
VIRTUAL INFORMATION IN DATA-BASE SYSTEMS

Jeffrey J. Folinus, Stuart E. Madnick, Howard B. Schutzman

Information Systems Group
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, Mass. 02139

ABSTRACT

This paper examines the concept and implications of virtual
information in data base systems. Virtual information is any
fact which does not physically exist in the data base, but is
nonetheless accessible through combinations of algorithms and
other data. Physically recorded information is only one of a num-
ber of ways to obtain information from a data-base system. View-
ing an information system as a collection of functions shows that
pure data and pure algorithm from the endpoints of a spectrum of
ways function values can be realized, with the middle range being
various types of virtual information. Several classes of virtual
information are identified, and their usefulness is examined to
show the appropriateness of the cor~cept in a data-base system.
Finally, the model is evaluated in light of the implications of
virtual information for inference and automatic restructuring
within a data base.

CONTENTS

Abstract 1
Acknowledgements[.[[[.[..[[..[[.[.[[[[[.[[[[[..[.... ~.[1

Introduction
A Model of Information[[[[[[[[[][[[[[[[[[[[[[[2 3

Classes and Uses of Virtual Information 6
Implications for Data-Base Systems 9
Summary and Conclusions 13

Bibliography .. 14

ACKNOWLEDGMENTS

The research reported in this paper is part of the continuing
work of the Information Systems Group at M.I.T.'s Sloan School Of
Management. The goal of the Group's research effort is to develop
information systems that deal with issues such as optimizing perfor-
mance, automatic restructuring, inference, and information security.

The specific advances in this paper derive in part from earlier
research in information systems for buidling design ~arried out in
M.I.T.'s Department of Civil Engineering. That department and the
facilities of the Civil Engineering Systems Laboratory provided the
environment within which this paper was written.

INTRODUCTION

One view of data-base systems is as a method of describing and mapping
data structures into physical storage. An alternative view is that,
given appropriate stored data, the problem is how we use it to meet
requests for information. Requests for "answers", whether made to
processing programs or a stored data base, are essentially requests
for a value of a function, given various argument values. A model
of an information system as a collection of such functions helps
unify many of our notions about data and algorithms, and provides a
convenient construct for resolving several problems in data-base
systems. Such a model will be presented in this paper.

Much recent work in data-base systems has concentrated in two areas :
deriving a suitably powerful logical structure for abstractly
representing information, and formulating ways of declaring the
policies used to map this structure into a stored form. Logical
structures based on the mathematical concept of relations have been
proposed by Codd (4) and Mealy (21), whereas the Data Base Task Group
(6), Engles (9), and Senko, et al. (24) have used groupings of objects
with similar properties, sometimes referred to as entity sets.
Several others have proposed methods for mapping the resulting logical
data structures to a physical storage medium: trees and other
hierarchical organizations (as in GIS (12) and IMS (13)), chained
list structures based on rings (Bachman (i), DBTG (6) , and IDMS (25)) ,
encoded strings (Senko, et al. (24)), and schemes using symbolic
rather than physical pointers (Davies (8) and Raver (23)).

Data relationships in recent information structuring models, however,
essentially group and categorize data in some static fashion in the
data base. But relationships can also be defined in a procedural
fashion. An example of such an item is age. For example, to maintain
a completely accurate value of someone's age, it would have to be
updated continuously. Therefore, rather than assigning a particular
stored value to the data item age, it might be preferable to define
it procedurally as current date minus date of birth. This leads
directly to the idea that a model of information should allow not
only static, grouping relationships, but procedural relationships
as well.

This paper presents a model of information based on functional requests
to an information system. This model includes not only the classical
concepts of pure data and pure algorithm, but also important classes
of virtual information based on procedural relationships. The
usefulness of various types of virtual information are presented to
show its appropriateness as a concept in a data-base system.
Finally, we examine the implications of virtual information for automatic
restructuring and inference within a data base.

The idea of virtual information by itself is not new, having pre-
viously been discussed by the DBTG (6) and Engles (9). Many systems,
especially inquiry-oriented reporting systems, already virtualize
information, although they often don't consider it as such. All of

this previous work, however, has treated virtual information as a
special case, and dealt with it in a largely ad hoc fashion. The
real value of this concept occurs only when considered within a
larger structure for information which also includes data and
algorithms. In such a context, work can occur on the relative
suitability of each for solving problems in data-base systems.

A MODEL OF INFORMATION

Resolving issues in data-base systems has become easier in recent
years as the computer community has developed a clearer set of
notions about information. Of particular importance has been the
distinction between the logical structuring of facts, and the physical
structuring of stored data.

The essential characteristic of a data-base system is the sharing
of data by multiple applications. This type of environment demands
a clearly defined distinction between system internals and the external
view of the application programs, or what has been called data
independence. A significant degree of data independence means that
access methods and data organization are transparent to application
programs, and that the physical aspects of storage are considered
apart from the logical aspects of information. This implies a
logical data structure against which application programmers can
define their files and specify their requests for information.

Many data base designs assume each fact is physically recorded in
the data base. Actually, physically recorded data is only one
point within a spectrum of ways to obtain information, such as by
algorithm or even by derivation from physically recorded data.
Although these other alternatives are occasionally desirable, they
have been largely ignored. As a consequence, most models of infor-
mation are not adequate for obtaining dynamic or procedural rela-
tionships in the data base.

Viewing an information system as a collection of functions avoids
these inadequacies. All requests for information are in a sense
requests for a value of a function, given various argument values.
This functional model retains all of the power to describe information
of the models of Codd (4), Engles (9), and Mealy (21). Basically,
a function can establish relations (in the set theoretic sense)
between argument values and function values; it can thus serve the
same purpose as a data map. Although conventionally a function
returns a single value, our consideration includes functions which
can return a set or series of values (which itself could be con-
sidered a value) by calling more primitive functions repeatedly. We
also allow for a function value of "null".

As Iverson (14) notes: "In classical applied mathematics, most
functions of interest can be approximated by some algorithm which
becomes, for practical purposes, the definition of the function.
In other areas, however, many functions of practical, if not general,
interest (such as the correspondence between employee name and salary)
can be specified only by an exhaustive listing of each argument

3

value and its corresponding function value."

Most functions of interest in a data-base system are of this latter
type. The basic algorithm applied to evaluate these functions is
a search of the list of arguments, i.e., a comparison of the given
argument with the list of arguments to determine the correspondent
to be selected. It thus becomes efficient to physically record the
lists of function values on storage media. Recorded facts which are
independent of other information in the data base may be considered
as pure data. These enumerated facts can be obtained merely by use
of retrieval procedures.

Function specification can also be by means of algorithm. Functions
requiring no reference to the stored data base are pure alqorithms
(such as SINE). In most conventional systems, whenever function
values can be determined without an exhaustive listing of argument
values and functions values, the algorithm is usually associated
with the processing program and not with data management. Certain
functions should be associated with data-base systems in order to
guarantee data independence. The functions of concern pertain to
attribute values, such as summaries, which can be realized either
through a search of a stored representation of a data map or by other
means. Function references to information may require more than
simple retrieval of a stored grouping of bits. Intermediate
algorithms in the data management system will put the stored pure
data into the necessary form for processing programs. A model of
information, then, must include more than pure data and pure
algorithm -- it requires combinations of algorithms working against
values that are either stored in the data base or derived by other
algorithms. Information obtained in this way, rather than by retrieval
procedures or pure algorithms, can be termed virtual information.
In the most general sense, virtual information is any fact which is
accessible through combinations of pure algorithm and pure data,
but which is not physically stored in the data base.

Viewing an information system as a collection of functions shows
that pure data and pure algorithm are merely two different ways to
furnish function values in response to argument values. Pure data
and pure algorithm form the endpoints of a spectrum of ways these
values can be realized, with the middle range being various types
of virtual information (Figure i). More generally, function requests
are always satisfied by combining data and algorithms. Pure data
is merely the special case involving no program, just as pure algorithm
is the special case involving no data.

When one asks for SIIQE(37.2), it is irrelevant whether the appro-
priate function value is obtained by table look-up, a Taylor series
expansion, or possibly by interpolation between stored table entries.
Which method is used to realize the value is properly a concern of
data-base management. As Engles (9) notes, the important point in
regard to data independence is that the intermediate algorithms
necessary to map stored data into the logical structure (and vice
versa) must be transparent to the processing programs. (If something
is virtual, you can see it, but it isn't there; if something is
transparent, it is there, but you can't see it). The opportunity

Function class Examples

f(al,a 2, . . . a n)

SINE(37.2)

V I

PURE DATA

VIRTUAL INFORMATION

PURE ALGORITHM

table look-up

interpolation from
a stored table

Taylor series expansion

FIGURE 1

The Spectrum of Information Functions

PRODUCT !
INDUSTRY SALES
SHARE OF MARKET
PRICE
SALES
COSTS
PROFIT MARGIN

PRODUCT 2
INDUSTRy SALES
SHARE OF MARKET
PRICE
SALES
COSTS
PROFIT MARGIN

• I

TOTAL SALES

TOTAl. COSTS

j SALES

GROSS PROFIT

OTHER INCOME

GENERAL AND ADMINISTRATWE

NET PROFIT

TAXES

EARNINGS

FIGURE 2

Transferred data

(from reference 15)

5

to realize the information in the logical structure by other tools
than merely stored data should make it easier to achieve data
independence.

In summary, a model of an information system as a collection of
functions not only helps unify our view of algorithms and data, but
also is consistent with other trends and needs in the computer field.
Increasingly centralized control of information in data bases
necessitates functions in data-base management to preserve data
independence. Finally, the procedural definition of information
resolves the constraints resulting from physical limitations in
much the same way as procedural definition, or virtualization, of
other system resources (e.g., virtual memory, virtual processors).

CLASSES AND USES OF VIRTUAL INFOP44ATION

Several categories of virtual information are of sufficient generality
to merit their inclusion in data-base systems. In particular, various
classes of virtual information can resolve the fundamental issues of
representation and materialization in data-base systems identified
by Engles (9).

Representation, or data type, is the relationship between data items
and values. The same data item can be represented as different
values; different data items can be interpreted as the same value.
Representation is thus primarily a matter of form. The same fact
can be represented in many forms. The form which is appropriate to
application programs is not necessarily the best representation for
storage in the data base. Numbers to be displayed to users are not
in the same form required for computation. The form required for
computation by a particular CPU or programming language is not
necessarily the best form for storage.

The key issue, then, becomes how to provide a fact, once it has been
retrieved by our system of functions, in the form desired. In the
DBTG proposal (6), this is accomplished by the mapping between sub-
schema and schema data definitions. More generally, data-base systems
need to contain a library of conversion procedures that enable any
obtained fact to be translated into any appropriate standard data
type. Where conversion is necessary, the resulting value is virtual
information. Such converted forms enable a data-base system to
provide many views of the same collection of facts.

A special case of conversion occurs when facts are not represented
as standard data types, but are represented as encoded forms, such
as may be required for security or storage compaction considerations.
Compaction techniques can save considerable amounts of storage but
require a transformation between the encoded and decoded forms.
Many attributes with a limited number of possible values can be more
efficiently stored as code to save space. Engles (9) offers the
example of an application program which stores or retrieves a field
which contains the name of a state. The data item as manipulated
by the application program is a character string such as 'CALIFORNIA'.

6

In the data base, however, the value is represented by a numeric
code and a function maps these state codes into state names and
vice versa. Such mapping functions should be part of data-base
management and their use should be transparent to application
programs.

Materialization is primarily a matter of content. Specifically,
it is the matter of obtaining facts from the information system,
regardless of form. In the real world, facts are mostly derived
rather than pure data. As an example, consider the chart of accounts
for a firm. The only pure data needed are original journal entries;
all other facts are derived by manipulating this data. Derived
facts must exist in data-base systems as well as in the real world.

The key issues related to materialization are diverse. On a
practical level, storing facts procedurally as virtual information
will typically involve tradeoffs of storage and access time, and will
obviate updating. More significantly, there is the matter of ob-
taining facts which are implicitly available given a collection of
pure data and pure algorithms. As a corollary, there is the question
of which facts should be represented in this collection to maximize
the amount of implicit information. Three major classes of virtual
information deal with these issues of extracting the factual content:
factored facts, inferred facts, and computed facts.

Factored facts. As Senko, et al. (24) note, recognizing and taking
advantage of the distinction between types (such as sets of entities)
and instances (such as individual entity occurrences) offers great
power in building data-base systems. To improve efficiency, informa-
tion that is common to all instances of a particular type can be
collected and placed in a catalog. The complete information about
a particular instance is thus a combination of the information
common to all instances of this type and information that is specific
to it. Factoring, the process of looking for collections of instance
information common to all instances of a collection and placing it
into a type description, is a powerful method of organizing, sim-
plifying, and condensing the information about a collection of
instances. Recombining factored values requires procedures to
produce the virtual information about each individual entity from
the type description.

This task becomes more formidable if multi-level factoring is
employed. For example, in considering information about U. S. cities,
we might factor out information that pertains to all cities in the
same state (e.g., name of governor), as well as information that
pertains to all states (e.g., name of president). (This multilevel
factoring is a major motivation for so-called "tree-structured"
data-base systems). The user should be able to access information
independent of the factoring employed.

Inferred facts. Data maps between different entity sets lead to
the notion of related data maps. Consider the maps EMPLOYEE --->
POSITION, POSITION ---> SALARY, and EMPLOYEE ---> DEPARTMENT. Using
these basic maps, we can infer the mapping of EMPLOYEE ---> SALARY.
In addition, the mapping DEPARTMENT ---> EMPLOYEE can be inferred by

the inverse of the EMPLOYEE ---> DEPARTMENT map. Furthermore, the
DEPARTMENT ---> NUMBER-OF-EMPLOYEES data map can be derived from
the inferred inverse map DEPARTMENT ---> EMPLOYEE. This may be
preferable to storing a representation of the DEPARTMENT --->
NUMBER-OF-EMPLOYEES data map, which has to be updated whenever a
change is made to the EMPLOYEE ---> DEPARTMENT data map. The user
should be able to access the data to ascertain the NUMBER-OF-EMPLOYEES
in a DEPARTMENT, whether the desired fact is actually stored or
inferred.

A simple form of an inferred fact is a single data item referenced
in several ways. Consider two entities with the same attribute
value. For example, each MANAGER has a NAME, but also, each EMPLOYEE
(which includes MANAGERS) has a NAME. If we define one attribute as
having the same value as another (similar to the "ACTUAL/VIRTUAL
SOURCE" clause in (6)), only one data item needs to be changed during
updating. What has been called "transferred data" (15) is similar.
Transferred data is summarized data based on a supporting subschedule
and forwarded to a given portion of a line item (Figure 2). Thus,
a data item in one summary table can be a virtual "copy" of more
elementary data elsewhere in the data base (e.g., NUMBER-OF-EMPLOYEES
in a DEPARTMENT may be derived from a summary of the EMPLOYEE --->
DE PARTMENT data) .

More complex forms of inferred facts stem from the observation that,
in a data base of any complexity, there will be several alternative
combinations of related data maps that could be used to access a
given fact. Selecting the best access path structure from a set of
possible candidates becomes a crucial factor in achieving performance.
Senko, et al. (24) propose that possible access paths ("strings")
be explicitly specified. The access path catalog would record facts
(such as length of this path and device characteristics) useful in
access path selection.

In the most general sense, all inferred facts are instances where
the appropriate fact exists in our collection of functions; the only
problem is obtaining that fact. Explicitly specifying access paths
(6, 24) is one solution, but such a solution seems to be more for the
convenience of the system developer than of the end user. If im-
plicit information is available, why should the user be allowed to
get at it only if he had the foresight and knowledge of the data-
base structure to specify it as an access path? Users may even
attempt to specify unlikely access paths "just in case, " leading to
a data base cluttered with needless relational information. This
leads to some of the same problems encountered in Codd's normalization

strategies (4), which require a user to know which fields will be
used as identifiers when the data base is defined. Frequently, this
will be difficult and the result will be the designation of an
identifier with many fields, some of which are completely unnecessary.
A more appropriate solution is to let the information system itself
develop the proper access strategy for a fact. An information
system could use the explicit intermediate relationships necessary
to define the data base to discover whether implicit relationships
exist.

Computed facts. Whereas factored and inferred facts are developed
merely by accessing facts available in the data-base system, computed
facts are derived by processing algorithms. A major distinction to
be noted here is that some computed facts are in terms of an in-
dividual entity occurrence, whereas others are in terms of an entire
entity set, or more complex forms. An example of the first would
be that, given an entity such as a ROOM whose attributes are LENGTH
and WIDTH, its AREA could be defined in a form such as PRODUCT
(LENGTH,WIDTH). The DBTG (6) "ACTUAL/VIRTUAL RESULT" clause is of
this type, and allows user-defined procedures to be used. A data-
base system should incorporate common functions, such as SUM and
PRODUCT.

More significant facts can be developed by performing operations
over an entire entity set. Classification requests such as "List
the ROOMS whose COLOR is BEIGE" can employ simple comparison
operators on a single fact, such as =, >, <, and combinations thereof.
Boolean conditions such as &, I, and q can be used to construct
even more complicated types of requests. Finally, functions such
as COUNT, MAX, MIN, and AVERAGE can be combined with any of these
above types of requests. Lists of suggested operators to use in
data-base systems are presented in (5), (7), and (9).

All three types of facts -- factored, inferred, and computed -- may
be used either singly or in combination to extract information from
our collection of functions. Any fact may also be subject to any
representation conversions that may be necessary.

IMPLICATIONS FOR DATA-BASE SYSTEMS

Virtual information completes the spectrum between pure data and
pure algorithm, and allows an information system to be modelled as
a collection of functions. Such a model provides a clearer and more
consistent framework for studying the concept of information and
provides new insights into the design and implementation of data-
base systems. This section explores some of the implications of
our information model. Two areas are examined: technical issues
of system efficiency and conceptual issues of system effectiveness.

Technical issues. Data-base systems increase the variety and
flexibility of ways to store a given fact. Data independence implies
that the methods used within a system for representation and
materialization are irrelevant to the user concerned only with
logical issues. In a system with many users, such internal decisions
should be made on a global basis, using a set of criteria which
optimizes system performance as a whole. It has been suggested
that, because users and uses of data change over time, the system
could monitor itself and perform data restructuring dynamically (17).
Rules need to be developed to aid the system in choosing the
appropriate materialization method.

The basic goal in formulating such rules is minimization of cost.
Three types of costs need to be considered: space, update, and

access. The space issue is concerned with how many bits a particular
materialization method uses. Update deals with how static a particular
data value is; certain data items, such as population of the United
States, change value quite frequently while others, such as a par-
ticular person's social security number, have a constant value. The
access problem involves the costs incurred in satisfying a request
for a value. When considering the form a particular value should
take, the tradeoffs between the various cost types must be weighed
before a decision can be made.

For example, consider storing areas of rectangular rooms given a
known length and width. The problem is whether to: l)store each
room's area with the information for that room, or 2)store the
algorithm for computing the area in the logical dexcriptor for the
general entity "room". An access time/space tradeoff is involved.
Storing each room's area has the advantage of a decreased materializa-
tion time but the disadvantage of utilizing more space (assuming a
large number of rooms). The essential characteristics of the
tradeoff are illustrated in Figure 3. For a small number of re-
quests for areas of rooms, alternative 2 has a smaller cost. How-
ever, as the number of such requests grow, the cost for alternative
2 increases faster than for alternative i, and alternative 1
becomes attractive.

Conceptual Issues. Although a functional model for data provides
the potential for improving technical performance and efficiency
of the system, of more importance is the logical consistency pro-
vided by looking at information in this fashion. Rather than
examining each type of information as a special case, the model
supplies a uniform view of facts, as well as the capability of
making information systems cleaner and more powerful.

An information system is, in some sense, a model of recorded facts
about the real world. Unfortunately, the modelling process does
not capture all of the knowledge about a real world system; certain
characteristics are simplified and omitted. By improving the way
in which an information system is conceived, that is, by making the
model of information more accurately reflect the real world, the
capabilities of the information system can be improved. This can
be accomplished by giving the system more "knowledge" about itself.
This is known as giving the system an inferential ability to use this
knowledge. The result is what has been termed "information profit",
or the ability to make intelligent assumptions about the manipulation
of information (17). Such a system could develop answers to questions
even though these answers had not been explicitly defined in the
data base.

Current models of information lack this quality of providing the
system with some intelligence. The relational model of Codd (4),
for example, views information relationships in terms of the mathe-
matical concept of relations. Returning to the example of the area
of a rectangular room, this information can be expressed as the
following relation :

i0

Cost

Alternative 2

Alternative I

of requests for room area

cost " f(space) + f(# of requests)

FIXED VARY.A3LE

FIGURE 3

Access cost v. space tradeoff

ii

Room Id. Length Width Area

1 1 1 1
2 2 4 8
3 2 6 12

By expressing the information in this way, however, the system
loses some knowledge about how the data was derived. Most models
of information suffer from the same weakness. They only allow
relationships to be defined by grouping and set type operations.
It is up to the user of such systems to distinguish the underlying
characteristics of these relationships.

The Automatic Programming Group at MIT's Project MAC have attacked
this problem by classifying types of relationships which can exist.
In their MAPL system (19,20), they allow such constructs as "a kind
of" and " a characteristic of" to give some meaning to the defined
relationships. The user, given several of these primitive types
of relationships, can define his own more complex types. The major
problem with this approach is that a complete set of primitives
needs to be defined before all types of information relationships
can be constructed -- a formidable task. In fact, one of the prob-
lems encountered in MAPL is that no procedural type of primitives
are defined, so expressing a relation like area is not possible.

By taking the view that all facts are obtained through applying a
function, the problem of giving a system increased inferential
ability is reduced to defining the implicit concepts behind the
functions which are applied (coming up with a good model for the
functions, if you will). With some information, this is difficult
to do. As an example, describing exactly what is meant by the concept
of "color" is a non-trivial problem in artificial intelligence.
With many functions, however, especially those near the pure
algorithm end of the information spectrum, a good model is reasonably
easy to do. Defining rectangular area as PRODUCT(LENGTH,WIDTH),
for example, is a reasonably complete conceptual description.

One benefit from a system with inferential ability is ease of use.
Because the system can infer things about its information structure,
the user is saved from doing some work. Returning to the rectangular
area example, the user only needs to input the length and width of
a particular room, but he can query the system about the room's area
even though that information was not explicitly given to the system.

Another benefit is a reduction in inconsistency of information in
the data base. As the amount and complexity of information grows,
the probability increases that contradictory facts exist in the
data base. Mealy (21) uses the example data of a person whose date
of death precedes her date of birth. If the information relationships
are more explicitly defined, it is easier to build in consistency
checks to help eliminate this problem.

An example of how a functional view of data can improve a system's
inferential capability is in the area of handling units of measure

12

(22). The association of a unit of measure with an attribute can
either be done with each occurrence of a data item or factored into
a catalog describing common characteristics of all instances. In
many systems, this distinction is important; viewing all facts as
function values, it becomes irrelevant. Conversion between various
units of measure is analagous to converting between data types
except the conversion is based on the content of the information
rather than the form of its representation. Representation of
complex units of measure, such as pounds per square inch, is easily
accomplished since procedural definitions are allowed. A more com-
plicated units of measure problem is typified by the request for the
cost in cents of five bolts if bolt cost is stored in units such as
dollars per ton. The system must change the unit of cost so that
it reflects cost per bolt rather than cost per unit weight. This
can be accomplished by defining an "each" function which, given the
weight of a bolt, performs the transformation.

The bolt problem illustrates another level to information systems
besides the physical and the logical. This is the inferential
level. Many inferential problems require that the system be given
additional information. For example, solution of the bolts problem
required the system to be able to ask for the weight of bolts. This
implies the need for an inferential model of information as well.
Virtual information, through procedural ways of relating data maps,
provides a good starting point for such a model.

SUMMARY AND CONCLUSIONS

This paper presents a model of an information system as a collection
of functions which produce values in response to arguments. Virtual
information unifies data, algorithms, and their combinations into a
range of alternative methods for meeting requests for information.
Various classes of virtual information prove useful in resolving
the issues of representation and materialization. Together, the
functional model and virtual information have important implications
in data-base systems in terms of improving system performance and
by allowing a conceptually simple, yet consistent view of many
formerly disparate issues. In particular, these concepts are useful
in dealing with significant issues such as automatic restructuring
and inference. Such issues will be critical in the "intelligent"
data-base systems needed for the future.

13

BIBLIOGRAPHY

i.

.

.

.

.

.

.

.

.

i0.

!i.

12.

13.

Bachman, C. W. "Data Structure Diagrams," Data Base (Quarterly
Newsletter of ACM-SIGBDP), Vol. l, No. 2 (1969), pp. 4-10.

• "The Evolution of Storage Structures," Communications
of the ACM, Vol. 15, No. 7 (July 1972), pp. 628-636.

CODASYL Systems Committee. Feature Analysis of Generalized
Data Base Management Systems. New York: ACM, 1971.

Codd, E. F. "A relational model of data for a large shared
data bank, "Communications of the ACM, Vol. 13, No. 6
{June 1970), pp. 377-387.

"A Data Base Sublanguage Founded on the Relational
Calculus, "1971 SIGFIDET Workshop Proceedings• New York:
ACM, 1971. pp 35-68

Data Base Task Group•
New York: ACM, 1971.

CODASYL Data Base Task Group Report.

Date, C.J., and Hopewell, P. "File Definition and Logical
Date Independence, "1971 SIGFIDET Workshop Proceedings.
New York: ACM, 1971. pp 117-138.

Davies, C. T. A Logical Concept for th____e Control and Management
of Data. Report AR-0803-00, International Business Machines
Corp., System Development Division, Poughkeepsie, New York
(1967).

Engles, R. W. A Tutorial on Data-Base Organization. Report
TR-00.2004, International Business Machines Corp., System
Development Division, Poughkeepsie, New York (1970).

Folinus, J. J. Design of a Data-Base Information System for
Building Design. Research Report R73-52. Cambridge, Mass.:
MIT Dept. of Civil Engineering, 1973.

Hsaio, D. K. and Harary, F. "A Formal system for information
retrieval from files, "Communications of the ACM, Vol. 13,
No. 2 (February 1970), pp 67-73.

International Business Machines Corp. Generalized Information
System GIS/360: Application Description Manual (Version 2).
Form GH20-0892-0, Data Processing Division, White Plains,
New York 10604 (1970).

Information Management System IMS/360: Application
Description Manual• Form GH20-7765-i, Data Processing Division,
White Plains, New York 10604 (1971).

14

14. New York : John

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Inverson, K. E. A Proqrammin q Lanquaqe.
Wiley and Sons, 1962.

Kingston, P. L. "Concepts of financial models," IBM Systems
Journal, Vol. 12, No. 2 (1976), pp. 113-125•

Madnick, S. E. Desiqn Strateqies for File Systems.
MAC Report TR-78. Cambridge, Mass.: MIT, 1970.

Project

• "Automated Information Systems Generation Project,
" Internal Memo, Sloan School Information Systems Group, MIT
(October 1973)•

Madnick, S. E., and Alsop, J. W. "A Modular Approach to File
System Design," AFIPS Conference Proceedinqs, Vol. 34
(1969 SJCC).

Martin, W. A. and Krumland, R. "MAPL -- A Language for
Describing Models of the World," Inernal Memo No. 6, Automatic
Programming Group, Project MAC, MIT.

Martin, W. A., Krumland, R. B., and Sunguroff, A. "More MAPL
Specifications and Basic Structures, " Internal Memo No. 8,
Automatic Programming Group, Project MAC, MIT.

Mealy, G. H. "Another look at data," AFIPS Conference Proceedinqs,
Vol, 31 (1967 FJCC), pp 525-534•

Oshrin, A., and Schutzman, H. B. "The Units of Measure
Problem," Internal Memo, Sloan School Information Systems Group,
MIT (October 1973)•

Raver, N. "File Organiztion in Management Information and
Control Systems," File Orqanization - Selected Papers from
File-68, IFIP Administrative Data Processing Group (IAG),
Pulication No. 3, 1969.

Senko, M. E., Altman, E. B., Astrahan, M. M. and Fehder, P~ L.
"Data Structures and Accessing in Data Base Systems," IBM Systems
Journal, Vol. 12, No. i, pp. 30-93

Schubert, R. F. "Basic Concepts in Data-base Management,"
Datamation, July 1972, pp 42-47.

15

