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ABSTRACT 

This paper examines the concept and implications of virtual 
information in data base systems. Virtual information is any 
fact which does not physically exist in the data base, but is 
nonetheless accessible through combinations of algorithms and 
other data. Physically recorded information is only one of a num- 
ber of ways to obtain information from a data-base system. View- 
ing an information system as a collection of functions shows that 
pure data and pure algorithm from the endpoints of a spectrum of 
ways function values can be realized, with the middle range being 
various types of virtual information. Several classes of virtual 
information are identified, and their usefulness is examined to 
show the appropriateness of the cor~cept in a data-base system. 
Finally, the model is evaluated in light of the implications of 
virtual information for inference and automatic restructuring 
within a data base. 
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INTRODUCTION 

One view of data-base systems is as a method of describing and mapping 
data structures into physical storage. An alternative view is that, 
given appropriate stored data, the problem is how we use it to meet 
requests for information. Requests for "answers", whether made to 
processing programs or a stored data base, are essentially requests 
for a value of a function, given various argument values. A model 
of an information system as a collection of such functions helps 
unify many of our notions about data and algorithms, and provides a 
convenient construct for resolving several problems in data-base 
systems. Such a model will be presented in this paper. 

Much recent work in data-base systems has concentrated in two areas : 
deriving a suitably powerful logical structure for abstractly 
representing information, and formulating ways of declaring the 
policies used to map this structure into a stored form. Logical 
structures based on the mathematical concept of relations have been 
proposed by Codd (4) and Mealy (21), whereas the Data Base Task Group 
(6), Engles (9), and Senko, et al. (24) have used groupings of objects 
with similar properties, sometimes referred to as entity sets. 
Several others have proposed methods for mapping the resulting logical 
data structures to a physical storage medium: trees and other 
hierarchical organizations (as in GIS (12) and IMS (13)), chained 
list structures based on rings (Bachman (i), DBTG (6) , and IDMS (25)) , 
encoded strings (Senko, et al. (24)), and schemes using symbolic 
rather than physical pointers (Davies (8) and Raver (23)). 

Data relationships in recent information structuring models, however, 
essentially group and categorize data in some static fashion in the 
data base. But relationships can also be defined in a procedural 
fashion. An example of such an item is age. For example, to maintain 
a completely accurate value of someone's age, it would have to be 
updated continuously. Therefore, rather than assigning a particular 
stored value to the data item age, it might be preferable to define 
it procedurally as current date minus date of birth. This leads 
directly to the idea that a model of information should allow not 
only static, grouping relationships, but procedural relationships 
as well. 

This paper presents a model of information based on functional requests 
to an information system. This model includes not only the classical 
concepts of pure data and pure algorithm, but also important classes 
of virtual information based on procedural relationships. The 
usefulness of various types of virtual information are presented to 
show its appropriateness as a concept in a data-base system. 
Finally, we examine the implications of virtual information for automatic 
restructuring and inference within a data base. 

The idea of virtual information by itself is not new, having pre- 
viously been discussed by the DBTG (6) and Engles (9). Many systems, 
especially inquiry-oriented reporting systems, already virtualize 
information, although they often don't consider it as such. All of 



this previous work, however, has treated virtual information as a 
special case, and dealt with it in a largely ad hoc fashion. The 
real value of this concept occurs only when considered within a 
larger structure for information which also includes data and 
algorithms. In such a context, work can occur on the relative 
suitability of each for solving problems in data-base systems. 

A MODEL OF INFORMATION 

Resolving issues in data-base systems has become easier in recent 
years as the computer community has developed a clearer set of 
notions about information. Of particular importance has been the 
distinction between the logical structuring of facts, and the physical 
structuring of stored data. 

The essential characteristic of a data-base system is the sharing 
of data by multiple applications. This type of environment demands 
a clearly defined distinction between system internals and the external 
view of the application programs, or what has been called data 
independence. A significant degree of data independence means that 
access methods and data organization are transparent to application 
programs, and that the physical aspects of storage are considered 
apart from the logical aspects of information. This implies a 
logical data structure against which application programmers can 
define their files and specify their requests for information. 

Many data base designs assume each fact is physically recorded in 
the data base. Actually, physically recorded data is only one 
point within a spectrum of ways to obtain information, such as by 
algorithm or even by derivation from physically recorded data. 
Although these other alternatives are occasionally desirable, they 
have been largely ignored. As a consequence, most models of infor- 
mation are not adequate for obtaining dynamic or procedural rela- 
tionships in the data base. 

Viewing an information system as a collection of functions avoids 
these inadequacies. All requests for information are in a sense 
requests for a value of a function, given various argument values. 
This functional model retains all of the power to describe information 
of the models of Codd (4), Engles (9), and Mealy (21). Basically, 
a function can establish relations (in the set theoretic sense) 
between argument values and function values; it can thus serve the 
same purpose as a data map. Although conventionally a function 
returns a single value, our consideration includes functions which 
can return a set or series of values (which itself could be con- 
sidered a value) by calling more primitive functions repeatedly. We 
also allow for a function value of "null". 

As Iverson (14) notes: "In classical applied mathematics, most 
functions of interest can be approximated by some algorithm which 
becomes, for practical purposes, the definition of the function. 
In other areas, however, many functions of practical, if not general, 
interest (such as the correspondence between employee name and salary) 
can be specified only by an exhaustive listing of each argument 
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value and its corresponding function value." 

Most functions of interest in a data-base system are of this latter 
type. The basic algorithm applied to evaluate these functions is 
a search of the list of arguments, i.e., a comparison of the given 
argument with the list of arguments to determine the correspondent 
to be selected. It thus becomes efficient to physically record the 
lists of function values on storage media. Recorded facts which are 
independent of other information in the data base may be considered 
as pure data. These enumerated facts can be obtained merely by use 
of retrieval procedures. 

Function specification can also be by means of algorithm. Functions 
requiring no reference to the stored data base are pure alqorithms 
(such as SINE). In most conventional systems, whenever function 
values can be determined without an exhaustive listing of argument 
values and functions values, the algorithm is usually associated 
with the processing program and not with data management. Certain 
functions should be associated with data-base systems in order to 
guarantee data independence. The functions of concern pertain to 
attribute values, such as summaries, which can be realized either 
through a search of a stored representation of a data map or by other 
means. Function references to information may require more than 
simple retrieval of a stored grouping of bits. Intermediate 
algorithms in the data management system will put the stored pure 
data into the necessary form for processing programs. A model of 
information, then, must include more than pure data and pure 
algorithm -- it requires combinations of algorithms working against 
values that are either stored in the data base or derived by other 
algorithms. Information obtained in this way, rather than by retrieval 
procedures or pure algorithms, can be termed virtual information. 
In the most general sense, virtual information is any fact which is 
accessible through combinations of pure algorithm and pure data, 
but which is not physically stored in the data base. 

Viewing an information system as a collection of functions shows 
that pure data and pure algorithm are merely two different ways to 
furnish function values in response to argument values. Pure data 
and pure algorithm form the endpoints of a spectrum of ways these 
values can be realized, with the middle range being various types 
of virtual information (Figure i). More generally, function requests 
are always satisfied by combining data and algorithms. Pure data 
is merely the special case involving no program, just as pure algorithm 
is the special case involving no data. 

When one asks for SIIQE(37.2), it is irrelevant whether the appro- 
priate function value is obtained by table look-up, a Taylor series 
expansion, or possibly by interpolation between stored table entries. 
Which method is used to realize the value is properly a concern of 
data-base management. As Engles (9) notes, the important point in 
regard to data independence is that the intermediate algorithms 
necessary to map stored data into the logical structure (and vice 
versa) must be transparent to the processing programs. (If something 
is virtual, you can see it, but it isn't there; if something is 
transparent, it is there, but you can't see it). The opportunity 
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to realize the information in the logical structure by other tools 
than merely stored data should make it easier to achieve data 
independence. 

In summary, a model of an information system as a collection of 
functions not only helps unify our view of algorithms and data, but 
also is consistent with other trends and needs in the computer field. 
Increasingly centralized control of information in data bases 
necessitates functions in data-base management to preserve data 
independence. Finally, the procedural definition of information 
resolves the constraints resulting from physical limitations in 
much the same way as procedural definition, or virtualization, of 
other system resources (e.g., virtual memory, virtual processors). 

CLASSES AND USES OF VIRTUAL INFOP44ATION 

Several categories of virtual information are of sufficient generality 
to merit their inclusion in data-base systems. In particular, various 
classes of virtual information can resolve the fundamental issues of 
representation and materialization in data-base systems identified 
by Engles (9). 

Representation, or data type, is the relationship between data items 
and values. The same data item can be represented as different 
values; different data items can be interpreted as the same value. 
Representation is thus primarily a matter of form. The same fact 
can be represented in many forms. The form which is appropriate to 
application programs is not necessarily the best representation for 
storage in the data base. Numbers to be displayed to users are not 
in the same form required for computation. The form required for 
computation by a particular CPU or programming language is not 
necessarily the best form for storage. 

The key issue, then, becomes how to provide a fact, once it has been 
retrieved by our system of functions, in the form desired. In the 
DBTG proposal (6), this is accomplished by the mapping between sub- 
schema and schema data definitions. More generally, data-base systems 
need to contain a library of conversion procedures that enable any 
obtained fact to be translated into any appropriate standard data 
type. Where conversion is necessary, the resulting value is virtual 
information. Such converted forms enable a data-base system to 
provide many views of the same collection of facts. 

A special case of conversion occurs when facts are not represented 
as standard data types, but are represented as encoded forms, such 
as may be required for security or storage compaction considerations. 
Compaction techniques can save considerable amounts of storage but 
require a transformation between the encoded and decoded forms. 
Many attributes with a limited number of possible values can be more 
efficiently stored as code to save space. Engles (9) offers the 
example of an application program which stores or retrieves a field 
which contains the name of a state. The data item as manipulated 
by the application program is a character string such as 'CALIFORNIA'. 
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In the data base, however, the value is represented by a numeric 
code and a function maps these state codes into state names and 
vice versa. Such mapping functions should be part of data-base 
management and their use should be transparent to application 
programs. 

Materialization is primarily a matter of content. Specifically, 
it is the matter of obtaining facts from the information system, 
regardless of form. In the real world, facts are mostly derived 
rather than pure data. As an example, consider the chart of accounts 
for a firm. The only pure data needed are original journal entries; 
all other facts are derived by manipulating this data. Derived 
facts must exist in data-base systems as well as in the real world. 

The key issues related to materialization are diverse. On a 
practical level, storing facts procedurally as virtual information 
will typically involve tradeoffs of storage and access time, and will 
obviate updating. More significantly, there is the matter of ob- 
taining facts which are implicitly available given a collection of 
pure data and pure algorithms. As a corollary, there is the question 
of which facts should be represented in this collection to maximize 
the amount of implicit information. Three major classes of virtual 
information deal with these issues of extracting the factual content: 
factored facts, inferred facts, and computed facts. 

Factored facts. As Senko, et al. (24) note, recognizing and taking 
advantage of the distinction between types (such as sets of entities) 
and instances (such as individual entity occurrences) offers great 
power in building data-base systems. To improve efficiency, informa- 
tion that is common to all instances of a particular type can be 
collected and placed in a catalog. The complete information about 
a particular instance is thus a combination of the information 
common to all instances of this type and information that is specific 
to it. Factoring, the process of looking for collections of instance 
information common to all instances of a collection and placing it 
into a type description, is a powerful method of organizing, sim- 
plifying, and condensing the information about a collection of 
instances. Recombining factored values requires procedures to 
produce the virtual information about each individual entity from 
the type description. 

This task becomes more formidable if multi-level factoring is 
employed. For example, in considering information about U. S. cities, 
we might factor out information that pertains to all cities in the 
same state (e.g., name of governor), as well as information that 
pertains to all states (e.g., name of president). (This multilevel 
factoring is a major motivation for so-called "tree-structured" 
data-base systems). The user should be able to access information 
independent of the factoring employed. 

Inferred facts. Data maps between different entity sets lead to 
the notion of related data maps. Consider the maps EMPLOYEE ---> 
POSITION, POSITION ---> SALARY, and EMPLOYEE ---> DEPARTMENT. Using 
these basic maps, we can infer the mapping of EMPLOYEE ---> SALARY. 
In addition, the mapping DEPARTMENT ---> EMPLOYEE can be inferred by 



the inverse of the EMPLOYEE ---> DEPARTMENT map. Furthermore, the 
DEPARTMENT ---> NUMBER-OF-EMPLOYEES data map can be derived from 
the inferred inverse map DEPARTMENT ---> EMPLOYEE. This may be 
preferable to storing a representation of the DEPARTMENT ---> 
NUMBER-OF-EMPLOYEES data map, which has to be updated whenever a 
change is made to the EMPLOYEE ---> DEPARTMENT data map. The user 
should be able to access the data to ascertain the NUMBER-OF-EMPLOYEES 
in a DEPARTMENT, whether the desired fact is actually stored or 
inferred. 

A simple form of an inferred fact is a single data item referenced 
in several ways. Consider two entities with the same attribute 
value. For example, each MANAGER has a NAME, but also, each EMPLOYEE 
(which includes MANAGERS) has a NAME. If we define one attribute as 
having the same value as another (similar to the "ACTUAL/VIRTUAL 
SOURCE" clause in (6)), only one data item needs to be changed during 
updating. What has been called "transferred data" (15) is similar. 
Transferred data is summarized data based on a supporting subschedule 
and forwarded to a given portion of a line item (Figure 2). Thus, 
a data item in one summary table can be a virtual "copy" of more 
elementary data elsewhere in the data base (e.g., NUMBER-OF-EMPLOYEES 
in a DEPARTMENT may be derived from a summary of the EMPLOYEE ---> 
DE PARTMENT data) . 

More complex forms of inferred facts stem from the observation that, 
in a data base of any complexity, there will be several alternative 
combinations of related data maps that could be used to access a 
given fact. Selecting the best access path structure from a set of 
possible candidates becomes a crucial factor in achieving performance. 
Senko, et al. (24) propose that possible access paths ("strings") 
be explicitly specified. The access path catalog would record facts 
(such as length of this path and device characteristics) useful in 
access path selection. 

In the most general sense, all inferred facts are instances where 
the appropriate fact exists in our collection of functions; the only 
problem is obtaining that fact. Explicitly specifying access paths 
(6, 24) is one solution, but such a solution seems to be more for the 
convenience of the system developer than of the end user. If im- 
plicit information is available, why should the user be allowed to 
get at it only if he had the foresight and knowledge of the data- 
base structure to specify it as an access path? Users may even 
attempt to specify unlikely access paths "just in case, " leading to 
a data base cluttered with needless relational information. This 
leads to some of the same problems encountered in Codd's normalization 

strategies (4), which require a user to know which fields will be 
used as identifiers when the data base is defined. Frequently, this 
will be difficult and the result will be the designation of an 
identifier with many fields, some of which are completely unnecessary. 
A more appropriate solution is to let the information system itself 
develop the proper access strategy for a fact. An information 
system could use the explicit intermediate relationships necessary 
to define the data base to discover whether implicit relationships 
exist. 



Computed facts. Whereas factored and inferred facts are developed 
merely by accessing facts available in the data-base system, computed 
facts are derived by processing algorithms. A major distinction to 
be noted here is that some computed facts are in terms of an in- 
dividual entity occurrence, whereas others are in terms of an entire 
entity set, or more complex forms. An example of the first would 
be that, given an entity such as a ROOM whose attributes are LENGTH 
and WIDTH, its AREA could be defined in a form such as PRODUCT 
(LENGTH,WIDTH). The DBTG (6) "ACTUAL/VIRTUAL RESULT" clause is of 
this type, and allows user-defined procedures to be used. A data- 
base system should incorporate common functions, such as SUM and 
PRODUCT. 

More significant facts can be developed by performing operations 
over an entire entity set. Classification requests such as "List 
the ROOMS whose COLOR is BEIGE" can employ simple comparison 
operators on a single fact, such as =, >, <, and combinations thereof. 
Boolean conditions such as &, I, and q can be used to construct 
even more complicated types of requests. Finally, functions such 
as COUNT, MAX, MIN, and AVERAGE can be combined with any of these 
above types of requests. Lists of suggested operators to use in 
data-base systems are presented in (5), (7), and (9). 

All three types of facts -- factored, inferred, and computed -- may 
be used either singly or in combination to extract information from 
our collection of functions. Any fact may also be subject to any 
representation conversions that may be necessary. 

IMPLICATIONS FOR DATA-BASE SYSTEMS 

Virtual information completes the spectrum between pure data and 
pure algorithm, and allows an information system to be modelled as 
a collection of functions. Such a model provides a clearer and more 
consistent framework for studying the concept of information and 
provides new insights into the design and implementation of data- 
base systems. This section explores some of the implications of 
our information model. Two areas are examined: technical issues 
of system efficiency and conceptual issues of system effectiveness. 

Technical issues. Data-base systems increase the variety and 
flexibility of ways to store a given fact. Data independence implies 
that the methods used within a system for representation and 
materialization are irrelevant to the user concerned only with 
logical issues. In a system with many users, such internal decisions 
should be made on a global basis, using a set of criteria which 
optimizes system performance as a whole. It has been suggested 
that, because users and uses of data change over time, the system 
could monitor itself and perform data restructuring dynamically (17). 
Rules need to be developed to aid the system in choosing the 
appropriate materialization method. 

The basic goal in formulating such rules is minimization of cost. 
Three types of costs need to be considered: space, update, and 



access. The space issue is concerned with how many bits a particular 
materialization method uses. Update deals with how static a particular 
data value is; certain data items, such as population of the United 
States, change value quite frequently while others, such as a par- 
ticular person's social security number, have a constant value. The 
access problem involves the costs incurred in satisfying a request 
for a value. When considering the form a particular value should 
take, the tradeoffs between the various cost types must be weighed 
before a decision can be made. 

For example, consider storing areas of rectangular rooms given a 
known length and width. The problem is whether to: l)store each 
room's area with the information for that room, or 2)store the 
algorithm for computing the area in the logical dexcriptor for the 
general entity "room". An access time/space tradeoff is involved. 
Storing each room's area has the advantage of a decreased materializa- 
tion time but the disadvantage of utilizing more space (assuming a 
large number of rooms). The essential characteristics of the 
tradeoff are illustrated in Figure 3. For a small number of re- 
quests for areas of rooms, alternative 2 has a smaller cost. How- 
ever, as the number of such requests grow, the cost for alternative 
2 increases faster than for alternative i, and alternative 1 
becomes attractive. 

Conceptual Issues. Although a functional model for data provides 
the potential for improving technical performance and efficiency 
of the system, of more importance is the logical consistency pro- 
vided by looking at information in this fashion. Rather than 
examining each type of information as a special case, the model 
supplies a uniform view of facts, as well as the capability of 
making information systems cleaner and more powerful. 

An information system is, in some sense, a model of recorded facts 
about the real world. Unfortunately, the modelling process does 
not capture all of the knowledge about a real world system; certain 
characteristics are simplified and omitted. By improving the way 
in which an information system is conceived, that is, by making the 
model of information more accurately reflect the real world, the 
capabilities of the information system can be improved. This can 
be accomplished by giving the system more "knowledge" about itself. 
This is known as giving the system an inferential ability to use this 
knowledge. The result is what has been termed "information profit", 
or the ability to make intelligent assumptions about the manipulation 
of information (17). Such a system could develop answers to questions 
even though these answers had not been explicitly defined in the 
data base. 

Current models of information lack this quality of providing the 
system with some intelligence. The relational model of Codd (4), 
for example, views information relationships in terms of the mathe- 
matical concept of relations. Returning to the example of the area 
of a rectangular room, this information can be expressed as the 
following relation : 

i0 



Cost 

Alternative 2 

Alternative I 

# of requests for room area 

cost " f(space) + f(# of requests) 

FIXED VARY.A3LE 

FIGURE 3 

Access cost v. space tradeoff 

ii 



Room Id. Length Width Area 

1 1 1 1 
2 2 4 8 
3 2 6 12 

By expressing the information in this way, however, the system 
loses some knowledge about how the data was derived. Most models 
of information suffer from the same weakness. They only allow 
relationships to be defined by grouping and set type operations. 
It is up to the user of such systems to distinguish the underlying 
characteristics of these relationships. 

The Automatic Programming Group at MIT's Project MAC have attacked 
this problem by classifying types of relationships which can exist. 
In their MAPL system (19,20), they allow such constructs as "a kind 
of" and " a characteristic of" to give some meaning to the defined 
relationships. The user, given several of these primitive types 
of relationships, can define his own more complex types. The major 
problem with this approach is that a complete set of primitives 
needs to be defined before all types of information relationships 
can be constructed -- a formidable task. In fact, one of the prob- 
lems encountered in MAPL is that no procedural type of primitives 
are defined, so expressing a relation like area is not possible. 

By taking the view that all facts are obtained through applying a 
function, the problem of giving a system increased inferential 
ability is reduced to defining the implicit concepts behind the 
functions which are applied (coming up with a good model for the 
functions, if you will). With some information, this is difficult 
to do. As an example, describing exactly what is meant by the concept 
of "color" is a non-trivial problem in artificial intelligence. 
With many functions, however, especially those near the pure 
algorithm end of the information spectrum, a good model is reasonably 
easy to do. Defining rectangular area as PRODUCT(LENGTH,WIDTH), 
for example, is a reasonably complete conceptual description. 

One benefit from a system with inferential ability is ease of use. 
Because the system can infer things about its information structure, 
the user is saved from doing some work. Returning to the rectangular 
area example, the user only needs to input the length and width of 
a particular room, but he can query the system about the room's area 
even though that information was not explicitly given to the system. 

Another benefit is a reduction in inconsistency of information in 
the data base. As the amount and complexity of information grows, 
the probability increases that contradictory facts exist in the 
data base. Mealy (21) uses the example data of a person whose date 
of death precedes her date of birth. If the information relationships 
are more explicitly defined, it is easier to build in consistency 
checks to help eliminate this problem. 

An example of how a functional view of data can improve a system's 
inferential capability is in the area of handling units of measure 
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(22). The association of a unit of measure with an attribute can 
either be done with each occurrence of a data item or factored into 
a catalog describing common characteristics of all instances. In 
many systems, this distinction is important; viewing all facts as 
function values, it becomes irrelevant. Conversion between various 
units of measure is analagous to converting between data types 
except the conversion is based on the content of the information 
rather than the form of its representation. Representation of 
complex units of measure, such as pounds per square inch, is easily 
accomplished since procedural definitions are allowed. A more com- 
plicated units of measure problem is typified by the request for the 
cost in cents of five bolts if bolt cost is stored in units such as 
dollars per ton. The system must change the unit of cost so that 
it reflects cost per bolt rather than cost per unit weight. This 
can be accomplished by defining an "each" function which, given the 
weight of a bolt, performs the transformation. 

The bolt problem illustrates another level to information systems 
besides the physical and the logical. This is the inferential 
level. Many inferential problems require that the system be given 
additional information. For example, solution of the bolts problem 
required the system to be able to ask for the weight of bolts. This 
implies the need for an inferential model of information as well. 
Virtual information, through procedural ways of relating data maps, 
provides a good starting point for such a model. 

SUMMARY AND CONCLUSIONS 

This paper presents a model of an information system as a collection 
of functions which produce values in response to arguments. Virtual 
information unifies data, algorithms, and their combinations into a 
range of alternative methods for meeting requests for information. 
Various classes of virtual information prove useful in resolving 
the issues of representation and materialization. Together, the 
functional model and virtual information have important implications 
in data-base systems in terms of improving system performance and 
by allowing a conceptually simple, yet consistent view of many 
formerly disparate issues. In particular, these concepts are useful 
in dealing with significant issues such as automatic restructuring 
and inference. Such issues will be critical in the "intelligent" 
data-base systems needed for the future. 
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