garcia-Molina "The TSIMMIS approach to mediation:
data models and languages," Proc. Conf. on Next
Generation Information Technologies and Systems, 1995.

[13] D. Woelk, P. Cannata, M. Huhns, W. Shen, and C.
Tomlinson, "Using Carnot for enterprise information
integration", Second International Conf. on Parallel and
Distributed Information Systems, Jan. 1993, pp. 133-136.

[14] D. Woelk, W. Shen, M. Huhns and P. Cannata, "Model
driven enterprise information management in Carnot", in
Charles J. Petrie Jr., ed., Enterprise Integration Modeling:
Proc. of the First International Conference, MIT Press,
Cambridge, MA, 1992.

[15] M. Benaroch, "Toward the notion of a knowledge
repository for financial risk management," IEEE Trans. on
Knowledge and Data Engineering, vol. 9, no. 1, Jan. 1997,
pp. 161-167.

[16] Standard & Poors CUSIP Service Bureau
http://www.cusip.com/

[17] Bridge Info. Systems, "EJV Partners Financial Glossary"
http://bondchannel.bridge.com/html/EJVGlossary.html

