Hrerarchical Database Decomposition -
A Technique for Database Concurrency Control

Meachun Hsu
Stuart E. Madnick

Massachusetts Institute of Technology

ABSTRACT

The classical approaches to enforcing
serializability are the two-phase Locking technique
and the Ztumestamp onderang technique Either
approach requires that a read operation from a
transaction be neg«stened (in the form of either a
read timestamp or a read lock), so that a write
operation from a concurrent transaction will not
interfere aimproperly with the read operation. How-
ever, setting a lock or leaving a timestamp with a
data element is an expensive operation The pur-
pose of the current research is to seek ways to
reduce the overhead of synchronizing certain types
of read accesses while achieving the goal of
serializability.

To this end, a new technaque of concurrency con-
trol for database management systems has been pro-
posed. The technique makes use of a hierarchical
database decomposition, a procedure which decom-
poses the entire database into data segments based
on the access pattern of the update transactions to
be run in the system. A corresponding classifica-
tion of the update transactions is derived where
each transaction class 4is 'rooted' in one of the
data segments. The technique requires a timestamp
ordering protocol be observed for acesses within an
update transaction's own root segment, but enables
read accesses toO other data segments to proceed
without ever having to wait or to leave any trace
of these accesses, thereby reducing the overhead of
concurrency control. An algorithm for handling
ad-hoc read-only transactions in this environment
is also devised, which does not regquire read-only
transactions to wait or set any read timestamp.

1.0 INTRODUCTION

A generally accepted criterion for correctness
of a concurrency control algorithm is the criterion
Of serializability of transactions. The classical
approach to enforcing serializability are the

Permussion to copy without fee all or part of this matenal 1s granted
provided that the copses are not made or distributed for direct
commercial advantage, the ACM copynight notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1983 ACM 0-89791-097-4/83/003/0182 $00 75

182

two-phase locking technique and the timestamp
ordering technique. Either approach regquires that
a read operation from a transaction be reg<dtened
in the form of either a read timestamp or a read

lock. Setting a lock or leaving a timestamp with a
data element i1s an expensive operation. It not
only aincurs a write operation in the database (in

the form of setting the read lock or writang the
timestamp), but also potentially causes unnecessary
delays for concurrent transactions.

The purpose of the current research is to seek
ways to reduce overhead of synchronizing certain
types of read accesses while maintaining
serializability. The bases for our technique are
transaction analysis and the maintenance of a
multi~-version database. The transaction analysis
decomposes the database into hierarchically related
data segments, such that transations that write
into one segment will only read from the same data
segment or segments of higher levels. The tech-
nique enables read accesses to hlgherrlevel data
segments to proceed without ever having to wait; it
requires no read locks or read timestamps be set
for such accesses.

The structure of the paper is as follows A
brief overview of other relevant research is pre-
sented in the next section, followed by a review of
basic concepts of multi-version consistency in Sec-
tion 3. Sections 4 to 6 contain a description of
our concurrency control technique. Section 4
introduces hierarchical database decomposition.
Given such a decomposition, concurrency control
algorithms for update transactions and for
read-only transactions are presented in Section §
and 6. Section 7 concludes the paper.

2.0 REVIEW OF RELEVANT RESEARCH

Algorithms for database concurrency control
abound in the literature. Most algoraithms are con-
sidered variations, extensions and/or combinations
of the two basic techniques for concurrency control
two-phase Jlocking ana time stamp ordering. The
two-phase locking algorithm ensures consistency by
imposing a partial order on all transactions based
on their 2lock points. (A lock point of a trans-
action is the poant in time when the locking phase
of the transaction reaches its peak.) The
timestamp ordering algorithm ensures consistency by
amposing a partial order on all transactions based
on the inatiation times of the transations

One of the recent developments in concurrency
control algorithms centers around the identifica-
tion of techniques that increase level of concur-
rency and/or reduce synchronization overhead, while
preserving the correctness of the algorithm. One
approach to these goals involves the use of a
multi-version database. It has been observed that
keeping multiple versions of database elements will
improve concurrency of the database
<Papadimitriou82> The concept of a
timestamp-based multi-version database system was
first proposed in <Reed78>. One-previous-version
concurrency control methods are discussed in
<Bayer80, Garcia-Molina82, Viemont82>, while multi-
pPle-previous-version methods are presented in
<Stearns8i1, Chan82>. 1In particular, Chan's method
is based on two-phase 1locking but allows the
read-only transaction to receive special treatment
- they do not have to set read locks. Our tech-
nique, however, is one which is timestamp based and
strives to reduce the need for leaving read
timestamps for not just read-only transactions, but
update transactions as well,

Another approach to reducing synchronization
overhead is conflict analysis <Bernstein80b>. In
the research on concurrency control for SDD-1, con-
flict analysis was proposed to exploit a priori
knowledge of the nature of the transactions to be
run in the system. The approach reported in the
present paper is Aaifferent from that of SDD-1
because it is not oriented towards distributed
databases, and, because of the special structure of
applications that our approach exploits, together
with the fact that multiple version technique is
employed, the protocols are much less restricted.
These new protocols are likely to allow for a hagh-
er level of concurrency.

3.0 BASIC CONCEPTS OF MULTI-VERSION CONSISTENCY

The following material concerning multi-version
consistency is mostly taken from <Papadimitrious2,
Bernstein82>, with some notational differences;, ana
is included here for notational purposes.

Defimition 2 schedule of a set of transactions

T, denoted as S(T), is a sequence of steps, each of
which is denoted as a tuple of the form

<transaction id, action, version of a data

granule>,
The action can be read (r) or write (w). The ver-
sion of a data granule is denoted as 4Y, where 4
indicates the data granule and v indicates the ver-
sion. If the action 1s write, then the version of
the data granule ancluded in the step is created by
the transaction. If the action i1s read, then the
transactaon reads the version of the data granule
indicated in the tuple.

An example of a schedule 1s <t4,w,a'>, <tp,r,a'>,
<t,,w,b'>, <tz r,b'>,

Definition A version j of a data element 4 is
the predecessor of a version k of d if <tq,w,d3> is
before <t,,w,4%> in S(T) where ty, t; € T, and
there exists not ¢ T and i such that <t,w,d'>is
between <tq,w,d’>and <t,,w,a*> in S(1).

Definition B transaction dependency graph of @
schedule S§(T) is a digraph, denoted as TG(S(T)),
where the nodes are the transactions in T and the

arcs, representing drprect dependencres between
transactions, exist according to the following
rules:

to =ty € A iff

(1) <t4,w,a¥> and <t,,r,d¥> are in S(T) for
some 4Y, or
(2) <ty,r,a’> ana <t,,w,d%> are in S(T) for

some da3,a* where dJ 1s the predecessor of dak.

In other words, the transaction dependency graph
represents a relation - (depends on) of trans-
actions such that t, = t, if t, reads a version of
a data granule created Dby t, or if t, creates a
version of a data granule whose predecessor has
been read by tg.

Definitron. Two schedules S$,(T) and Sp(T) of
the same set of transaction set T is said to be
equivalent 1ff TG(S,(T)) = TG(S2(T)).

Definrtion A schedule S(T) is serralrzable it
there exists an equivalent schedule S4(T) where all
transactions in Sg4(T) are serialized. (i.e., no
steps of one transaction are interleaved with steps
from another transaction.)

In <BernsteinB82> the following theorem has been
shown: a schedule S(T) 4is serializable iff
TG(S(T)) is acyclic.

4.0 HIERARCHICAL DATABASE DECOMPOSITION

4 1 SOME GRAPHIC-THEORETIC DEFINITIONS

We farst briefly antroduce the concept of a
digraph called a transitive semi-tree. This con-
cept will then be used to descraibe the desarable
database partition to which our concurrency control
technique can be applied. Informally, a semi-tree
1s a digraph such that, 1f the darections of the
arcs in the graph are ignored, the graph appears to
be a spanning tree. A transitive semi-tree is a
digraph whose transitive reduction is a semi-tree,
i.e., it is a semi-tree with an arbatrary number of
additional transitively induced arcs.

Defimtion A semi-tree 1s a dagraph such that
there exists at most one undirected path between
any pair of nodes in the graph. Every arc in a
semi-tree is called a crrtical arc.

Definmition A
semi-tree iff
semi-tree.

digraph G 4is a transirtrve
its transitive reduction is a

An example of a transitive semi-tree i1s shown in
Figure 1. It can be seen that the defination of a
transitave semi-tree is more relaxed than a
directed tree, but 1S more restricted than an
acyclic directed graph. The following two proper-
ties are associated with the transitive semi-tree.

Property A path in a transitive semi-tree is a
critical path iff it is composed of critical arcs
alone.

Spanning tree Semi-tree Transitive
Semi-tree
Figure 1. Illustration of a transitive
semi~-tree.
Property There exists at most one cratical

path between any pair of nodes in a transitive-semi
tree.

4.2 DATABASE PARTITION

We will use the concept of a data hierarchy
graph (DHG), constructed by means of transaction
analysis, to characterize the relationship between
a database partition scheme and database trans-
actions. As will be shown later, the topology of
the DHG of a particular database partition scheme
will andicate whether or not our concurrency con-
trol technigue can be applied to that partition
scheme. Informally, let a database be partitioned
into data segments. A DHG is a digraph with nodes
corresponding to the data segments and arcs con-
structed in such a way that there is an arc from a
data segment D,y to another data segment D; if and
only if one can faind a potential transactaon in the
database system that updates data elements in Dy
and accesses (1.e , reads or writes) data elements
in D,. In other words, D; = D, 1 # 3, indicates
that there exist transactions in the system that
would 1link updates of data elements in Dy to the
content of data elements in D,.

Defrartron Let TY be a set of update trans-
actions to be performed on a database D. Let P be
a partition of D into dats segments Dy,Dz,...,Dne
A data hierarchy graph of P w.r.t. TV 1s a digraph
denoted as DHG(P,TY) with nodes corresponding to
the data segments of P and a set of directed arcs
joinang these nodes such that, for i # 3, Dy = Dy
iff there exist t € TY s.t. w(t)) Dy # empty and

a(t) Q Dy # empty, where t 1s a transactaon, w(t),
r(t) and a(t) the write set, the read set and the
access set of transaction t. (The access set a(t)

is the union of r(t) and w(t).)

The kxaind of database partation to whach our con=-
currency control technique can be applied is one

such that its data hierarchy graph satisfies the
topological requirement that it De a transatave
semi-tree.

Defrartron. A partition P of a database D is

TST-h1erarchica] with respect to TY iff DHG(P,TY)
is a transitive semi-tree.

184

Property Let p be a TST-hierarchical partation
w.r t. TY. Then t ¢ T“Y writes in one and only data
segment an P.

Proof Suppose t wraites in two distict data
segments D, and Dy, then according to our rule of
constructior of DHG(P,TY), D; = Dy, Dy =D ¢
DHG(P,TY), therefore DHG(P,TY) 1s no longer a tran-
sitive semi-tree, which means that P 1s not
TST-hierarchical w.r.t TY, and contradicts the
assumption.

Based on the above property, a TST-hierarchical
database partition P also defines a transaction
classification as follows.

Definition B transaction classification of a
database partition which is TST-hierarchical w.r.t.
TY, a1s a partition of the set TY of all update
transactions anto transaction classes T4,Tar ~c-s
T, Such that a transaction t € Ty iff t writes in
data segment Dj.

Therefore a transaction classification parti-
tions the set of update transactions into classes,
each of which corresponds to a data segment in the
data partation. We define the image of the data
naerarchy graph for the transaction classifacation
as follows:

Definrtion A transaction hrerarchy graph
THG (P, TY) of a database partition P,
TST-hierarchical w.r.t. TY, is a digraph where the
nodes are transaction classes T,'s based on trans-
action classification defined above, and arcs con-
necting these nodes such that Ty = T; ¢ A iff Dy =
D; exists in the corresponding DHG(P,TY).

Given definitions of DHG and THG above, we shall
denote a ctacal path §rom 4 £o 4§ in THG or DHG
as CP,’., Therefore, T; = Ty = ... = T, = CP;! iff
every arc is a critical arc, In additaon, we give
the following defantion:

Definition
as

We define hrgher than (denoted as
+>) a partial ordering of nodes in a THG or a
DHG. Specifically, we say that T, hrgher than T,
(or Ty +> T,) 12ff CP;} exists in the graph.

5.0 SYNCHRONIZING UPDATE TRANSACTIONS

Given a TST-hierarchical database partition, the
key to our concurrency control technique is the
recognition that, 21f a transaction t belongs to a
class T; that writes data segment D, and reads data
segment Dy, and Dy is higher then D, in the Data
Hierarchy Graph, then this transaction would appear
to be a read only transaction so far as Dj is con-
cerned. Therefore when a request to read a data
element d ain D as issued by t, there may exast a
proper committed version of d that is 4afe to be
given to t without the need of leaving a read
timestamp wath 4. However, the way this proper
version is computed must be such that the overall
serializability 1s enforced. 1In other words, the
introduction of transaction dependency of t on t',
where t' is the transaction in class T; which cre-
ated the version of 4 that t is allowed to read,
must never induce cycles in the transaction depend-
ency graph as defined in Section 3. To this end, a
function called the activity 1link function is
devised to compute versions that cross-class read
accesses may be granted, and a theorem which testi-
fies to the correctness of this computation is

presented. Bagsed on this theorem, a concurrency
control algorithm is also presented.

Notations

(1) 1I(t) = the initiation time of a transaction
t.

(2) C(t) = the commit time of a transaction t

(3) TS(4Y) = the inititation time of the trans-
action that creates the version v of a data
granule 4, i.e., the write timestamp of 4V.
(A data granule 1is the smallest unit that
concerns the concurrency control component
of the database system, and 15 the smallest
unit of accesses so far as concurrency con-
trol 1s concerned.)

5.1 THE ACTIVITY LINK FUNCTION

The following defainitions and properties apply
to a database with a partitaon P which is
TST-hierarchical w.r.t TY and has a corresponding
transactaon classification.

Definition A function I,9'9 definea for a
transaction class T; is a function which maps a
time m to another time m' such that m' = I,°'9(m),
where m' 4is the initiation time of the oldest
active (i.e., uncommited and un-aborted) trans-
action in the transaction class T; at time m.
Formally,

m if there exists no t ¢ T, active at
time m,

1,°7%m) =
/Min (I(t)) otherwise, where t ¢ Ty,
I(t) € m and C(t) > m.

Definition Let the actrvity link function a,’
be a function defined for a pair of transaction
classes Ty ana T;, where T, and T; are transaction
classes such that T; ¢> T, A.’ recursavely maps a
time m to another time as follows.

1,°'%m) 2f T, -~ T; = CP,?

Ayl (m) =
A, (a;%(m)) otherwise, where
T, ~ Ty =. .~ T; = CP,;J.
That 1s, the function A maps a time m for a

transaction from class T, to the inatiation time,
Ad(m), of successively (ice., along the cratical
path of THG) the oldest active transaction in the
class Ty. For example, if the craitical path
between T, and Ty 28 Ty = T, = T,;, then B;3(m) =
1,°'9(1,°'%(n)).” This is exemplified in Figure 2.

5.2 CONCURRENCY CONTROL ALGORITHM FOR UPDATE
TRANSACTIONS

Based on the defanitions gaven above, we
describe in this subsection the concurrency control
algorithm for update transactions under the haerar-
chical decomposition approach, and prove its cor-
rectness. For the purpose of concurrency control,
we assume that every data segment is controlled by
a segment controllen which supervises accesses to
data granules within that segment.

185

Ilold(m) = ainit tame of the oldest

active trans in class
Tl at time m
:
—
b T
\ Py 1
T old(m) n time
l *
adm = 1.9, %%y, £ @ ? =
1 k 1
T+T+7T
1 'k b}
J
A T
(y (m)) 3
i
[1 Old(m)
lk:
: ' f Tk
N 1 i
\ | ! .
. ~? time
1
{ ") -
1
Figure 2. Graphical represenation of the A
function.

Concurrency control algorithm for update trans-
actions

For every database access request from an update
transaction t € T; for a data granule 4 ¢ Dy, the
followang protocol is observed:

Protocol A
If i +# 3J, then the segment controller of Dj pro-
vides the version a° of 4 such that

TS(a°) = Max(TS(aV)) for all v such that

TS(aY) < A (I(R)).
(Note that no trace of this access needs to be reg-
istered in any form for the.-purpose of concurrency
control by the segment controller.)

Protocol B
If i = 3, then use the basic tumestamp onderung
protocol <Bernstein80> or the mulic-version

ZLumestamp onderung protocol <Reed78>.

5.3 PROOF OF CORRECTNESS

To show that the above algoraithm is correct, one
must show that serializability 1is enforced. 1In
order to 4o this, we define a relation => between a
pair of transactions and show that the above algo-
rithm allows a transaction t4 to directly depend on
a transaction t; only if t4 => tj.(Direct depend-
ency 4is defined in Section 3) We then show that
properties of the relation => lead to Theorem 1,
which concludes that the above algorithm preserves
serializability.

A relation topologrcally follows
is defined for a pair of trans-

Definrtion

(denoted as =>)

actions t,, t,, where t, ¢ T,, t, ¢ T,, T, ana T,
are connected by a critical path in THG, 1 and j
not necessarily dastanct. We say that t,
topologically follows to (or tq => t,) 1ff

(1) af T1 = Tj then I(t1) > I(tz).
(2) 1f Ty > T, then I(t,) 2 A,'(I(t3)).
(3) I£ T; #> T, then I(ty) < A¢J(I(ty)).

Intuitively, => 1s a relation between trans-
actions based on both the taiming of the trans-
actions and the hierarchical levels in the THG of

the transaction classes that the transactions
belong to. To be more specific, 'ty => t,' always
means that ¢, 4is ‘'later' than t,;. However, this
‘later' is not only based on the initiation times
of the two transactions involved, but also on the
relative levels of the transaction classes to which
ty and tp belong: Given a fixed t,, the lower the
level of t4, the later ts's initiation time has to
be in order for t4 => t; to hold. Clearly, => is
defined only Dbetween transactions that belong to
classes that are on a critical path an THG, because
otherwise the A function 4is undefined. This
relation is exemplified in Figure 3. Two interest-
ing properties concerning the relation => are
presented below:
Property 11 The relation => is
anti-symmetric. (This directly follows from the
definition of the relation.)

Property 1.2 (The property of transitivity).
The relation => is critical-path transstive, i.e.,
if there exists t, € Ty, t3 ¢ T, t3 ¢ Ty, such

ey (1) if T, =T,
5 A then I(t,) > I(t,).
. :
4 s or—
?tim
I(ty) Ilty) ¢
L YACI (Y N
LY
L4
time
[
tz T, t1 TA

(2) If Ty t> TJ then

(3) 1f T4 *> T, then
I(ty) 2 a;'(I(tl)).

I(ty) < A (I(E)).

Figure 3. Graphical representation

relation t => t,.

of the

186

that t, => ty, ty => t3 and Ty, Ty and Ty are on a
cratacal path in THG, then t => tj.
Proof (See Appendix)

We now define the following synchronization rule
and show that our concurrency control algorithm
enforces this rule.

Definition Ve say that the partition
synchronization rule (abbreviated as PSR) 1is
enforced in a schedule S(TY) if, for any t4, ts €
TV, t3 = ty € TG(S(TY)) implies that t4 => t,.

A concurrency control algorathm enforces the
partition synchronization rule if it allows direct
dependencies to occur between transactions t, and
ts only if t4q => ta. This is translated into the
following three cases:

(1) If t, and t, are in the same transaction
class, the algorithm must allow t¢ to read a ver-
sion v of a data granule 4 created by t,, or to
create a new version of a data granule d whose lat-
est version 4Y was created by tg,'only 1f t; has an
inititation time that 4is 1less than that of t,.
(i.e., only if TS(4Y) < I(t4).)

Protocol B of our algorithm satisfies this
requirement.

(2) If t4 belongs to a class T; of a lower level
vhile t, Dbelongs to a class T; of a higher level,
then the algorithm must allow t4 to read 4V created
by t, only if t, has an initiation time less than
A(I(tq)). (i.e., only if TS(AY) < a,3(1(ty)).)
thas

Protocol A of our algorithm satisfies

requirement.

(3) If t, belongs to a class Ty of a higher lev-
el while t, belongs to a class T; of a lower level,
then the algorithm must allow t, to create, at time
m, a new version of a data granule whose predeces-
sor d4Y has been read by t,, only if t, has an ini~
tiation time greater than or equal to A,‘(I(tz)).

This, however, is always true because, by the
very fact that t, is active at time m and I(tjp) <
m, and that A;'(I(ty)) yields a time value which is
definitely smaller than the.initiation time of the
oldest active transaction in class T; at tame m,
Ay'(I(ty)) must be less than I(t,).

Therefore conclude that our algorathm
enforces PSR. What 4is left to Ao in proving the
correctness of our algorithm is to show that a
schedule that enforces PSR is also correct. The
following theorem therefore completes our proof.

we

Theorem 1 Let TG(S(TY)) be a transaction
dependency graph of a set of udpate transations TV
run on a database with a TST-hierarchical partirzion
P, and the schedule S observes the partition
synchronization rule with respect to the trans-
action classification ccrresponding to P, then
TG(S(TY)) has no cycles.

Proof (See Appendix)

6.0 SYNCHRONIZING READ-ONLY TRANSACTIONS

What has Dbeen dascussed 1is the algorathm for
controlling concurrent update transactions. Now we
turn to the read-only transactions.

For a read-only transaction t that reads from
data segments that lie on one critacal path CP‘j of
the DHG, the protocol that should be observe is the
same as that observed by the update transactions in
a class ammediately below the lowest class of the
critacal path CP;’ in THG, namely, a class right
below class T;. (If there exists no class below T
in THG, then a factitious class can be created to
'host’ this read-only transaction.) Therefore
read-only transactions will have to obey protocol A
alone and will not cause any read timestamp or read
lock to be generated. This is graphically pre-
sented by transaction t4 in Figure 4

what we are concerned with here are those
read-only transactions that read from any combina-
tion of data segments that do not lie on a critical
path in DHG, as illustrated by’ transaction t, in
Figure 4. To handle these transactions, we first
introduce the extended actuvaty Lunk functeon in
the following subsectaon.

6.1 THE EXTENDED ACTIVITY LINK FUNCTION

In the previous section we have introduced the
activity 1link function which centers around the
linkage between transactions in classes that are on
a critical path in the transaction hierarchy graph.
The extended function, on the other hand, specifies
how transactions in a transaction class are linked

* . t reads from class
(t 1s a read-only transaction)
Figure 4. Read-only transactions
from one critical path.

that read

to transactions in another transaction class when
there is not necessarily any critical path that
connects the two. This function is used to provide
a way of computing a consistent database state that
can be accessed by a read only transaction that
reads from any combination of data segments in the
database.

187

We will first introduce the functions C,'®t® anq
B,' that can be considered conceptually the (nverse
of functions I,°'° and A;J Then two properties of
the relationship between the functions A’ and B,'
are derived. The extended activity link functaion
E;7 1s then defined in terms of functions A and B,
and ats usefulness i1s indicated in a lemma that
follows The existence and derivation of a con-
sistent database state is given in theorem 2, whach
makes use of the extended activaty link function.

Definrtion Let C,'®t® - m' be a function
which maps a time m to another m' where T; 18 a
transaction class and C,'2'®(m) is determined as
follows.

m if there exists no ¢t € Ty
active at time m,

C,"t.(m) =
Max (C(t)) otherwise, where t €
Ty, I(t) £ m and C(t) > m.

That is, C,'®'®(m) 1s the fatest commit taime of all
transactions an class T that stérted before or at
time m. However, to make C,'2'®(m) computable, all
such transactions must have committed at the time
of computation of C;'2'®(m). We give the following
definition concerning the computability of C,'ot®
(m). :

Defrmtion C,'®*®(m) is computable at time m°
iff there exists no transaction started before or
at time m that is still active at time m°.

Now we introduce a function which is conceptu-
ally the inverse of the function A. While the A
function maps a time in a lower level class to the
inatiataon time of some transaction in a higher
level class, the B functaon maps a tame in a hagher
level class to the commit time of some transaction
in a lower level class:

Defimition The Backward activity link
function, defined for a pair of transaction classes
T, and T,, where T; 4> T, denoted as B '(m),is a
function which maps a tame value m to another such
that

cy'®te(m) 1f T, - Ty = CP,J

B,‘(m) = .
By '(B;*(m)) otherwise,

where Ty = ... = Ty = T = CP1J.

The following two properties bind the functions
A and B together and formally describe how they are
the inverse of each other.

Property 2 1. B4 (B;'(m)) 2 m, where Ty = ... =
T; = CP,’ in the transaction hierarchy graph.
Proof (See Appendix)

Property 2.2. For evey positive €, A3 (B;'(m) -
€) < m, where Ty~ ...~ Ty = CP;J in the trans-
action hierarchy graph.

Proof (See Appendix)

Defrnrtion an undrrected critical path,
denoted as UCPJ, is an ordered set of
indices of transaction classes in THG such that
ucp,3d = <i, i1, 12, ..., in, 3> where for any two
indices h, k adjacent in the set, either T, ~ Ty or
Ty = Th is a crtical arc in THG.

It 1s obvious that for a TST-hierarchical parti-
tion there exists one and only one UCP in THG
between any pair of transaction classes While the
activity lank function A i1s defined for any pair of
transaction classes that 1lae on a cratical path,
the extended activity lank function, using the con-
cept of UCP, is defined for any pair of transaction
classes

Defrnition The extended activity link function
defined for a pair of transactaion classes T1 and

T,, denoted as E{!(m), 1s a function which maps a
time value m to another such that

rm if i = 3,

c,'%t®(m) 4if i ¥ jand T;~ T, is a

cratical arc in THG,
Ed(m) = 1
1,°'9m - adj(m,1)) if 2 # j and Ty =
T; as a cratacal arc in THG,

E I (Es%(m)) otherwise,
<i1,k,. rJ> = UCP,J:

where

where the value of adj(m,1) 1s defined as follows

0 1f there exists t ¢ T; such that

I(t) = m or there exists no
transactaon in T, active at m
adj(m,i) =
m - I(t') otherwise, where t' is
such that C;'®t®(m) = C(t').
The following lemma illustrates the usefulness
of the extended activity link function.
lerma 2 1 Let Ty, T; and T, be transaction
classes an a THG of a TST-hierarchical database
partition, and T; and T; are on one critical path.
Then for any time value m and t4 € T,, t, € Ty, if
I(ty) < Ex'(m) ana I(ty)2 E,J(m) then there exists
no ty = t, an the transaction dependency graph

TG(S(TY)) where the schedule S enforces the PSR's
Proof (See Appendix)

Intuitavely, the E function provides a way of
computing a fume wall for all transaction classes
in the database system across which no direct
dependency from the 'older side' of the wall to the
'newer side' of the wall gan occur A time wall
TW(m,s) 15 the set of all times Eg'(m) where m 1s a
time, Dg 1s a chosen data segment, and D; 1s any
data segment. This concept is graphically pre-
sented in Fagure 5. The sagnificance of thas
concept is that 1if a read-only transaction reads
the latest versions of data granules of data seg-
ment Dy which are right before the time indicated
by the time wall component Eg'(m) of certain tame
wall Tw(m,s), then 1t 1s accessing a consistent
database state and will in no way anduce cycles
into the transaction dependency graph. This das-
cuss.on is formally presented in the following

theorem.
Theorem 2 1f the schedule S enforces the PSR
on TY, and for every d4 ¢ Dy that a read-only

transactaon tp reads, S allows it to read the ver-
skon a° such that

TS(d°) = Max (TS(av)) where TS(aY) < Eg'(m),

188

2
. E
Es(m)

A time wall TW(s,m) 1s such that no direct
dependencies occur between a transaction on
the %eft side of the dotted line (1 e , I(t)
< E “(m)) and that on the right side of the
dotfed line (e, I(t)> Es (m))

Figure 5. The E function used as a time

wall.'

for some time m and some transaction class index s,
then TG(S(TY U tg)) has no cycle.
Proof (See Appendix)

In other words, if a read-only transaction reads
the latest versions of data granules of data seg-
ment D; which are right before the time indacated
by the time wall component E,‘(m) of certain time
wall Tw(m,s), then it is accessing a consistent
database state and will not induce cycles into the
transaction dependency graph.

6 2 CONCURRENCY CONTROL PROTOCOL FOR READ-ONLY
TRANSACTIONS

Maxing use of Theorem 2, a read-only transactaion
t that reads from data segments that 4o not lie on
one critical path in DHG should be given versions
that are the latest before certain time wall. How-
ever, to compute the time wall the system has to
determine the starting transaction class T4 and a
starting time value m. Whale the choace can be
arbitrary, it a1s theoretically desirable that the
following criteria are met:

(1) Es'(m) (for all T, in the THG) is comput-
able at I(t), the initiation time of the
read-only transactaion.

(2) There exasts no m' > m such that E¢'(m') 1s
computable at I(t) for all T4 in the THG.

The farst criterion stipulates that m should be
small enough so that all E.'(m) is computable at
I(t), therefore t potentially does not have to wait
until a later time to access from certain segment.
(If some Egl(m) is not computable at I(t), t would
have to wait till a later tame when it i1s comput-
able before accessing data from data segment Dy.)
The second criterion strives to achieve readang of
the newest posssble database state.

A compromise 1S struck here in devisang our pro-
tocol for read-only transactions. Farst, to save
computation time, a& new time wall is computed by
the system at certain intervals and the new time
wall 1s ‘'released' to all read-only transactions

that start before the next veans(on of the time wall
18 released by the system (That is, there is no
need to compute a time wall for every read-only
transaction.) In computing the next version of the
time wall, the system can choose arbitrarily a
starting class Tg whach as of one of the lowest
levels and choose m to be the current tame If at
encounters any C1“*° function that it cannot com-
pute, 1t waits until it becomes computable. Even-
tually enough time will elapse such that Eg'(m)
becomes computable for all T,'s Then a newly con-
structed time wall is released.

Let the release time of a time wall TW(m,s) Dbe
denoted as RT(TW(m,s)). Now we provide the formal
definition of the rgqad-only transaction
synchronization protocol.

Concurrency Control Algorithm for Read-Only Trans-
action

For every database read request from a read-only
transaction t for a data granule 4, the followang
protocol 1s observed-

Protocol C
Let & ¢ D;. The segment controller of D; provides
the version d° of 4 such that

TS(4°) = Max(TS(aV)) for all v such that

TS(dY) < Eg'(m)
where RT(TW(m,s)) =
that RT(TW) < I(t).

Max(RT(TW)) for all TW such

7.0 SUMMARY

A new technique of concurrency control for data-
base management systems has Dbeen proposed. The
technique makes use of a hierarchical database
decomposition, a procedure whiCh aqecomposes the
entire database into data segments based on the
access pattern of the update transactions to de run

in the system. A corresponding classificataon of
the update transactions 1is derived where each
transaction class 4is ‘rooted' in one 6f the data

segments.

The technique requires a timestamp orderaing pro-

tocol be observed for acesses within an uplate
transaction's own root segment, but enablss read
accesses to other data segments to proceed without

ever havang to wait or to leave any trace of these
accesses, thereby reducing the overhead of concur-
rency control. An algorithm for handling ad-hoc
read-only transactions an this envaronment i1s also
devised, which does not require read-only trans-
actions to wait or set any read tamestamp. The
proof of correctness of these algorathms in terms
of their preservation of serializabilaty is pro~
vided through a set of eight properties, three
lemmas and two theorems A comparison of the SDD-1
approach, the multi-version two-phase 1locking
approach (MV2PL) and the Hierarchical Database
Decomposaition (HDD) approach proposed here i1s gaven
in Fagure 6.

Acknowledgements The authors would 1like to
thank W Frank of Sloan School, M.I.T. and A. Chan
of Computer Corporation of America for their help-
ful suggestions. Work reported herein has been
supported, in part, by the Naval Electronic Systems
Command through contract NQ039-81-c-0663.

189

HDD S00-1 MV2PL
Trans Hier- General Nore
Aralvsas archical
Represen- T T T. T
tation R
T
W
T .
Inter- Never re- May cause N A
Class ject or read req
Synch block a to be re-
read req jected or
blocked
Intra- Timestamp Serialized | 2-phase
Class Ordering Pipelining | locking
Synch
Read-only Similar to | No special | Never
Trans Inter-class| handling block or
synch reject
Figure 6 A comparison of the HDD, SDD~1 anad
MV2PL approaches.
BIBLIOGRAPHY
BayerB0 Bayer, R., Heller, H., and Reiser, A

Parallelism and recovery in database systems.
ACM Trans Database Syst 5, 2 (June 1980)
Bernstein80 Bernstein, P.A., and Goodman, N
Fundamental algoraithms for concurrency control
in distributed database systems Computer
Corporation of America, TR CCA-8-05 (Feb 1980)
Bernstein80b Bernstein, P.A., Shipman, D.W., and
Rothnie, J.B Concurrency control in a System
for Distributed Databases (SDD-1). ACM Trans.
on Database Syst , 5, 1 (March 1980)
Bernstein82. Berstein, P A., Goodman, N., and
Hadzalacus Distributed database control and
allocation. CCR Semi-~annual technacal report
(July 1882)
Chang82: Chan, A. et. al The implementation of an
integrated concurrency control and recovery

scheme Technical report CCA-82-01, Computer
Corporataon of America, Cambridge, Mass
(1982)

Garcia-Molina82+ Garcia-Meolaina, H and Wiederhold,

G. Read-only transactions in a Qistributed
database. ACM Trans Database Syst 7, 2
(June 1982)

Eswaran76: Eswaran, K P , Gray, J N., Lorie, R.A.,

and Traiger, I L. The notaons of consistency
and predicate locks in a database systems.
Comm. ACM 19, 11 (Nov. 1876) , 624-634

Gray76 Gray, J.N , Lorie, R A , Putzolu, G.R.,
and Traiger, I L. Granularaty of locks and
degrees of consistency in a shared data base.
In Modellaing in Data Base Management Systenms,
G.M. Nijssen. (ed) North Holland Publishing
Company (1976)

HsuB2 Hsu, M The Hierarchical database decompos-

itionr approach to concurrency control.
INFOPLEX Tech. Report No 12, Center for
Informataon Systems Researcnh, ¥ I.T.,
Cambradge, MA. (Dec 1982)

Papadimitraiou79 Papadimitriou, C.H. The
serializability of concurrent database
updates. Journal of ACM 26, 4 (Oct 1879)

Papadamitriou82- Papadamatriou, C.H. and
Kanellakis, P.C. On concurrency control by
multaple versions. Proc. 1982 ACM

SIGACT-SIGMOD Symp. on Pranciples of Database

Syst. (March 1982)
Reed78: Reed, D.P. Naming and synchronaization in
a decentralized computer system. Ph.D. dis-

sertation, Dept. of Electrical Engineering and

Computer Science, M.I.T., Cambridge, Mass.
(September 1978)
Stearns8l: Stearns, R. and Rosenkrantz, D. Dis-

tributed database concurrency
before-values.

control using
ACM SIGMOD Conference Proceed-

ing (1981)

Viemont82: Viemont, Y H. and Gardarin, G.J. A
distributed concurrency ¢ontrol algorathm
based on transaction commit orderxng.
Proceddang of Fault Tclerance Computer

Systems, Santa Monica, Cal. (June 1982)

RPPENDIX

(Refer to HsuB82 for complete proofs whose abbre-
viated versions are given here.)

(1) PROOF OF PROPERTY 1.2

Property 1 2 (The property of transitivity)

Proof (Sketch) We consider the followang 5
groups of cases: (1) Ty =T, =T,, (2) Ty = Ty ¥
T’, (3) T'i ¢ Tk = TJ, (4) Ti = Tj ¥ Tk' and (5) T1
¢ T, #+ T4, Ty # T;. In each group, we permutate
the order of levels among the distinct transactaion
classes to arrive at a total *13 cases. These cases
exhaust all the possible situataons that govern tq,
t, and t3 and for every situataon, transitavaty
is shown to hold. Therefore we conclude that => is
critical-~path transative.

(2) PROOF OF THEOREM 1

In order to prove Theorem 1, we first gave the
followaing two definitions and a lemma about the
transaction dependency graph.

Definrtion A critical path dependency, between
two distinct transactions t4 ¢ T; and tp € Ty,
denoted as CD(t,, tz),is a cycle-free dependency
path from t4 to ty in TG(S(TY)) and T; and T, are
on one critical path in THG, i and j not necessar-
ily distinct.

Defrnition.
in TG(S(TV))
t2

A boundary crrtical path dependency
between two transactions t4 ¢ T; and
€ Ty, where tq ¥ t,, denoted as BCD(t,, tj),is

190

a CD(ty, ty) such that either or both of the fol-
lowing are true:

1. There exists tz; € T, such that ty = t3
€CD(t;, tp) and T;, T; and Ty are not on
one cratical path;

2. There exasts t, € T, such that t4 =~ t3
eCD(t;, tp) and T,, Ty and Ty are not on

one cratacal path.

Property If BCD(t4, ts), where tq € T, and tg4
€ Ty, then there exist t; € Ty and tg3 ¢ Ty ta, ta
not necessarily distinct, such that CD(ty, tp) C
CD(ty, ta), CD(ta,t3) C CD{ty, t4), CDIta.ts) C
cp(t,;, tg4) and Ty, Ty, Tx and T, are on one crit-
ical path in THG. (This darectly follows from the
fact that THG is a transitive semi-tree.)

Lemma 1 If there exists a critacal path
dependency CD(t4,t2) an a transaction dependency
graph TG(S(T)) where the schedule S enforces the
partition synchronization rule, then t4 => ta.

Proof Let £ pe the length (an number of arcs,
1.e., direct dependencies) of a critical path
dependency. Then [has a total order and is
bounded from below by 1 By way of complete math-
ematical induction, to prove that if CD(t,,t3) then
t, => ty, we have to show the followang

(1) 1f £(cD(t4,t3)) = 1 then t4 => ta.

(2) 1f £(CD(tq.,t3)) = g and af t, => tp for all
tar tp S.t. there exists CD(t,,tp) and
£(CD(ta,tp)) < g, then tq => ta.
prove the above two statements.

In this case, CD(t4,tz)= ty = ta. By prop-

erty 1.3 we have t4 => tj

To prove the second statement, let ta € Ty

and t, € T; be such that tq = tj € CD(ty,

ts), tg ty € CD(ty, ¢tz), ané a path,
denoted as Path(tas,ts), from t3 to t, such
that Path(tgz,ts) C CD(t,,t,). Also let tq €

Ty and t; € T;. Consider the followaing two

cases*

(2.1) 1f CD(t4,t3) not a BCD,
Path(tg,t4) is a CD(ta,ts). Since
£(cD(t4,t2)) < g therefore ty => t,. And
by the definitaon of CD, Ty, T;, Ty and T,
must be on one critical path of THG.
Therefore we have tq = tg3, t4 = t, and tj
=> t,4. By property 1 2 (i.e , the proper-
ty of critical path transitaivity) we have
t1 => tz.

(2.2) I1f CD(tq.,tz) 44 a BCD, then by the
property above of a BCD we have that there
exist tg € T, and tg € T, such that CD(t,,
tg) C ©D(ty,ts), CD(ts,tg) C CD(tq,t2),
and CD(tg,ty) C CD(ty,ty) where T o T p Ty
and T; are on one critacal path of THG.
Ssance Z(cD(t4, tsg))< g, therefore t4 =>
ts. Samilarly, tg => tp and tg => tg. By
property 1.2 we conclude ty => t, @ F 0

Now we

(68)
(2)

-

is then

Theorem 1

Proof Suppose there exists a cycle. Then the
cycle involves at least two transactions t and tj
that belong to transactions that are on one crit-

ical path. This means that there exist CD(t,ta)
and CD(t,,ty). By the above 1lemma, CD(tqy,t3)
implies t; => t, and CD(tj,t,) implies t; => t,.
However, => is anti-symmetraic (by property 1.1).

Therefore t, => t, and t => t, cannot be true at
the same time. Therefore there can be no cycle in
this transaction dependency graph. ¢ £ 0

(3) PROOF OF PROPERTY 2.1

Property 2 1

Proof (Sketch) Let CPy? =T, =Ty, ~ ..
Ti(n-1> = Tyn = T3 Replace the expression E,'(m)
in A7 (By'(m)) by By'(m) = Cyoq{. L (CynlCy(m)))o..).
(C; 1s an abbrevaated expression for C;'2%®). sub-
stitute recursively the terms anvolved an B, '(m) by
time values while keeping track of the values sub-
stituted. Eventually we transform the expression
A¢¥(B;'(m)) into A'(myy) where m,; 1s a proper
time value deraved from transaction activities in
class T;4. Then start expanding the expressaon
A;3(m,) and substitute the terms involved in it
with appropriate time values Compare these
time values wath those used in substituting terms
in By'(m) previously. Eventually A;%(my) is
reduced to a simple tame value to be compared wath

the original value m, and the inequality will be
found to hold.

-

(4) PROOF OF PROPERTY 2.2

Property 2 2

Proof (sketch)
The proof 1is similar to that of property 2.1. It
involves carefully spelling out the terms involved

in the expression and compare the values used dur-
ing substitution.

(5) PROOF OF LEMMA 2.1

Proof (Sketch) Let T,y be the class such that
k1 is the fisrt index in UCP,' where T,, and Ty, T,
are on one critical path. (k and k1 are not neces-
sarily distict.) Then k1 will also be the first
such index in UCij, and the subset of the ordered
set UCP,' up to k1 and that of UCP,' up to ki are
equivalent. (This is because between any pair of
nodes there 1s one and only one UCP.) Consider the

following four groups of cases. (1) »r =3 # k1l or
i=3=%kl, (2) 2 = k1 # 3, (3) § = ki1 #1, and (4)
i # 3 # Kkl. For each of the group above we

the distinct classes and for
a total of 11 cases we have shown that it is impos-
sible to have t, = tp. (The proof makes extensive
use of properties 2.1 and 2.2 concerning the
relationship between the functions A and B which
are used to construct the function E) Therefore
we prove that there exists no t, = ta

permutate the level of

191

(6) PROOF OF THEOREM 2

In order to prove Theorem 2, we first give the
following definitions and a lemma (Lemma 2.2.)

Defimition A consistent transactron set with
respect to & schedule S(T), abbreviated as a CS
w.r.t. S(T), 1s a set of transactaons T¢% C T such
that if t € T°S and 1f there exists t, € T such
that t .=ty CT6(8(T)), (1.e., 1f t depends

on ty an the transitive closure of =), then t, ¢
TSS,

-

Property 2 3 (The Property of & consistent
transaction set / Partition TV into TY'! ana TY2.
Then TY' is a consistent transaction set w.r.t S(T)
iff for any two transactions tg,ts, such that t, €
T¥! ana t, e TY2, there exists no ty = ty in the
transaction dependency graph TG(S(T)). (Proof
omitted)

Definition Given a time value m and a stantung
thansaction class Ts, a desrgnated consistent
transaction set, denoted as T%(m,s), 1s a consist-
ent transaction set such that for all t € Tg, t €
T°S(m,s) 1ff I(t) < m.

lemma 2 2 parition TY into TY' and T¥2. Then
TY' 1s the designated consistent transaction set
T¢%(m,s) wr t. S(TY), where the schedule S
enforces the PSR, if TY! contains, for all i, all
and only transactions t such that I(t) < Eg'(m)
where t ¢ Tq.

Proof Construct a time wall TW(m,s). Then by
the previous lemma (Lemma 2.1) we know that for any
. k, if tq € T; and I(ty) < Egi(m),and tp € Ty
and I(t;) 2 EgX(m) then there exists no t, = ta.
Therefore by Property 2.3 above we know that TY'! ig
a consistent transaction set if it contains for all
i only transactions t such that I(t) < E¢'(m) where
t € T,. And sance E;.%(m) = m, we have I(t4) < m if
ty € Tg Therefore TY' must be the designated con-
sistent transaction set T°%(m,s). ¢ F [

Corollary Given a time value m and a starting
transaction class Tg, there exists a designated
consistent transaction set T®%(m,s).

Theorem 2

Proof Partition TY into TY! and TY? such that
for allt e Ty, for all 1, t € TY' 1ff I(t) < Eg'
(m). Then it is clear that dependencies induced by
tr must be arcs that go from tp to transactions in
T4', and arcs from transactions in TY2 to tp By
Lemma 2.2, there exist no dependencies from trans-
actions in TY' to those in TY2. Therefore arcs
introduced by tp will not introduce any cycle into

the original TG(S(TY)) since TG(S(TY)) has no
cycle, therefore TG(S(TY U tg)) has no cycle
QED

