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ABSTRACT 

The classical approaches to enforcing 
serial=abA~ty are the &Jo-phabe ~o&tng technique 
and the timedtip Ohd&i.ng technique Either 
approach requires that a read operation from a 
transaction be heg+titied (in the form of either a 
read tzmestamp or a read lock), so that a write 
operation from a concurrent transaction will not 
interfere improperly with the read operation. How- 
ever, setting a lock or leaving a timestamp with a 
data element is an expensive operation The pur- 
pose of the current research is to seek ways to 
reduce the overhead of synchronixlng certain types 
of read accesses while achieving the goal of 
serializability. 

TO this end, a new technique of concurrency Con- 
trol for database management systems has been pro- 
posed. The technique makes use of a hierarchical 
database decomposition, a procedure which decom- 
Poses the entire database into data segments based 
On the access pattern of the update transactions to 
be run in the system. A corresponding classifica- 
tion Of the update transactions is derived where 
each transaction Class is *rooted@ in one of the 
data segments. The technique requires a timestamp 
ordering prOtOCO1 be observed for acesses within an 
Upt%tte traMaCtiOn'S own root segment, but enables 
read accesses to other data segments to proceed 
without ever having to wait or to leave any trace 
Of these accesses, thereby reducing the overhead of 
concurrency control. An algorithm for handling 
ab-hoc read-only transactions in this environment 
is alS0 devised, which does not require read-only 
transactions to Walt or set any read timestamp. 

1.0 INTRODUCTION 

A generally accepted criterion for correctness 
Of a concurrency control algorithm is the criterion 
of serializability of transactions. The classical 
approach to enforcing serializability are the 
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two-p'lase locking technique and the timestamp 
ordering technique. Either approach requires that 
a read operation from a transaction be heg.u@hed 
in the form of either a read timestamp or a read 
lock. Setting a lock or leaving a timestamp with a 
data element is an expensive operation. It not 
Only incurs a write operation in the database (in 
the form of setting the read lock or writing the 
timestamp), but also potentially causes unnecessary 
delays for concurrent transactions. 

The purpose of the current research is to seek 
ways to reduce overhead of synchronizing certain 
types of read accesses while maintaining 
serializability. The bases for our technique are 
transaction analysis and the maintenance of a 
multr-version database. The transaction analysis 
decomposes the database into hierarchically related 
data segments, such that transations that write 
into one segment will only read from the same data 
segment or segments of higher levels. The tech- 
nique enables read accesses to higher-level data 
segments to proceed without ever having io wait; it 
requires no read locks or read timestamps be set 
for such accesses. 

The structure of the paper is as follows A 
brief overview of other relevant research is pre- 
sented in the next section, followed by a review of 
basic concepts of multi-version consistency in Sec- 
tion 3. Sections 4 to 6 contain a description of 
our concurrency control technique. Section 4 
introc¶uces hierarchical database decomposition. 
Given such a decomposition, concurrency control 
algorithms for update transactions and for 
read-only transactions are presented In Section 5 
and 6. Section 7 concludes the paper. 

2.0 REVIEW OF RELEVANT RESEARCH 

Algorithms for database concurrency control 
abound in the literature. Nest algorithms are con- 
sidered variations, extensions and/or combinations 
of the two basic techniques for concurrency control 
- two-phase locking and time stamp ordering. The 
two-phase locking algorithm ensures consistency by 
imposing a partial order on all transactions based 
on their lock points. (A lock point of a trans- 
action is the point in time when the locking phase 
Of the transaction reaches its peak.) The 
timestamp ordering algorithm ensures consrste?cy by 
rmposing a partial order on all transactions based 
on the initiation times of the transations 
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One of the recent developments in concurrency 
control algorithms centers around the identifica- 
tion of techniques that increase level of concur- 
rency and/or reduce synchronization overhead, while 
preserving the correctness of the algorithm. One 
approach to these goals involves the use of a 
multi-version database. It has been observed that 
keeping multiple versions of database elements will 
improve concurrency Of the database 
<PapadimitriouOZ> The concept Of a 
timestamp-based multi-version database system was 
first proposed in <ReedlW. One-previous-version 
concurrency control methods are discussed in 
<&yerBO, Garcia-BolinaBZ, Vxemont62>, while multi- 
ple-previous-version methods are presented in 
Gtearns81, Chan82,. In particular, Ghan's method 
is based on two-phase locking but allows the 
read-only transaction to receive special treatment 
- they do not have to set read locks. Our tech- 
nique, however, is one which is timestamp based and 
strives to reduce the need for leaving read 
timestamps for not just read-only transactions, bti 
llpda.&zktvl~anb ab la&l. 

Another approach to reducing synchronization 
overhead is conflict analysis <BernsteinEOb>. In 
the research on concurrency control for SDD-1, con- 
flict analysis was proposed to exploit a priori 
knowledge of the nature of the transactions to be 
run in the system. The approach reported in the 
present paper is different from that of SDD-1 
because it is not oriented towards distributed 
databases, and, because of the special structure of 
applications that our approach exploits, together 
with the fact that multiple version technique is 
employed, the protocols are much less restricted. 
These new protocols are likely to allow for a high- 
er level of concurrency. 

3.0 BASIC CONCEPTS OF BULTI-VERSION CONSISTENCY 

The following material concerning multi-version 
consistency is mostly taken from <Papadrmitriou82, 
BernsteinEZB, with some notational differences+ and 
is included here for notational purposes. 

Defrnttron A schedule of a set of transactions 
T, denoted as S(T), is a sequence of steps, each of 
which is denoted as a tuple of the form 

<transaction id, action, version of a data 
granule,. 

The action can be read (r) or write (w). The ver- 
sion of a data granule is denoted as d”, where d 
indicates the data granule and v indicates the ver- 
sion. If the action IS write, then the Version of 
the data granule included in the step is created by 
the transaction. If the action is read, then the 
transaction reads the version of the data granule 
indicated in the tuple. 

An example of a schedule IS <t,,w,a'>, cts,r,a'>, 
*ts,w,b'>, <ts,r,b'>. 

Defrnrrron A version j of a data element d is 
the predecessor of a version k of d if <t,,w,di* is 
before +s,w,dk> in S(T) where t,, t2 E T, and 
there exists no t e T and i such that Q,w,d',is 
between <t 1 ,w,d’Und <t2,w,dk> in S(T). 

Defrnrtlon A rransactlon dependency graph of a 
schedule S(T) is a digraph, denoted as TG(S(T)), 
where the nodes are the transactions in T and the 

arcs, representing drrecr dependencies between 
transactions, exist according to the following 
rules: 

t2-tl c Aiff 
(1) <t ,,w,d"' and <t2,r,dV> are in S(T) for 
some dv, or 
(2) <t ,,r,dj> and <t2,w,dk> are ln S(T) for 
some dj,dk where dj is the predecessor of dk. 

In other words, the transaction dependency graph 
represents a relation - (depends on) of trsns- 
actions such that t2 - tl if tp reads a version of 
a data granule created by tl or if ts creates a 
version of a data granule whose predecessor has 
been read by tl. 

Deftnrrton. Two schedules S1(T) and S2(T) of 
the same set of transaction set T is said to be 
equrvslent iff TG(.s,(T)) = TG@~(T)). 

Def rnr rion A schedule s(T) is semalrraQle if 
there exists an equivalent schedule S,(T) where all 
transactions in S,(T) are serialized. (i.e., no 
steps of one transaction are interleaved with steps 
from another transaction.) 

In <BernsteinBZ> the following theorem has been 
shown: a schedule S(T) is serializable iff 
TO@(T)) is acyclic. 

4.0 HIBBABCBICAD DATABASE DECOMPOSITION 

4 1 SORE GRAPHIC-THEORETIC DEFINITIONS 

We first brlefly introduce the concept of a 
digraph called a transitive semi-tree. This con- 
cept will then be used to describe the desirable 
database partition to which our concurrency control 
technique can be applied. Informally, a semi-tree 
1s a digraph such that, if the directions of the 
arcs in the graph are ignored, the graph appears to 
be a spanning tree. A transitive semi-tree is a 
dlgraph whose transitive reduction 1s a semi-tree, 
i.e., it is a semi-tree with an arbitrary number of 
additional transitively induced arcs. 

Deffnrrlon A semt-tree is a digraph such that 
there exists at most one undirected path between 
any pair of nodes in the graph. Every arc in a 
semi-tree is called a Critical 8rc. 

Defrmrron A digraph G is a rranstrrve 
semf -tree iff its transitive reduction is a 
semi-tree. 

An example of a transitive semi-tree is shown in 
Figure 1. It can be seen that the definition of a 
transitive semi-tree is more relaxed than a 
directed tree, but 1s more restricted than an 
acyclic directed graph. The following two proper- 
ties are associated with the transitive semi-tree. 

Property A path in a transitive semi-tree is a 
critical path iff it is composed of critical arcs 
alone. 
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Spanning tree Sem-tyee Transitive 

Semi-tree 
Figure 1. Illustration of a transitive 

semi-tree. 

Property There exists at most one critical 
path between any pair of nodes an a transitive-semi 
tree. 

4.2 DATABASE PARTITION 

We will use the concept of a data hierarchy 
graph (DHG), constructed by means of transaction 
analysis, to characterize the relationship between 
a database partition scheme and database trans- 
actions. As will be shown later, the topology of 
the DHG of a particular database partition scheme 
will indicate whether or not our concurrency con- 
trol technique can be applied to that partition 
scheme. Informally, let a database be partitioned 
into data segments. A DHG is a digraph with nodes 
corresponding to the data segments and arcs con- 
structed in such a way that there is an arc from a 
data segment Di to another data segment Dj if and 
only if one can find a potential transaction in the 
database system that updates data elements in D, 
and accesses (1.e , reads or writes) data elements 
in D,. In other words, D1 - D,, i f 1, indicates 
that there exist transactions in the system that 
would link updates of data elements in D, to the 
content of data elements in D,. 

Definitton Let TU be a set of update trans- 
actions to be performed on a database D. Let P be 
a partition of D into data segments D,,D2,...,Dn. 
A data hierarchy graph of P w.r.t. TU is a digraph 
denoted as DHG(P,T") vith nodes corresponding to 
the data segments of P and a set of directed arcs 
joining these nodes such that, for i + J, Dj - Dj 
iff there exist t e T" s.t. w(t) 0 Di Z empty and 
a(t) Q Dj Z empty, where t is a transaction, w(t). 
r(t) and a(t) the write set, the read set and the 
access set of transaction t. (The access set a(t) 
is the union of r(t) and w(t).) 

The kind of database partition to which our con- 
currency control technique can be applied is one 
such that its data hierarchy graph satisfies the 
topological requirement that it be a transitive 
semi-tree. 

Deflnrtron. A partition P of a database D is 
TST-hrerarchrcal with respect to TU iff DHG(P,T? 
is a transitive semi-tree. 

Property Let p be a TST-hierarchical partition 
w.r t. T". Then t c TU writes in one and Only data 
segment in P. 

Proof Suppose t writes in two distict data 
segments D, and Dj, then according to our rule Of 
construction of DHG(P,T"), Df - Dj, Di - Di 6 
DHG(P,T"), therefore DHG(P,T") is no longer a tran- 
sitive semi-tree, which means that P 1s not 
TST-hierarchical w.r.t T", and contradicts the 
assumption. 

Based on the above property, a TST-hierarchical 
database partition P also defines a transaction 
classification as follows. 

Definition A transaction classification of a 
database partition which is TST-hierarchical W.r.t. 
T", as a partition of the set T" of all update 
transactions into tF8ItS8CtlOn classes T1,T2, . . . , 
Trv such that a transaction t c T1 iff t writes in 
data segment D1. 

Therefore a transaction ClaSSifiCatlOn parti- 
tions the set of update transactions into classes, 
each of which corresponds to a data segment in the 
data partition. We define the image of the data 
hierarchy graph for the traILSaCtiOn ClassiflCation 
as follows: 

Definition A transactron hierarchy graph 
THG(P,T") Of a database partition P, 
TST-hierarchical w.r.t. T", is a digraph where the 
nodes are transaction classes Tf's based On trMs- 
action classification defined above, and arcs con- 
necting these nodes such that T1 - Ti c A iff DI + 
D, exists in the corresponding DHG(P,T"). 

Given definitions of DHG and THG above, we shall 
denote a u&i& pa.73 dhom 4 to j in THG or DHG 
as CP,i. Therefore, T, - Tk - . . . - Tj = CPI' iff 
every arc is a critical arc, In addition, we give 
the following defintion: 

Deflnrtlon We define higher than (denoted as 
t>) as a partial ordering of nodes in a THG or a 
DHG. Specifically, 
(or Tj t> Tt) iff CP,' 

we say that T, higher than T1 
exists in the graph. 

5.0 SYNCHRONIZING UPDATE TRANSACTIONS 

Given a TST-hierarchical database partition, the 
key to our concurrency Control technique IS the 
recognition that, if a transaction t belongs to a 
class Tl that Writes data segment D, and reads data 
segment Dj, and Dj is higher then D, in the Data 
Hierarchy Graph, then this transaction would appear 
to be a read only transaction so far as D, is con- 
cerned. Therefore when a request to read a data 
element d in Dj is issued by t, there may exist a 
proper committed version of d that is bade to be 
given to t without the need of leaving a read 
timestamp with d. However, the way this proper 
version iS computed mUSt be such that the overall 
serializability is enforced. In other words, the 
introduction of transaction dependency of t on t', 
where t' is the transaction in class T, which cre- 
ated the version of d that t is allowed to read, 
must never induce Cycles in the transaction depend- 
ency graph as defined in Section 3. To this end, a 
function called the activity link function is 
devised to compute versions that cross-class read 
accesses may be granted, and a theorem which testi- 
fies to the correctness of this computation is 
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presented. Based on this theorem, a concurrency 
control algorithm is also presented. 

Norarl ons 
(1) I(t) = the initiation time of a transaction 

(2) :it, = the commit time of a transaction t 
(3) TS(d") = the inrtitation time of the trans- 

action that creates the version v of a data 
granule d, i.e., the write timestamp of d". 
(A data granule IS the smallest unit that 
concerns the concurrency control component 
of the database system, an& is the smallest 
unit of accesses so far as concurrency con- 
trol 1s concerned.) 

5.1 THE ACTIVITY LINE FUNCTION 

The following definitions and properties apply 
to a database with a partition P which is 
TST-hierarchical w.r.t T" and has a corresponding 
transaction classification. 

Definition A function Ilmd defined for a 
transaction class T1 is a function which maps a 
time m to another time m' such that mm = I~"'d(m), 
where ml is the initiation time of the oldest 
active (i.e., uncommited and un-aborted) trans- 
action in the transaction class T1 at time m. 
Formally, 

m if there exists no t 6 T+ active at 
time m, 

Ii o1d(m) = 
1 /Bin (I(t)) otherwise, where t c T1, 

I(t) I m and C(t) * m. 

Definrtlon Let the Bcrtvlfy llnk funcrlon A,’ 
be a function defined for a pair of transaction 
ClaSSeS T1 and T j, where Ti and Tj are transaction 
ClaSSeS such that T, t> Ti A,' recursively maps a 
time m to another time as follows. 

i 

Ij 
A,'(m) = 

0'd(m) lf T, - Tj = CP+' 

Ak'(A+k(m)) otherwise, where 
T, - TI, -. .- T, = Cl','. 

That is, the function A maps a time m for a 
transaction from class Tf to the initiation time, 
Am’, of SUCCeSSiVely (i--e., along the critical 
path of TRG) the oldest active transaction in the 
class T,. For example, if the critical path 
between T1 and Tj is Ti - Tk - T,, then Aff(m) = 
Ij o'd(IkO'd(m)). This is exemplified in Figure 2. 

5.2 CONCURRENCY CONTROL ALGCRITRB MR UPDATE 
TRANSACTIONS 

Based on the definitions given above, we 
describe in this subsection the concurrency control 
algorithm for update transactions under the hierar- 
chical decomposition approach, and prove its cor- 
rectness. For the purpose of concurrency control, 
ue assume that every data segment is controlled by 
a begI6PJl.t con.tAott~ which supervises accesses to 
QIta granules within that segment. 

I1 
old (m) = inlt time of the oldest 

active trans in class 
T1 at tme m 

* 

I1 
Old(m) 

tune m 
. 

Al'(m) = I, 
old (Ik 

old (m)), if CPi' = 

Tl+ Tk+ T 

'(7) T, 

c 
(-) Tk 

Figure 2. Graphioal represenation of the A 
function. 

-- 

Concurrency control algorlrhm for update rrans- 
acrlons 

For every database access request from an update 
transaction t c T, for a data granule d d Di, the 
following protocol is observed: 

Protocol A 
If i Z j, then the segment controller of Dj pro- 
vides the version do of d such that 

TS.(dO) = Bax(TS(d")) for all v such that 
TS(d") < A,'(I(t)). 

(Note that no trace of this access needs to be reg- 
istered in any form for the-purpose of concurrency 
control by the segment controller.) 

Protocol B 
If i = j, 
PhOtOCOt 

then use the b’wc,~ti&tid~; 
<BernsteinBOa or ‘V 

&mU$amp ohdvumg phOtOCOe <Reed78>. 

5.3 PROOF OF CORRECTNESS 

To show that the above algorithm is correct, one 
must show that serialix+lity is enforced. In 
order to do this, we define a relation =-> between a 
pair of transactions and show that the above algo- 
rithm allows a transaction t, to directly depend on 
a transaction ts only if tl => ts.(Direct depend- 
ency is defined in Section 3) We then show that 
properties of the relation => lead to Theorem 1, 
which concludes that the above algorithm preserves 
serializability. 

Defrnrtlon A relation ropologrcally follows 
(denoted as =a) is defined for a pair of trans- 
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actions tl, t2, where tl f Ti, t2 f T,, T, and T, 
are connected by a critical path in THG, i and 3 
not necessarily cllstlnct. We say that t, 
topologrcally follows t2 (or t, => t2) lff 

(1) If 7’1 = T, then I(t,) > I(t2). 
(2) If Ti ,> T, then I(t,) 2 A,'(I(tn)). 
(3) If Tj +> Ti then I(ts) < A,i(I(t,)). 

Intuitively, => is a relation between trans- 
actions based on both the timing of the trans- 
aCtiOnS and the hierarchical levels in the THG of 
the transaction classes that the transactions 
belong to. To be more specific, 't, => t2* always 
means that t, is 'later' than t2. However, this 
*later* is not only base& on the initiation times 
of the two transactions involved, but also on the 
relative levels of the transaction classes to which 
t1 and t2 bslong: Given a fixed t2, the lower the 
level of tl, the later tl*s initiation time has to 
bs in order for tl => t2 to hold. Clearly, => is 
defined Only between transactions that belong to 
classes that are on a critical path in THG, because 
otherwise the A function is undefined. This 
relation is exemplified in Figure 3. Two interest- 
ing properties concerning the relation => are 
presented below: 

Property 1 1 The relation I> is 
anti-symmetric. (This directly follows from the 
definition of the relation.) 

Property 7.2 (The property of transr tl vrtyl. 
The relation =:, is crrtlcal-peth tranattrr, i.e., 
if there exists t, s TI, ts c Tk, ts L T,, such 

(1) if T1 = T, 

then IftO > I(t,). 

(2) If T1 t> Tj then 
I(t,) h A,'(I(t2)). 

(3) If Tj t> T1 then 
I(t2) < A,'(I(t,)). 

Figure 3. Graphical representation of the 
relation tl=' t2. 

that t, =a t2, t2 => ta and T,, Tk and T, are on a 
critrcal path in TRG, then t, => ta. 

Proof (See Appendix) 

We now define the following synchronization rule 
and show that our concurrency control algorithm 
enforces this rule. 

Definition We say that the parti tron 
synchronization rule (abbreviated as PSR) is 
enforced in a schedule S(T") if, for any t,, t2 e 
T", t, - t2 c TG(S(T")) implies that tl => t2. 

A concurrency control algorithm enforces the 
partition synchronization rule if it allows direct 
dependencies to occur between transactions t, and 
t2 only if tl =* t2. This is translated into the 
following three cases: 

(1) If t, and t2 are in the same transaction 
class, the algorithm must allow t, to read a ver- 
sion v of a data granule d created by t2, or to 
create a new version of a data granule d whose lat- 
est Version cl" was created by t2,'only if t2 has an 
inititation time that is less than that of tl. 
(i.e., only if TSlrl") < I(t,).) 

Protocol B of our algorithm satisfies this 
requirement. 

(2) If tl belongs to a class T, of a lower level 
while tp belongs to a class Tj of a higher level, 
then the algorithm must allow t, to read d" created 
by ts only if tp has an initiation time less than 
AjJ(I(tl)). (i.e., only if TS(d") * AfJ(I(tl)).) 

Protocol A of our algorithm satisfies this 
requirement. 

(3) If t, belongs to a class Ti of a higher lev- 
el while t2 belongs to a class Tj of a lower level, 
then the algorithm must allow tl to Create. at time 
m. a new version of a data granule whose predeces- 
sor dv has been read by t2, only if tl has an ini- 
tiation time greater than or equal to Ai'(I(t.2)). 

This, however, is always true because, by the 
very fact that tl is active at time m and I(t2) ( 
m, and that Aji(I(t2)) yields a time value which is 
definitely smaller than the.initiation time of the 
oldest active transaction in class T1 at time m, 
AJ1(I(t2)) must be less than I(tl). 

Therefore we conclude that our algorithm 
enforces PSR. What is left to do in proving the 
correctness of our algorithm is to show that a 
schedule that enforces PSR is also correct. The 
following theorem therefore Completes our proof. 

Theorem 1 Let TG(S(T")) be a transaction 
dependency graph of a set of udpate transations T" 
run on a database with a TST-hierarchical partirion 
p, and the schedule S observes the partition 
synchronization rule with respect to the trans- 
action classification cczresponding to P, then 
TG(S(T")) has no Cycles. 

Proof (See Appendix) 
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6.0 SYNCHRONIZING READ-ONLY TRANSACTIONS 

What has been dscussed is the algorithm for 
controlling concurrent update transactions. Now we 
turn to the read-only transactions. 

For a read-only transaction t that reads from 
data segments that lie on one critical path CP,' of 
the DHG, the protocol that should be observe is the 
same as that observed by the update transactions in 
a class immediately below the lowest class of the 
critical path CP+' in THG, namely, a class right 
below class Ti. (If there exists no class below T, 
in THG, then a fictitious class can be created to 
'host' this read-only transaction.) Therefore 
read-only transactxons wzll have to obey protocol A 
alone and will not cause any read timestamp or read 
lock to be generated. This is graphically pre- 
sented by transaction t1 in Figure 4 

What we are concerned with here are those 
read-only transactions that read from any comixna- 
tion of data segments that do not lie on a critical 
path in DHG, as illustrated by'transaction ts in 
Figure 4. To handle these transactions, we first 
introduce the extended actcvcty Lab t$~~totcon in 
the following subsection. 

6.1 THE EXTENDED ACTIVITY LINE FUNCTION 

In the previous section we have introduced the 
activity link function which centers around the 
linkage between transactions in classes that are on 
a critical path in the transaction hierarchy graph. 
The extended function, on the other hand, specifies 
how transactions in a transaction class are linked 

l - t reads from class 
(t is a read-only transaction) 

Figure 4. Read-only transactions that read 
from one critical Path. 

to transactions in another transaction class when 
there is not necessarily any critical Path that 
connects the two. This function is used to provide 
a way of computing a con54&6& liutaba6e A.i%te that 
can be accessed by a read only transaction that 
reads from any combination of data segments in the 
database. 

We will first introduce the functions C+"'* and 
' that can be considered conceptually the mutic 

f; functions I,O'e and A,' Then two properties of 
the relationship between the functions A1j and B,' 
are derived. The extended activity link function 
Ei j is then defined in terms of functions A and B, 
and its usefulness is indicated in a lemma that 
follows The existence and derivation of a con- 
sistent database state is given in theorem 2, which 
makes use of the extended activity link function. 

Defrmtlon Let C,'kte m - rn' be a function 
which maps a time m to another ml where T1 is a 
transaction class and Cll’te(m) is determined as 
follows. 

m if there exists no t 6 Ti 
active at time m, 

Ci late(m) E 

1 
Ha% (C(t)) otherwise, where t t 
T,, I(t) d m and C(t) > m. 

That is, Cl'kfe(m) is the eatebt commit time of all 
transactions in class Ti that s&ted before or at 
time m. However, to make C1'*"(m) computable, all 
such transactions must have committed at the time 
of computation of C~""(m). We give the following 
definition concerning the compu.tab&&g of C~"'w 
(ml. I 

Definrtlon ci late(m) is computeble et time m0 
iff there exists no transaction started before or 
at time m that is still active at time rn'. 

Now we introduce a function which 18 conceptu- 
ally the inverse of the function A. while the A 
function maps a time in a lower level class to the 
initiation time of some transaction in a higher 
level class, the B function maps a time in a higher 
level class to the commit time of some transaction 
in a lower level class: 

Defrnrtton The Be&ward ectivi ty lrnk 
function, defined for a pair of transaction classes 
T, and T,, where T, +> T,, denoted as Bji(m),is a 
function which maps a time value m to another such 
that 

1 

Cl 
Bj'(m) = 

late(m) if T, - T, = CP+j 
. 

Bki(Bik(m)) otherwise, 
where T, - . . . - Tk - Ti = CP,'. 

The following two properties bind the functions 
A and B together and formally describe how they are 
the inverse of each other. 

Property 2 1. 
Tj = CP,' 

AjJ(BJi(m)) k m, where TI + . . . - 
in the transaction hierarchy graph. 

Proof (See Appendix) 

Property 2.2. For evey positive 6, A~‘(BJ '(ml - 
0 ( m* where T, - . . . - T, = CP,' in the tranS- 
action hierarchy graph. 

Proof (See Appendix) 

Definition undo rected cm tical path, 
denotab as lJCPIJr is an ordered set of dcktorct 
indices of transaction classes in THG such that 
ucp,j I *I, ii, 12, . . . . in, j> where for any two 
indices h, k adjacent in the Set, either Th + Tk or 
Tk - Th is a crtical arc in THG. 
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It 1s obvious that for a TST-hierarchical partl- 
tion there exists one and only one UCP In THG 
between any pair of transaction classes While the 
actlvlty link function A 1s defined for any pair of 
transaction classes that lie on a critical path, 
the extended activity link function, using the con- 
cept of UCP, is defined for any pair of transaction 
classes 

Deflnitron The extended ectrvity link function 
defined for a pair of transaction classes T, and 
Tje denoted as E,'(m), is a function which maps a 
time value m to another such that 

/m if i = j, 

Cl late(m) if i+jandTj-Tiisa 
crltlcal arc in THG, 

E,'(m) = 4 
Ij Old(rn - adj(m,i)) if 1 + j and Tf - 
T, 2s a crltlcal arc In THG, 

Ek'(Eik(m)) otherwise, where 
( <l,k,. ,J> = me,‘: 

where the value of adj(m,i) is defined as follOwS 

Of 

0 If there exists t c Ti such that 
I(t) = m or there exists no 
transaction in T, active at m 

adj(m,i) = 
m - I(t*) otherwise, where t' is 

such that C41ate(m) = C(t*). 

The following lemma illustrates the USefUlneSS 
the extended activity link function. 

Leflma 2 1 Let Tk, T, and T, be transaction 
classes in a THG of a TST-hlerarchlcal database 
partltlon, and T, and T, are on one critical path. 
Then for any time value m and tl P T,, ts E T,, if 
I(t,) < Ek’(m) and I(tn)h Ekj(m) then there exists 
no t, - t2 in the transaction dependency graph 
TG(S(T")) where the schedule S enforces the PSR's 

Proof (See Appendix) 

Intuitively, the E function provides a way of 
computing a time Waee for all transaction classes 
in the database system across which no direct 
dependency from the 'older side' of the wall to the 
'newer side' of the wall can occur A time wall 
TW(m,s) is the set of all times E,'(m) where m is a 
time, D, is a chosen data segment, and D, is any 
data segment. This concept is graphically pre- 
sented in Figure 5. The signlflcance of this 
concept is that If a read-only transaction reads 
the latest versions of data granules of data seg- 
ment D1 which are right before the time indicated 
by the time wall component E,'(m) of certain time 
wall TW(m,s), then it is accessing a consistent 
database state and will in no way anduce cycles 
into the transaction dependency graph. This dls- 
cussIon is formally presented in the following 
theorem. 

Theorem 2 If the schedule S enforces the PSR 
on T", and for every d f D, that a read-only 
transaction tn reads, S allows it to read the ver- 
sion do such that 

TS (do) = Hax (TS(d")) where TS(d") < E,' (ID), 

T4 

A time wall TW(s,m) is such that no direct 
dependencies occur between a transaction on 
the left side of the dotted line (1 e I(t) 
4 E '(III) ) and that on the right side if the 
dotted line (1 e , I(t)7 Es'(m) ) 

Figure 5. The E function used as a time 
wall.' 

for some time m and some transaction class index s, 
then TG(S(T" U te)) has no cycle. 

Proof (See Appendix) 

In other words, if a read-only transaction reads 

the latest versions of data granules of data seg- 
ment D1 which are right before the time indicated 
by the time wall component E,‘(m) of Certain time 
wall TW(m,s), then it is accessing a COnSlStent 

database state and will not induce cycles into the 
transaction dependency graph. 

6 2 CONCURRENCY CONTROL PROTOCOL FOR READ-ONLY 
TRANSACTIONS 

Making use of Theorem 2, a read-only transaction 
t that reads from data segments that do not lie on 
one critical path In DHG should be given versions 
that are the latest before certain time wall. How- 
ever, to compute the time wall the system has to 
determine the starting transaction class T, and a 
starting time value m. While the choice can be 
arbitrary, it 1s theoretically desirable that the 

following criteria are met: 

(1) E,'(m) (for all T, In the THG) is comput- 
able at I(t), the initiation time of the 
read-only transaction. 

(2) There exists no rn’ > m such that E,'(m') is 
computable at I(t) for all T1 In the THG. 

The first criterion stipulates that m should be 
dM&.f? enough so that all E,'(m) is computable at 
I(t), therefore t potentially does not have to wklt 
until a later time to access from certain segment. 

(If some E,'(m) is not computabl6 at I(t), t would 
have to wait till a later time when It is comput- 
able before accessing data from data segment Dj.) 
The second criterion strives to achieve reading of 
the newekt po64db& database state. 

A compromise is struck here in devlslng our pro- 
tocol for read-only transactions. First, to save 
computation time, a new time wall is computed by 
the system at certain intervals and the new time 
wall IS 'released' to all read-only transactions 



that start before the next VM&Otl of the time wall 
1s released by the system (That is, there IS no 
need to compute a time wall for every read-only 
transactlon.) In computing the next version of the 
time wall, the system can choose arbxtrarlly a 
starting class T, which 1s of one of the lowest 
levels and choose m to be the current time If 1t 
encounters any C,‘“* function that It cannot com- 
pute, It waits until It becomes computable. Even- 
tually enough time ~211 elapse such that E,‘(m) 
becomes computable for all TI(s Then a newly con- 
structed time wall is released. 

Let the release time of a time wall TW(m,S) be 
denoted as RT(TW(m,s)). Now we provide the formal 
definition of the rqad-only transaction 
synchronization protocol. 

Concurrency Control Algorithm for Read-Only Trans- 
actron 

For every database read request from a read-only 
transaction t for a data granule d. the follOWlng 
protocol IS observed. 

Protocol C 
Let d i DI. The segment controller of Di provides 
the version do of d such that 

TS(dO) = Nax(TS(d")) for all v such that 
TS(d") ( E,'(m) 

where RT(TW(m,s)) = Hax(RT(TW)) for all TW such 
that RT(TW) < I(t). 

7.0 SOUMARX 

A new technrque of concurrency control for data- 
base management systems has been proposed. The 
technique makes use of a hierarchical database 
decomposltlon, a procedure whxh aecoeposes the 
entire database lnt0 data segments based on the 
access pattern of the update transactlons to be run 
rn the system. A corresponding classlfxatlon of 
the update transactions 1s derived w>ere each 
transaction class is 'rooted' in one Of the data 
segments. 

The technique requires a tlmestamp ordering pro- 
tocol be observed for acesses wlthln an update 
transaction’s own rOOt segment, but ena3les read 
accesses to other data segments to proceed without 
ever having to Walt or to leave any trace of these 
accesses, thereby reducing the overhead of concur- 
rency control. An algorathm for handling ad-hoc 
read-only transactions In this environment IS also 
devised, which does not require read-only trans- 
actions to wait or set any read tlmestamp. The 
Proof of correctness of these algorithms In terms 
of their preservation of serialzability is pro- 
vlded through a set of eight propertles, three 
lemmas and two theorems A comparison of the SDD-1 
approach, the multi-versaon two-pha’se locking 
approach (MVZPL) and the Hierkrchical Database 
Decomposltlon (HDD) approach proposed here 1s given 
in Figure 6. 
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APPENDIX 

(Refer to Hsu82 for complete proofs whose abbre- 
viated versions are given here.) 

(1) PROOF OF PROPERTY 1.2 

F;;;;rty 1 2 (The property of transltlvltyl 
(Sketch) We consider the following 5 

groups of cases: (1) T, = Tk = T,, (2) Ti = Tk Z 
;j,, (3) TI + T, = Tjr (4) T1 = Tj f Tkr and (5) T, 

k + Tjr Ti + Tj. In each group, we permutate 
the order of levels among the distinct transaction 
classes to arrave at a total*13 cases. These cases 
exhaust all the possible situations that govern t,, 
t2 and t3 and for every situation, transitavity 
is shown to hold. Therefore we conclude that => is 
critical-path transitive. 

(2) PROOF OF THEOREM 1 

In order to prove Theorem 1, we first give the 
following two definltlons and a lemma about the 
transaction dependency graph. 

Deflnrtron A critrcal path dependency, between 
two distinct transactions tl f TI and t2 E T,, 
denoted as CD(t,, t$,is a cycle-free dependency 
path from tl to t2 in TG(S(T")) and T1 and Tj are 
on one critical path in TBG, i and j not necessar- 
ily distinct. 

Defrnrrton. A boundery crlrtcal path dependency 
in TG(S(T")) between two transactions t l f T, and 

t2 f T,, where t, (r ts, denoted as BC!D(t,, t21 ,is 

a CD(t,, t2) such that either or both of the fol- 
lowing are true: 

1. There exsts t3 d Tk such that t, - ts 
fCD(t,, tq) and T,, T, and Tk are not on 
one critical path; 

2. There exists t4 f T, such that t,, - tz 
fCD(t,, tg) and T,r T, and T1 are not on 
one crltical path. 

Property If BCD(t,, t,), where t, f T, and t4 
f Tj. then there exist ts 6 Tk and ts f TX, tsr ts 
not necessarily distinct, such that CD(t,, ts) C 
CD(t,, to), CD(tsrts) c CD(t,, t,), CD(t3,t4) c 
CD(t,, t4) and T1, Tj, Tk and T1 are on one crit- 
&Cal path in THG. (This directly follows from the 
fact that THG is a transitive Semi-tree.) 

Lemma 1 If there exists a critical path 
dependency CD(t,,tz) m a transactaon dependency 
graph TG(S(T)) where the schedule S enforces the 
partition synchronization rule, then t, => ts. 

Proof Let 1 be the length (In number of arcs, 

i.e., direct dependencies) of a crakxcal path 
dependency. Then 1 has a t'otal order and IS 

bounded from below by 1 By way of complete math- 
ematical anduction, to prove that if CD(t,,t2) then 
t1 =-, tl, we have to show the following 

(1) 
(2) 

Now we 
(1) 

(2) 

if eccDctlrt2)) = 1 then tl =* t2. 
If [(cD(tl,t2)) = g and If t, => th for all 
tat to 
J(cn(ta,tEjS'c iy:Fen 

exists CD(t,,to) and 
t, => tz. 

prove the above two statements. 
In this case. CD(t,,tz)' t, - tp. BY prop- 

erty 1.3 we have t, => tz 
TO prove the second Statement, let ts 6 Tk 

and t4fTlbe such that t, - ts f CD(tcr 
t2)r t4 - t2 f CD(t,, t2), and a path, 
denoted as Path(ts,t4), from t3 to t4 such 
that Path(t3,t4) C CD(t,,t2). Also let tl f 
Ti and ts f T,. Consider the following two 
cases- 
(2.1) If CD(t,,t2) is not a BCD, then 

Path(t3,t4) is a CD(ts,to). Since 
.t(CD(t,,td) < g therefore t, => t2. And 
by the deflnltlon of CD, T,, Tj, Tk and T, 
must be on one critical path of THG. 
Therefore we have tl - t3, t4 - t2 and tg 
=-> t4. By property 1 2 (i.e , the proper- 
ty of critical path transltlvity) we have 
t, => t2. 

(2.2) If CD(t,,t2) c6 a BCD, then by the 
property above of a BCD we have that there 
exist ts f T, and t6 f T, such that CD(t,, 
ts) c CD(t,,ts), CD(tarts) c CD(t,rts). 
and CD(ts,t2) C CD(t,,tz) where T ,,, T ,, T, 
and T, are on one critical path of TBG. 
Since e(CD(t ,r ts))< g, therefore t, => 
ts* Similarly, ts =' tp and ts =' ts. By 
property 1.2 we conclude t, => ts UED 

Theorem 1 
Proof Suppose there exists a cycle. 

cycle involves at least two transactions 
that belong to transactions that are on 
ical path. This means that there exist 
and CD(tp,t,). By the above lemma, 
implies t, => t2 and CD(ts,t,) implies ~. 

Then the 
t, and t2 
one crit- 
CD(t1rt2) 

cD(tl,tl) 
t2 => t,. 

However, => is anti-symmetrac tny property 1.1). 
Therefore t, I* t2 and t2 => t , cannot be true at 
the same time. Therefore there can be no cycle in 
this transaction dependency graph. 0 E D 
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(3) PROOF OF PROPERTY 2.1 

;;w;w 2 7 
(Sketch) Let CP,' = T, - T,, - . . - 

Tit,-,, - T,, - T, Replace the expression B,'(m) 
in A,'(Bi'(m)) by B,'(m) = C,,(. .(C,,(C,(m)))...). 
(C, is an abbrevaated expression for Cjlare). sub- 
stitute reCUrSlVely the terms involved in B,,(m) by 

time values while keeping track of the values sub- 
stituted. Eventually we transform the expression 
A,'(Bi'(m)) into A,j(m,,) where ml1 is a proper 
time value derived from transaction activities in 
class T,,. Then start expanding the expression 
A,j(m,,) and substitute the terms involved in it 
with appropriate time values Compare these 
time values with those used in substituting terms 
in B,,(m) previously. Eventually Alf(m,,) is 
reduced to a simple time value to be compared with 
the original value m, and the inequality will be 
found to hold. 

(4) PROOF OF PROPERTY 2.2 

Property 2 2 
Proof (Sketch) 

The proof is similar to that of property 2.1. It 
involves carefully spelling out the terms involved 
in the expression and compare the values used dur- 
ing substitution. 

(5)p;;7F OF LEMHA 2.1 
(Sketch) Let Tkl be the Class such that 

kl is the fisrt index in UCpk' where Tk, and T,, T, 
are on one critical path. (k and kl are not neces- 
sarily distict.) Then kl will also be the first 
such index in UCpk' , and the subset of the ordered 
set UcPk ' up to kl and that Of ucpk’ up to ki are 
equivalent. (This is 

nodes there is one and 
following four groups 
i = j = kl, (2) I = kl 
i + , Z kl. For 
permutate the level of 

a total of 11 cases we 

because between any pair Of 
only one UCP.) Consider the 
of cases. (1) I = j Z kl or 

# j, (3) j = kl # I, and (4) 
each of the group above we 
the distinct classes and for 
have shown that it is impos- 

sible to have tl - t2. (The proof makes extensive 
use of properties 2.1 and 2.2 concerning the 
relationship between the functions A and B which 
are used to construct the function E ) Therefore 
we prove that there exists no t, + ta 

(6) PROOF OF THEORE?! 2 

In order to prove Theorem 2, we first give the 
following definitions and a lemma (Lemma 2.2.) 

Defrnrtlon A constsrenr rrensecrron set wrrh 
respect to e schedule SITI, abbreviated as a CS 
w.r.t. S(T), is a set of transactions Tcs C T such 
that if t c TCs and if there exists t, c T such 
that t - . - t, C TG(S(T)), (i.e., if t depends 
on t, ln the transitive closure of -), then t, L 
TC' . 

Property 2 3 (The Property of e consistent 
rrensectlon set 1 Partition T" into T"' and T"'. 
Then Tul is a consistent transaction set W-r-t S(T) 
iff for any two transactions t,,ts, such that t, c 
T"' and t2 c TU2, there exists no t, - ts in the 
transaction dependency graph TG(S(T)). (Proof 
omitted) 

Deflnrrlon Given a time value m and a mg 
LUVlAGCtiOtl CladA T,, a designated consrsrenr 
transaction set, denoted as TCS(m,s), IS a consist- 
ent transaction set such that for all t P T,, t 6 
TCS(m,s) iff I(t) < m. 

Lemma 2 2 parition T" into T"' and Tu2. Then 
T"' is the designated consistent transaction set 
!r='(m,s) w r t. s (T") , where the schedule S 
enforces the PSR, if T"' contains, for all I, all 
and only transactions t such that I(t) < E,,(m) 
where t 6 T,. 

Proof Construct a time wall TW(m,s). Then by 
the previous lemma (Lemma 2.1) we know that for any 
j, k, if t, c Tj and I(t,) ( E,'(m),and ts 6 Tk 
and I(t2) L Esk(m) then there exists no t, * t2. 
Therefore by Property 2.3 above we know that T" is 
a consistent transaction set if it contains for all 
i only transactions t such that I(t) < E,'(m) where 
t 6 T,. And since E,'(m) = m, we have I(t,) < m if 
t, c Ts Therefore T" must be the designated con- 
sistent transaction set T"(m,s). Q E D 

Corol lery Given a time valti m and a starting 
transaction class TS, there exists a designated 
consistent transaction set TCs(m,s). 

Theorem 2 
Proof Partition TU into Tul and Tu2 such that 

for alltcT,,foralli,t o T"' iff I(t) * E,’ 
(m) . Then it is clear that dependencies induced by 
tR must be arcs that go from ta t0 transactions in 
T"' and arcs from transactions in Tu2 to te By 
Le&a 2.2, there exist no dependencies from trans- 
actions ln T"' to those in Tu2. Therefore arcs 
introduced by ts will not introduce any CyCle into 

the original TG(S(T")) Since TG(S(T")) has no 
cycle, therefore TG(S(T" u tR) ) has n0 Cycle 

QED 
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