
Hierarchical Database Decomposrtlon -
A Technique for Database Concurrency Control

Mexhun Hsu
Stuart E. Madnick

Massachusetts Institute of Technology

ABSTRACT

The classical approaches to enforcing
serial=abA~ty are the &Jo-phabe ~o&tng technique
and the timedtip Ohd&i.ng technique Either
approach requires that a read operation from a
transaction be heg+titied (in the form of either a
read tzmestamp or a read lock), so that a write
operation from a concurrent transaction will not
interfere improperly with the read operation. How-
ever, setting a lock or leaving a timestamp with a
data element is an expensive operation The pur-
pose of the current research is to seek ways to
reduce the overhead of synchronixlng certain types
of read accesses while achieving the goal of
serializability.

TO this end, a new technique of concurrency Con-
trol for database management systems has been pro-
posed. The technique makes use of a hierarchical
database decomposition, a procedure which decom-
Poses the entire database into data segments based
On the access pattern of the update transactions to
be run in the system. A corresponding classifica-
tion Of the update transactions is derived where
each transaction Class is *rooted@ in one of the
data segments. The technique requires a timestamp
ordering prOtOCO1 be observed for acesses within an
Upt%tte traMaCtiOn'S own root segment, but enables
read accesses to other data segments to proceed
without ever having to wait or to leave any trace
Of these accesses, thereby reducing the overhead of
concurrency control. An algorithm for handling
ab-hoc read-only transactions in this environment
is alS0 devised, which does not require read-only
transactions to Walt or set any read timestamp.

1.0 INTRODUCTION

A generally accepted criterion for correctness
Of a concurrency control algorithm is the criterion
of serializability of transactions. The classical
approach to enforcing serializability are the

pernuulon to COPY WIthout fee all or part of thm matens 1s granted
provl&d that the copies are not made or dlstrlbuted for dmct
commercial advantage, the ACM copyright notlce and the title of the
Pubhc&on and I& date appear, and notice 1s given that soPY*W 1s hY
permIssion of the Assoclatlon for Compuung Machinery To COPY
otherwse, or to repubhsh, requnes a fee and/or SPslfiC permlsslon

@ 1983 ACM O-89791-097-4/83/003/0182 $00 75

two-p'lase locking technique and the timestamp
ordering technique. Either approach requires that
a read operation from a transaction be heg.u@hed
in the form of either a read timestamp or a read
lock. Setting a lock or leaving a timestamp with a
data element is an expensive operation. It not
Only incurs a write operation in the database (in
the form of setting the read lock or writing the
timestamp), but also potentially causes unnecessary
delays for concurrent transactions.

The purpose of the current research is to seek
ways to reduce overhead of synchronizing certain
types of read accesses while maintaining
serializability. The bases for our technique are
transaction analysis and the maintenance of a
multr-version database. The transaction analysis
decomposes the database into hierarchically related
data segments, such that transations that write
into one segment will only read from the same data
segment or segments of higher levels. The tech-
nique enables read accesses to higher-level data
segments to proceed without ever having io wait; it
requires no read locks or read timestamps be set
for such accesses.

The structure of the paper is as follows A
brief overview of other relevant research is pre-
sented in the next section, followed by a review of
basic concepts of multi-version consistency in Sec-
tion 3. Sections 4 to 6 contain a description of
our concurrency control technique. Section 4
introc¶uces hierarchical database decomposition.
Given such a decomposition, concurrency control
algorithms for update transactions and for
read-only transactions are presented In Section 5
and 6. Section 7 concludes the paper.

2.0 REVIEW OF RELEVANT RESEARCH

Algorithms for database concurrency control
abound in the literature. Nest algorithms are con-
sidered variations, extensions and/or combinations
of the two basic techniques for concurrency control
- two-phase locking and time stamp ordering. The
two-phase locking algorithm ensures consistency by
imposing a partial order on all transactions based
on their lock points. (A lock point of a trans-
action is the point in time when the locking phase
Of the transaction reaches its peak.) The
timestamp ordering algorithm ensures consrste?cy by
rmposing a partial order on all transactions based
on the initiation times of the transations

\ 182

One of the recent developments in concurrency
control algorithms centers around the identifica-
tion of techniques that increase level of concur-
rency and/or reduce synchronization overhead, while
preserving the correctness of the algorithm. One
approach to these goals involves the use of a
multi-version database. It has been observed that
keeping multiple versions of database elements will
improve concurrency Of the database
<PapadimitriouOZ> The concept Of a
timestamp-based multi-version database system was
first proposed in <ReedlW. One-previous-version
concurrency control methods are discussed in
<&yerBO, Garcia-BolinaBZ, Vxemont62>, while multi-
ple-previous-version methods are presented in
Gtearns81, Chan82,. In particular, Ghan's method
is based on two-phase locking but allows the
read-only transaction to receive special treatment
- they do not have to set read locks. Our tech-
nique, however, is one which is timestamp based and
strives to reduce the need for leaving read
timestamps for not just read-only transactions, bti
llpda.&zktvl~anb ab la&l.

Another approach to reducing synchronization
overhead is conflict analysis <BernsteinEOb>. In
the research on concurrency control for SDD-1, con-
flict analysis was proposed to exploit a priori
knowledge of the nature of the transactions to be
run in the system. The approach reported in the
present paper is different from that of SDD-1
because it is not oriented towards distributed
databases, and, because of the special structure of
applications that our approach exploits, together
with the fact that multiple version technique is
employed, the protocols are much less restricted.
These new protocols are likely to allow for a high-
er level of concurrency.

3.0 BASIC CONCEPTS OF BULTI-VERSION CONSISTENCY

The following material concerning multi-version
consistency is mostly taken from <Papadrmitriou82,
BernsteinEZB, with some notational differences+ and
is included here for notational purposes.

Defrnttron A schedule of a set of transactions
T, denoted as S(T), is a sequence of steps, each of
which is denoted as a tuple of the form

<transaction id, action, version of a data
granule,.

The action can be read (r) or write (w). The ver-
sion of a data granule is denoted as d”, where d
indicates the data granule and v indicates the ver-
sion. If the action IS write, then the Version of
the data granule included in the step is created by
the transaction. If the action is read, then the
transaction reads the version of the data granule
indicated in the tuple.

An example of a schedule IS <t,,w,a'>, cts,r,a'>,
*ts,w,b'>, <ts,r,b'>.

Defrnrrron A version j of a data element d is
the predecessor of a version k of d if <t,,w,di* is
before +s,w,dk> in S(T) where t,, t2 E T, and
there exists no t e T and i such that Q,w,d',is
between <t 1 ,w,d’Und <t2,w,dk> in S(T).

Defrnrtlon A rransactlon dependency graph of a
schedule S(T) is a digraph, denoted as TG(S(T)),
where the nodes are the transactions in T and the

arcs, representing drrecr dependencies between
transactions, exist according to the following
rules:

t2-tl c Aiff
(1) <t ,,w,d"' and <t2,r,dV> are in S(T) for
some dv, or
(2) <t ,,r,dj> and <t2,w,dk> are ln S(T) for
some dj,dk where dj is the predecessor of dk.

In other words, the transaction dependency graph
represents a relation - (depends on) of trsns-
actions such that t2 - tl if tp reads a version of
a data granule created by tl or if ts creates a
version of a data granule whose predecessor has
been read by tl.

Deftnrrton. Two schedules S1(T) and S2(T) of
the same set of transaction set T is said to be
equrvslent iff TG(.s,(T)) = TG@~(T)).

Def rnr rion A schedule s(T) is semalrraQle if
there exists an equivalent schedule S,(T) where all
transactions in S,(T) are serialized. (i.e., no
steps of one transaction are interleaved with steps
from another transaction.)

In <BernsteinBZ> the following theorem has been
shown: a schedule S(T) is serializable iff
TO@(T)) is acyclic.

4.0 HIBBABCBICAD DATABASE DECOMPOSITION

4 1 SORE GRAPHIC-THEORETIC DEFINITIONS

We first brlefly introduce the concept of a
digraph called a transitive semi-tree. This con-
cept will then be used to describe the desirable
database partition to which our concurrency control
technique can be applied. Informally, a semi-tree
1s a digraph such that, if the directions of the
arcs in the graph are ignored, the graph appears to
be a spanning tree. A transitive semi-tree is a
dlgraph whose transitive reduction 1s a semi-tree,
i.e., it is a semi-tree with an arbitrary number of
additional transitively induced arcs.

Deffnrrlon A semt-tree is a digraph such that
there exists at most one undirected path between
any pair of nodes in the graph. Every arc in a
semi-tree is called a Critical 8rc.

Defrmrron A digraph G is a rranstrrve
semf -tree iff its transitive reduction is a
semi-tree.

An example of a transitive semi-tree is shown in
Figure 1. It can be seen that the definition of a
transitive semi-tree is more relaxed than a
directed tree, but 1s more restricted than an
acyclic directed graph. The following two proper-
ties are associated with the transitive semi-tree.

Property A path in a transitive semi-tree is a
critical path iff it is composed of critical arcs
alone.

183

v
Spanning tree Sem-tyee Transitive

Semi-tree
Figure 1. Illustration of a transitive

semi-tree.

Property There exists at most one critical
path between any pair of nodes an a transitive-semi
tree.

4.2 DATABASE PARTITION

We will use the concept of a data hierarchy
graph (DHG), constructed by means of transaction
analysis, to characterize the relationship between
a database partition scheme and database trans-
actions. As will be shown later, the topology of
the DHG of a particular database partition scheme
will indicate whether or not our concurrency con-
trol technique can be applied to that partition
scheme. Informally, let a database be partitioned
into data segments. A DHG is a digraph with nodes
corresponding to the data segments and arcs con-
structed in such a way that there is an arc from a
data segment Di to another data segment Dj if and
only if one can find a potential transaction in the
database system that updates data elements in D,
and accesses (1.e , reads or writes) data elements
in D,. In other words, D1 - D,, i f 1, indicates
that there exist transactions in the system that
would link updates of data elements in D, to the
content of data elements in D,.

Definitton Let TU be a set of update trans-
actions to be performed on a database D. Let P be
a partition of D into data segments D,,D2,...,Dn.
A data hierarchy graph of P w.r.t. TU is a digraph
denoted as DHG(P,T") vith nodes corresponding to
the data segments of P and a set of directed arcs
joining these nodes such that, for i + J, Dj - Dj
iff there exist t e T" s.t. w(t) 0 Di Z empty and
a(t) Q Dj Z empty, where t is a transaction, w(t).
r(t) and a(t) the write set, the read set and the
access set of transaction t. (The access set a(t)
is the union of r(t) and w(t).)

The kind of database partition to which our con-
currency control technique can be applied is one
such that its data hierarchy graph satisfies the
topological requirement that it be a transitive
semi-tree.

Deflnrtron. A partition P of a database D is
TST-hrerarchrcal with respect to TU iff DHG(P,T?
is a transitive semi-tree.

Property Let p be a TST-hierarchical partition
w.r t. T". Then t c TU writes in one and Only data
segment in P.

Proof Suppose t writes in two distict data
segments D, and Dj, then according to our rule Of
construction of DHG(P,T"), Df - Dj, Di - Di 6
DHG(P,T"), therefore DHG(P,T") is no longer a tran-
sitive semi-tree, which means that P 1s not
TST-hierarchical w.r.t T", and contradicts the
assumption.

Based on the above property, a TST-hierarchical
database partition P also defines a transaction
classification as follows.

Definition A transaction classification of a
database partition which is TST-hierarchical W.r.t.
T", as a partition of the set T" of all update
transactions into tF8ItS8CtlOn classes T1,T2, . . . ,
Trv such that a transaction t c T1 iff t writes in
data segment D1.

Therefore a transaction ClaSSifiCatlOn parti-
tions the set of update transactions into classes,
each of which corresponds to a data segment in the
data partition. We define the image of the data
hierarchy graph for the traILSaCtiOn ClassiflCation
as follows:

Definition A transactron hierarchy graph
THG(P,T") Of a database partition P,
TST-hierarchical w.r.t. T", is a digraph where the
nodes are transaction classes Tf's based On trMs-
action classification defined above, and arcs con-
necting these nodes such that T1 - Ti c A iff DI +
D, exists in the corresponding DHG(P,T").

Given definitions of DHG and THG above, we shall
denote a u&i& pa.73 dhom 4 to j in THG or DHG
as CP,i. Therefore, T, - Tk - . . . - Tj = CPI' iff
every arc is a critical arc, In addition, we give
the following defintion:

Deflnrtlon We define higher than (denoted as
t>) as a partial ordering of nodes in a THG or a
DHG. Specifically,
(or Tj t> Tt) iff CP,'

we say that T, higher than T1
exists in the graph.

5.0 SYNCHRONIZING UPDATE TRANSACTIONS

Given a TST-hierarchical database partition, the
key to our concurrency Control technique IS the
recognition that, if a transaction t belongs to a
class Tl that Writes data segment D, and reads data
segment Dj, and Dj is higher then D, in the Data
Hierarchy Graph, then this transaction would appear
to be a read only transaction so far as D, is con-
cerned. Therefore when a request to read a data
element d in Dj is issued by t, there may exist a
proper committed version of d that is bade to be
given to t without the need of leaving a read
timestamp with d. However, the way this proper
version iS computed mUSt be such that the overall
serializability is enforced. In other words, the
introduction of transaction dependency of t on t',
where t' is the transaction in class T, which cre-
ated the version of d that t is allowed to read,
must never induce Cycles in the transaction depend-
ency graph as defined in Section 3. To this end, a
function called the activity link function is
devised to compute versions that cross-class read
accesses may be granted, and a theorem which testi-
fies to the correctness of this computation is

184

presented. Based on this theorem, a concurrency
control algorithm is also presented.

Norarl ons
(1) I(t) = the initiation time of a transaction

(2) :it, = the commit time of a transaction t
(3) TS(d") = the inrtitation time of the trans-

action that creates the version v of a data
granule d, i.e., the write timestamp of d".
(A data granule IS the smallest unit that
concerns the concurrency control component
of the database system, an& is the smallest
unit of accesses so far as concurrency con-
trol 1s concerned.)

5.1 THE ACTIVITY LINE FUNCTION

The following definitions and properties apply
to a database with a partition P which is
TST-hierarchical w.r.t T" and has a corresponding
transaction classification.

Definition A function Ilmd defined for a
transaction class T1 is a function which maps a
time m to another time m' such that mm = I~"'d(m),
where ml is the initiation time of the oldest
active (i.e., uncommited and un-aborted) trans-
action in the transaction class T1 at time m.
Formally,

m if there exists no t 6 T+ active at
time m,

Ii o1d(m) =
1 /Bin (I(t)) otherwise, where t c T1,

I(t) I m and C(t) * m.

Definrtlon Let the Bcrtvlfy llnk funcrlon A,’
be a function defined for a pair of transaction
ClaSSeS T1 and T j, where Ti and Tj are transaction
ClaSSeS such that T, t> Ti A,' recursively maps a
time m to another time as follows.

i

Ij
A,'(m) =

0'd(m) lf T, - Tj = CP+'

Ak'(A+k(m)) otherwise, where
T, - TI, -. .- T, = Cl','.

That is, the function A maps a time m for a
transaction from class Tf to the initiation time,
Am’, of SUCCeSSiVely (i--e., along the critical
path of TRG) the oldest active transaction in the
class T,. For example, if the critical path
between T1 and Tj is Ti - Tk - T,, then Aff(m) =
Ij o'd(IkO'd(m)). This is exemplified in Figure 2.

5.2 CONCURRENCY CONTROL ALGCRITRB MR UPDATE
TRANSACTIONS

Based on the definitions given above, we
describe in this subsection the concurrency control
algorithm for update transactions under the hierar-
chical decomposition approach, and prove its cor-
rectness. For the purpose of concurrency control,
ue assume that every data segment is controlled by
a begI6PJl.t con.tAott~ which supervises accesses to
QIta granules within that segment.

I1
old (m) = inlt time of the oldest

active trans in class
T1 at tme m

*

I1
Old(m)

tune m
.

Al'(m) = I,
old (Ik

old (m)), if CPi' =

Tl+ Tk+ T

'(7) T,

c
(-) Tk

Figure 2. Graphioal represenation of the A
function.

--

Concurrency control algorlrhm for update rrans-
acrlons

For every database access request from an update
transaction t c T, for a data granule d d Di, the
following protocol is observed:

Protocol A
If i Z j, then the segment controller of Dj pro-
vides the version do of d such that

TS.(dO) = Bax(TS(d")) for all v such that
TS(d") < A,'(I(t)).

(Note that no trace of this access needs to be reg-
istered in any form for the-purpose of concurrency
control by the segment controller.)

Protocol B
If i = j,
PhOtOCOt

then use the b’wc,~ti&tid~;
<BernsteinBOa or ‘V

&mU$amp ohdvumg phOtOCOe <Reed78>.

5.3 PROOF OF CORRECTNESS

To show that the above algorithm is correct, one
must show that serialix+lity is enforced. In
order to do this, we define a relation =-> between a
pair of transactions and show that the above algo-
rithm allows a transaction t, to directly depend on
a transaction ts only if tl => ts.(Direct depend-
ency is defined in Section 3) We then show that
properties of the relation => lead to Theorem 1,
which concludes that the above algorithm preserves
serializability.

Defrnrtlon A relation ropologrcally follows
(denoted as =a) is defined for a pair of trans-

185

actions tl, t2, where tl f Ti, t2 f T,, T, and T,
are connected by a critical path in THG, i and 3
not necessarily cllstlnct. We say that t,
topologrcally follows t2 (or t, => t2) lff

(1) If 7’1 = T, then I(t,) > I(t2).
(2) If Ti ,> T, then I(t,) 2 A,'(I(tn)).
(3) If Tj +> Ti then I(ts) < A,i(I(t,)).

Intuitively, => is a relation between trans-
actions based on both the timing of the trans-
aCtiOnS and the hierarchical levels in the THG of
the transaction classes that the transactions
belong to. To be more specific, 't, => t2* always
means that t, is 'later' than t2. However, this
later is not only base& on the initiation times
of the two transactions involved, but also on the
relative levels of the transaction classes to which
t1 and t2 bslong: Given a fixed t2, the lower the
level of tl, the later tl*s initiation time has to
bs in order for tl => t2 to hold. Clearly, => is
defined Only between transactions that belong to
classes that are on a critical path in THG, because
otherwise the A function is undefined. This
relation is exemplified in Figure 3. Two interest-
ing properties concerning the relation => are
presented below:

Property 1 1 The relation I> is
anti-symmetric. (This directly follows from the
definition of the relation.)

Property 7.2 (The property of transr tl vrtyl.
The relation =:, is crrtlcal-peth tranattrr, i.e.,
if there exists t, s TI, ts c Tk, ts L T,, such

(1) if T1 = T,

then IftO > I(t,).

(2) If T1 t> Tj then
I(t,) h A,'(I(t2)).

(3) If Tj t> T1 then
I(t2) < A,'(I(t,)).

Figure 3. Graphical representation of the
relation tl=' t2.

that t, =a t2, t2 => ta and T,, Tk and T, are on a
critrcal path in TRG, then t, => ta.

Proof (See Appendix)

We now define the following synchronization rule
and show that our concurrency control algorithm
enforces this rule.

Definition We say that the parti tron
synchronization rule (abbreviated as PSR) is
enforced in a schedule S(T") if, for any t,, t2 e
T", t, - t2 c TG(S(T")) implies that tl => t2.

A concurrency control algorithm enforces the
partition synchronization rule if it allows direct
dependencies to occur between transactions t, and
t2 only if tl =* t2. This is translated into the
following three cases:

(1) If t, and t2 are in the same transaction
class, the algorithm must allow t, to read a ver-
sion v of a data granule d created by t2, or to
create a new version of a data granule d whose lat-
est Version cl" was created by t2,'only if t2 has an
inititation time that is less than that of tl.
(i.e., only if TSlrl") < I(t,).)

Protocol B of our algorithm satisfies this
requirement.

(2) If tl belongs to a class T, of a lower level
while tp belongs to a class Tj of a higher level,
then the algorithm must allow t, to read d" created
by ts only if tp has an initiation time less than
AjJ(I(tl)). (i.e., only if TS(d") * AfJ(I(tl)).)

Protocol A of our algorithm satisfies this
requirement.

(3) If t, belongs to a class Ti of a higher lev-
el while t2 belongs to a class Tj of a lower level,
then the algorithm must allow tl to Create. at time
m. a new version of a data granule whose predeces-
sor dv has been read by t2, only if tl has an ini-
tiation time greater than or equal to Ai'(I(t.2)).

This, however, is always true because, by the
very fact that tl is active at time m and I(t2) (
m, and that Aji(I(t2)) yields a time value which is
definitely smaller than the.initiation time of the
oldest active transaction in class T1 at time m,
AJ1(I(t2)) must be less than I(tl).

Therefore we conclude that our algorithm
enforces PSR. What is left to do in proving the
correctness of our algorithm is to show that a
schedule that enforces PSR is also correct. The
following theorem therefore Completes our proof.

Theorem 1 Let TG(S(T")) be a transaction
dependency graph of a set of udpate transations T"
run on a database with a TST-hierarchical partirion
p, and the schedule S observes the partition
synchronization rule with respect to the trans-
action classification cczresponding to P, then
TG(S(T")) has no Cycles.

Proof (See Appendix)

186

6.0 SYNCHRONIZING READ-ONLY TRANSACTIONS

What has been dscussed is the algorithm for
controlling concurrent update transactions. Now we
turn to the read-only transactions.

For a read-only transaction t that reads from
data segments that lie on one critical path CP,' of
the DHG, the protocol that should be observe is the
same as that observed by the update transactions in
a class immediately below the lowest class of the
critical path CP+' in THG, namely, a class right
below class Ti. (If there exists no class below T,
in THG, then a fictitious class can be created to
'host' this read-only transaction.) Therefore
read-only transactxons wzll have to obey protocol A
alone and will not cause any read timestamp or read
lock to be generated. This is graphically pre-
sented by transaction t1 in Figure 4

What we are concerned with here are those
read-only transactions that read from any comixna-
tion of data segments that do not lie on a critical
path in DHG, as illustrated by'transaction ts in
Figure 4. To handle these transactions, we first
introduce the extended actcvcty Lab t$~~totcon in
the following subsection.

6.1 THE EXTENDED ACTIVITY LINE FUNCTION

In the previous section we have introduced the
activity link function which centers around the
linkage between transactions in classes that are on
a critical path in the transaction hierarchy graph.
The extended function, on the other hand, specifies
how transactions in a transaction class are linked

l - t reads from class
(t is a read-only transaction)

Figure 4. Read-only transactions that read
from one critical Path.

to transactions in another transaction class when
there is not necessarily any critical Path that
connects the two. This function is used to provide
a way of computing a con54&6& liutaba6e A.i%te that
can be accessed by a read only transaction that
reads from any combination of data segments in the
database.

We will first introduce the functions C+"'* and
' that can be considered conceptually the mutic

f; functions I,O'e and A,' Then two properties of
the relationship between the functions A1j and B,'
are derived. The extended activity link function
Ei j is then defined in terms of functions A and B,
and its usefulness is indicated in a lemma that
follows The existence and derivation of a con-
sistent database state is given in theorem 2, which
makes use of the extended activity link function.

Defrmtlon Let C,'kte m - rn' be a function
which maps a time m to another ml where T1 is a
transaction class and Cll’te(m) is determined as
follows.

m if there exists no t 6 Ti
active at time m,

Ci late(m) E

1
Ha% (C(t)) otherwise, where t t
T,, I(t) d m and C(t) > m.

That is, Cl'kfe(m) is the eatebt commit time of all
transactions in class Ti that s&ted before or at
time m. However, to make C1'*"(m) computable, all
such transactions must have committed at the time
of computation of C~""(m). We give the following
definition concerning the compu.tab&&g of C~"'w
(ml. I

Definrtlon ci late(m) is computeble et time m0
iff there exists no transaction started before or
at time m that is still active at time rn'.

Now we introduce a function which 18 conceptu-
ally the inverse of the function A. while the A
function maps a time in a lower level class to the
initiation time of some transaction in a higher
level class, the B function maps a time in a higher
level class to the commit time of some transaction
in a lower level class:

Defrnrtton The Be&ward ectivi ty lrnk
function, defined for a pair of transaction classes
T, and T,, where T, +> T,, denoted as Bji(m),is a
function which maps a time value m to another such
that

1

Cl
Bj'(m) =

late(m) if T, - T, = CP+j
.

Bki(Bik(m)) otherwise,
where T, - . . . - Tk - Ti = CP,'.

The following two properties bind the functions
A and B together and formally describe how they are
the inverse of each other.

Property 2 1.
Tj = CP,'

AjJ(BJi(m)) k m, where TI + . . . -
in the transaction hierarchy graph.

Proof (See Appendix)

Property 2.2. For evey positive 6, A~‘(BJ '(ml -
0 (m* where T, - . . . - T, = CP,' in the tranS-
action hierarchy graph.

Proof (See Appendix)

Definition undo rected cm tical path,
denotab as lJCPIJr is an ordered set of dcktorct
indices of transaction classes in THG such that
ucp,j I *I, ii, 12, in, j> where for any two
indices h, k adjacent in the Set, either Th + Tk or
Tk - Th is a crtical arc in THG.

187

It 1s obvious that for a TST-hierarchical partl-
tion there exists one and only one UCP In THG
between any pair of transaction classes While the
actlvlty link function A 1s defined for any pair of
transaction classes that lie on a critical path,
the extended activity link function, using the con-
cept of UCP, is defined for any pair of transaction
classes

Deflnitron The extended ectrvity link function
defined for a pair of transaction classes T, and
Tje denoted as E,'(m), is a function which maps a
time value m to another such that

/m if i = j,

Cl late(m) if i+jandTj-Tiisa
crltlcal arc in THG,

E,'(m) = 4
Ij Old(rn - adj(m,i)) if 1 + j and Tf -
T, 2s a crltlcal arc In THG,

Ek'(Eik(m)) otherwise, where
(<l,k,. ,J> = me,‘:

where the value of adj(m,i) is defined as follOwS

Of

0 If there exists t c Ti such that
I(t) = m or there exists no
transaction in T, active at m

adj(m,i) =
m - I(t*) otherwise, where t' is

such that C41ate(m) = C(t*).

The following lemma illustrates the USefUlneSS
the extended activity link function.

Leflma 2 1 Let Tk, T, and T, be transaction
classes in a THG of a TST-hlerarchlcal database
partltlon, and T, and T, are on one critical path.
Then for any time value m and tl P T,, ts E T,, if
I(t,) < Ek’(m) and I(tn)h Ekj(m) then there exists
no t, - t2 in the transaction dependency graph
TG(S(T")) where the schedule S enforces the PSR's

Proof (See Appendix)

Intuitively, the E function provides a way of
computing a time Waee for all transaction classes
in the database system across which no direct
dependency from the 'older side' of the wall to the
'newer side' of the wall can occur A time wall
TW(m,s) is the set of all times E,'(m) where m is a
time, D, is a chosen data segment, and D, is any
data segment. This concept is graphically pre-
sented in Figure 5. The signlflcance of this
concept is that If a read-only transaction reads
the latest versions of data granules of data seg-
ment D1 which are right before the time indicated
by the time wall component E,'(m) of certain time
wall TW(m,s), then it is accessing a consistent
database state and will in no way anduce cycles
into the transaction dependency graph. This dls-
cussIon is formally presented in the following
theorem.

Theorem 2 If the schedule S enforces the PSR
on T", and for every d f D, that a read-only
transaction tn reads, S allows it to read the ver-
sion do such that

TS (do) = Hax (TS(d")) where TS(d") < E,' (ID),

T4

A time wall TW(s,m) is such that no direct
dependencies occur between a transaction on
the left side of the dotted line (1 e I(t)
4 E '(III)) and that on the right side if the
dotted line (1 e , I(t)7 Es'(m))

Figure 5. The E function used as a time
wall.'

for some time m and some transaction class index s,
then TG(S(T" U te)) has no cycle.

Proof (See Appendix)

In other words, if a read-only transaction reads

the latest versions of data granules of data seg-
ment D1 which are right before the time indicated
by the time wall component E,‘(m) of Certain time
wall TW(m,s), then it is accessing a COnSlStent

database state and will not induce cycles into the
transaction dependency graph.

6 2 CONCURRENCY CONTROL PROTOCOL FOR READ-ONLY
TRANSACTIONS

Making use of Theorem 2, a read-only transaction
t that reads from data segments that do not lie on
one critical path In DHG should be given versions
that are the latest before certain time wall. How-
ever, to compute the time wall the system has to
determine the starting transaction class T, and a
starting time value m. While the choice can be
arbitrary, it 1s theoretically desirable that the

following criteria are met:

(1) E,'(m) (for all T, In the THG) is comput-
able at I(t), the initiation time of the
read-only transaction.

(2) There exists no rn’ > m such that E,'(m') is
computable at I(t) for all T1 In the THG.

The first criterion stipulates that m should be
dM&.f? enough so that all E,'(m) is computable at
I(t), therefore t potentially does not have to wklt
until a later time to access from certain segment.

(If some E,'(m) is not computabl6 at I(t), t would
have to wait till a later time when It is comput-
able before accessing data from data segment Dj.)
The second criterion strives to achieve reading of
the newekt po64db& database state.

A compromise is struck here in devlslng our pro-
tocol for read-only transactions. First, to save
computation time, a new time wall is computed by
the system at certain intervals and the new time
wall IS 'released' to all read-only transactions

that start before the next VM&Otl of the time wall
1s released by the system (That is, there IS no
need to compute a time wall for every read-only
transactlon.) In computing the next version of the
time wall, the system can choose arbxtrarlly a
starting class T, which 1s of one of the lowest
levels and choose m to be the current time If 1t
encounters any C,‘“* function that It cannot com-
pute, It waits until It becomes computable. Even-
tually enough time ~211 elapse such that E,‘(m)
becomes computable for all TI(s Then a newly con-
structed time wall is released.

Let the release time of a time wall TW(m,S) be
denoted as RT(TW(m,s)). Now we provide the formal
definition of the rqad-only transaction
synchronization protocol.

Concurrency Control Algorithm for Read-Only Trans-
actron

For every database read request from a read-only
transaction t for a data granule d. the follOWlng
protocol IS observed.

Protocol C
Let d i DI. The segment controller of Di provides
the version do of d such that

TS(dO) = Nax(TS(d")) for all v such that
TS(d") (E,'(m)

where RT(TW(m,s)) = Hax(RT(TW)) for all TW such
that RT(TW) < I(t).

7.0 SOUMARX

A new technrque of concurrency control for data-
base management systems has been proposed. The
technique makes use of a hierarchical database
decomposltlon, a procedure whxh aecoeposes the
entire database lnt0 data segments based on the
access pattern of the update transactlons to be run
rn the system. A corresponding classlfxatlon of
the update transactions 1s derived w>ere each
transaction class is 'rooted' in one Of the data
segments.

The technique requires a tlmestamp ordering pro-
tocol be observed for acesses wlthln an update
transaction’s own rOOt segment, but ena3les read
accesses to other data segments to proceed without
ever having to Walt or to leave any trace of these
accesses, thereby reducing the overhead of concur-
rency control. An algorathm for handling ad-hoc
read-only transactions In this environment IS also
devised, which does not require read-only trans-
actions to wait or set any read tlmestamp. The
Proof of correctness of these algorithms In terms
of their preservation of serialzability is pro-
vlded through a set of eight propertles, three
lemmas and two theorems A comparison of the SDD-1
approach, the multi-versaon two-pha’se locking
approach (MVZPL) and the Hierkrchical Database
Decomposltlon (HDD) approach proposed here 1s given
in Figure 6.

Acknowledgenents The authors would like to
thank W Frank of Sloan School, M.I.T. and A. Chan
of Computer Corporation of America for their help-
ful suggestions. Work reported herein has been
supported, in part, by the Naval Electronic Systems
Command through contract N0039-81-C-0663.

HDD 503-l MVZPL

'ra75 Hier- General None

ira1vs1s archlcal

iepresen- T, 7-a Tz T-
:ation R A/O

l-2

iJ IfKr

0
UI

T 0 UP0
.

Inter-
Class
Synch

Never re- May cause N A
Ject or read req
block a to be ce-
read req 3ected or

blocked

Intra-
Class
Synch

Timestamp Serlallzed Z-phase
Crderlng Plpellnlng locklng

Read-only Smllar to NO SpeClal Never
Trans Inter-class handling block OK

Synch relect

Figure 6 A comparison of the HDD, SDD-1 and
MVZPL approaches.

BIBLIOGRAPHY

Bayer80 Bayer, R., Heller, H., and Reiser, A
Parallelism and recovery in database systems.
ACM Trans Database Syst 5, 2 (June 1980)

Bernstein80 Bernstein, P.A., and Goodman, N
Fundamental algorithms for concurrency control
In distributed database systems computer
Corporation of Amerzca, TR CCA-8-05 (Feb 1980)

BernstelnEOb Bernstein, P.A., Shipman, D.W., and
Rothnle, J.B Concurrency control In a System
for Dlstrlbuted Databases (SDD-1). ACN Trans.
on Database Syst , 5, 1 (March 1980)

Bernsteln82. Bersteln, P A., Goodman, N.r and
Hadzllacus Distributed database control and
allocation. CCA Semi-annual technical report
(July 1982)

Chan82: Chan, A. et. al The lmplementatlon of an
integrated concurrency control and recovery
scheme Technlcal report CCA-82-01, Computer
Corporation of America, Cambridge, Mass
(1982)

Garcia-Molina82. Garcia-NolAna, H and Wiederhold,
G. Read-only transactions In a Uilstributed
database. ACM Trans Database Syst 7, 2
(June 1982)

Eswaran76: Eswaran, K P , Gray, J N., Lorie, R-A.,
and Traiger, I L. The notions of consistency
and predicate locks In a database SyStemS.
Comm. ACM 19, 11 (Nov. 1976) , 624-634

Gray76 Gray, J.M , Lorie, R A , Putzolu, G.R.,
and Traiger, I L. Granularzty of locks and
degrees of consistency in a shared data base.
In Modelllng in Data Base Uanagement Systems,
G.M. Nljssen. (ed) North Holland PubllShing
Company (1976)

189

Hsu82 Hsu, X The Hlerarchlcal database decompos-
1t10r approach to concurrency control.
INFOPLEX Tech. Report No 12, Center for
Information Systems Research, H I.T.,
Cambridge, MA. (Dee 1982)

Papadlmitrrou79 Papadlmltriou, C.H. The
serializability of concurrent database
updates. Journal of ACH 26, 4 (Ott 1979)

Papadlmltrlou02' Papadlmltriou, C.H. and
Kanellakls, P.C. On concurrency control by
multiple versions. Proc. 1982 ACM
SIGACT-SIGMOD Symp. on Principles of Database
syst. (larch 1982)

Reed78: Reed, D.P. Naming and synchronlzatlon in
a decentralized computer system. Ph.D. dls-
sertatlon, Dept. of Electrical Engineering and
Computer Science, M.I.T., Cambridge, Bass.
(September 1978)

Stearns81: Stearns, R. and Rosenkrantz, D. nis-
trlbuted database concurrency control using
before-values. ACB SIGBOD Conference Proceed-
lng (1981)

Vlemont82 : Viemont, Y H. and Gardarln, G.J. A
dlstrlbuted concurrency control algorithm
based on transaction Commit order+ng.
Proceddlng of Fault Tclerance Computer
Systems, Santa Xonlca, Cal. (June 1982)

APPENDIX

(Refer to Hsu82 for complete proofs whose abbre-
viated versions are given here.)

(1) PROOF OF PROPERTY 1.2

F;;;;rty 1 2 (The property of transltlvltyl
(Sketch) We consider the following 5

groups of cases: (1) T, = Tk = T,, (2) Ti = Tk Z
;j,, (3) TI + T, = Tjr (4) T1 = Tj f Tkr and (5) T,

k + Tjr Ti + Tj. In each group, we permutate
the order of levels among the distinct transaction
classes to arrave at a total*13 cases. These cases
exhaust all the possible situations that govern t,,
t2 and t3 and for every situation, transitavity
is shown to hold. Therefore we conclude that => is
critical-path transitive.

(2) PROOF OF THEOREM 1

In order to prove Theorem 1, we first give the
following two definltlons and a lemma about the
transaction dependency graph.

Deflnrtron A critrcal path dependency, between
two distinct transactions tl f TI and t2 E T,,
denoted as CD(t,, t$,is a cycle-free dependency
path from tl to t2 in TG(S(T")) and T1 and Tj are
on one critical path in TBG, i and j not necessar-
ily distinct.

Defrnrrton. A boundery crlrtcal path dependency
in TG(S(T")) between two transactions t l f T, and

t2 f T,, where t, (r ts, denoted as BC!D(t,, t21 ,is

a CD(t,, t2) such that either or both of the fol-
lowing are true:

1. There exsts t3 d Tk such that t, - ts
fCD(t,, tq) and T,, T, and Tk are not on
one critical path;

2. There exists t4 f T, such that t,, - tz
fCD(t,, tg) and T,r T, and T1 are not on
one crltical path.

Property If BCD(t,, t,), where t, f T, and t4
f Tj. then there exist ts 6 Tk and ts f TX, tsr ts
not necessarily distinct, such that CD(t,, ts) C
CD(t,, to), CD(tsrts) c CD(t,, t,), CD(t3,t4) c
CD(t,, t4) and T1, Tj, Tk and T1 are on one crit-
&Cal path in THG. (This directly follows from the
fact that THG is a transitive Semi-tree.)

Lemma 1 If there exists a critical path
dependency CD(t,,tz) m a transactaon dependency
graph TG(S(T)) where the schedule S enforces the
partition synchronization rule, then t, => ts.

Proof Let 1 be the length (In number of arcs,

i.e., direct dependencies) of a crakxcal path
dependency. Then 1 has a t'otal order and IS

bounded from below by 1 By way of complete math-
ematical anduction, to prove that if CD(t,,t2) then
t1 =-, tl, we have to show the following

(1)
(2)

Now we
(1)

(2)

if eccDctlrt2)) = 1 then tl =* t2.
If [(cD(tl,t2)) = g and If t, => th for all
tat to
J(cn(ta,tEjS'c iy:Fen

exists CD(t,,to) and
t, => tz.

prove the above two statements.
In this case. CD(t,,tz)' t, - tp. BY prop-

erty 1.3 we have t, => tz
TO prove the second Statement, let ts 6 Tk

and t4fTlbe such that t, - ts f CD(tcr
t2)r t4 - t2 f CD(t,, t2), and a path,
denoted as Path(ts,t4), from t3 to t4 such
that Path(t3,t4) C CD(t,,t2). Also let tl f
Ti and ts f T,. Consider the following two
cases-
(2.1) If CD(t,,t2) is not a BCD, then

Path(t3,t4) is a CD(ts,to). Since
.t(CD(t,,td) < g therefore t, => t2. And
by the deflnltlon of CD, T,, Tj, Tk and T,
must be on one critical path of THG.
Therefore we have tl - t3, t4 - t2 and tg
=-> t4. By property 1 2 (i.e , the proper-
ty of critical path transltlvity) we have
t, => t2.

(2.2) If CD(t,,t2) c6 a BCD, then by the
property above of a BCD we have that there
exist ts f T, and t6 f T, such that CD(t,,
ts) c CD(t,,ts), CD(tarts) c CD(t,rts).
and CD(ts,t2) C CD(t,,tz) where T ,,, T ,, T,
and T, are on one critical path of TBG.
Since e(CD(t ,r ts))< g, therefore t, =>
ts* Similarly, ts =' tp and ts =' ts. By
property 1.2 we conclude t, => ts UED

Theorem 1
Proof Suppose there exists a cycle.

cycle involves at least two transactions
that belong to transactions that are on
ical path. This means that there exist
and CD(tp,t,). By the above lemma,
implies t, => t2 and CD(ts,t,) implies ~.

Then the
t, and t2
one crit-
CD(t1rt2)

cD(tl,tl)
t2 => t,.

However, => is anti-symmetrac tny property 1.1).
Therefore t, I* t2 and t2 => t , cannot be true at
the same time. Therefore there can be no cycle in
this transaction dependency graph. 0 E D

190

(3) PROOF OF PROPERTY 2.1

;;w;w 2 7
(Sketch) Let CP,' = T, - T,, - . . -

Tit,-,, - T,, - T, Replace the expression B,'(m)
in A,'(Bi'(m)) by B,'(m) = C,,(. .(C,,(C,(m)))...).
(C, is an abbrevaated expression for Cjlare). sub-
stitute reCUrSlVely the terms involved in B,,(m) by

time values while keeping track of the values sub-
stituted. Eventually we transform the expression
A,'(Bi'(m)) into A,j(m,,) where ml1 is a proper
time value derived from transaction activities in
class T,,. Then start expanding the expression
A,j(m,,) and substitute the terms involved in it
with appropriate time values Compare these
time values with those used in substituting terms
in B,,(m) previously. Eventually Alf(m,,) is
reduced to a simple time value to be compared with
the original value m, and the inequality will be
found to hold.

(4) PROOF OF PROPERTY 2.2

Property 2 2
Proof (Sketch)

The proof is similar to that of property 2.1. It
involves carefully spelling out the terms involved
in the expression and compare the values used dur-
ing substitution.

(5)p;;7F OF LEMHA 2.1
(Sketch) Let Tkl be the Class such that

kl is the fisrt index in UCpk' where Tk, and T,, T,
are on one critical path. (k and kl are not neces-
sarily distict.) Then kl will also be the first
such index in UCpk' , and the subset of the ordered
set UcPk ' up to kl and that Of ucpk’ up to ki are
equivalent. (This is

nodes there is one and
following four groups
i = j = kl, (2) I = kl
i + , Z kl. For
permutate the level of

a total of 11 cases we

because between any pair Of
only one UCP.) Consider the
of cases. (1) I = j Z kl or

j, (3) j = kl # I, and (4)
each of the group above we
the distinct classes and for
have shown that it is impos-

sible to have tl - t2. (The proof makes extensive
use of properties 2.1 and 2.2 concerning the
relationship between the functions A and B which
are used to construct the function E) Therefore
we prove that there exists no t, + ta

(6) PROOF OF THEORE?! 2

In order to prove Theorem 2, we first give the
following definitions and a lemma (Lemma 2.2.)

Defrnrtlon A constsrenr rrensecrron set wrrh
respect to e schedule SITI, abbreviated as a CS
w.r.t. S(T), is a set of transactions Tcs C T such
that if t c TCs and if there exists t, c T such
that t - . - t, C TG(S(T)), (i.e., if t depends
on t, ln the transitive closure of -), then t, L
TC' .

Property 2 3 (The Property of e consistent
rrensectlon set 1 Partition T" into T"' and T"'.
Then Tul is a consistent transaction set W-r-t S(T)
iff for any two transactions t,,ts, such that t, c
T"' and t2 c TU2, there exists no t, - ts in the
transaction dependency graph TG(S(T)). (Proof
omitted)

Deflnrrlon Given a time value m and a mg
LUVlAGCtiOtl CladA T,, a designated consrsrenr
transaction set, denoted as TCS(m,s), IS a consist-
ent transaction set such that for all t P T,, t 6
TCS(m,s) iff I(t) < m.

Lemma 2 2 parition T" into T"' and Tu2. Then
T"' is the designated consistent transaction set
!r='(m,s) w r t. s (T") , where the schedule S
enforces the PSR, if T"' contains, for all I, all
and only transactions t such that I(t) < E,,(m)
where t 6 T,.

Proof Construct a time wall TW(m,s). Then by
the previous lemma (Lemma 2.1) we know that for any
j, k, if t, c Tj and I(t,) (E,'(m),and ts 6 Tk
and I(t2) L Esk(m) then there exists no t, * t2.
Therefore by Property 2.3 above we know that T" is
a consistent transaction set if it contains for all
i only transactions t such that I(t) < E,'(m) where
t 6 T,. And since E,'(m) = m, we have I(t,) < m if
t, c Ts Therefore T" must be the designated con-
sistent transaction set T"(m,s). Q E D

Corol lery Given a time valti m and a starting
transaction class TS, there exists a designated
consistent transaction set TCs(m,s).

Theorem 2
Proof Partition TU into Tul and Tu2 such that

for alltcT,,foralli,t o T"' iff I(t) * E,’
(m) . Then it is clear that dependencies induced by
tR must be arcs that go from ta t0 transactions in
T"' and arcs from transactions in Tu2 to te By
Le&a 2.2, there exist no dependencies from trans-
actions ln T"' to those in Tu2. Therefore arcs
introduced by ts will not introduce any CyCle into

the original TG(S(T")) Since TG(S(T")) has no
cycle, therefore TG(S(T" u tR)) has n0 Cycle

QED

191

