APPLICATION AND ANALYSIS OF
THE VIRTUAL MACHINE APPRGACH TO
I NFORMATION SYSTEM SECURITY AND [ISOLATION
Stuart E, Madnlck(*) and John J. Donovan(»%)

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

ABSTRACT

Security 1Is an Important factor [If the programs of
Independent and possibly maliclous users are to coexlst on the
same computer system. In this paper we show that a combined
virtual machine monltor/operating system (VMM/0S) approach to
Information system Isolatlon provides substantlially better
software securlty than a conventlonal multiprogramming operating
system approach. Thls added protection Is derlved from redundant

securlty uslng Independent mechanisms that are Inherent 1In the
design of most VMM/0S systems.

l. [INTRODUCTION

During the past decade the technique of multiprogramming
(t.e., the concurrent execution of several Independent programs
on the same computer system) has been developed to take full
advantage of medlum- and large-scale computer systems (e.g., cost
economlics, flexlibllity, ease of operation, hardware reliability
and redundancy, etc.). Unfortunately, In transferring physlically
Isolated Information systems (see Flgure 1(a)) to physically
shared Informatlon systems (see Flgure 1(b)), we must cope with
the problems of: operating system compatibility, reliability, and

security. In this paper we show that the Virtual Machine approach

provides effective solutions to these problems,

* Assistant Professor, Project MAC and Sloan School of Management.
** Assoclate Professor, Project MAC and Department of Electrical
Engineerlng.

Work reported hereln was supported In part by Project MAC, an M.I.T.
research project sponsored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract Nonr-
4L102(01).

210

System S,

Central
Processor
Memory
P \8

72 I K
el P

|

) *
Terminals System S»

Central
Processar

Memory
. Storage

21 /E Devices
T~
P
—=

OS2

Central
Processor

— — — -]

System S3

191
(2]
OP32

Il

{a) Physically Isolated Information Sysiems

Central
Processor

<
(1))
=3 :
(o]
<

il doot

Terminal s* - __P._ _
P
P Storage
21 Devices

Co}mmon 0S
o0

* Terminals include

conventional I 70 units, such as
card readers, printers, TTY,eic.

(b) Physically Shared Information System

Figure |. Isolated and Shared Information Systems
211

Il. VIRTUAL MACHINE APPROACH TO ISOLATION AND COMPATIBILITY

Since virtual machines and their applications have been
described extensively In the 1iterature (Madnlck(5),
Parmelee(6)), we will only briefly review the key points. A
virtual machine may be defined as a replica of a real computer
system simulated by a combinatlon of a Virtual Machine Monltor
(VMM) software program and appropriate hardware support. (See
Goldberg (3,4) for a more precise definition). For example, the
VM/370 system enables a slingle IBM System/370 to appear
functionally as If It were multiple Independent System/370's
(l.e., multiple '"virtual machlnes"). Thus, a VMM can make one
computer system function as If It were multiple physically
Isolated systems as depicted iIn Figure 2. A VMM accomplishes
this feat by controlling the multiplexing of the physical
hardware resources In a manner analogous to the way that the
telephone company multiplexes communicatlions enabling separate

and, hopefully, lsolated conversatlons over the same wlres.

A VMM Is totally unlike a conventlonal operating system. A
VMM restricts Itself to the task of multiplexing and allocating
the physlcal hardware, It presents an Interface that appears
Identical to a "bare machlne". In fact, It Is necessary to load
a conventional operating system Into each vlrtual machine 1In
order to accomplish useful work. This latter fact provides the
basis for the solution to the operating system compatibillty

problem., Each virtual machine Is controlled by a separate, and

212

™ Central —:

! Processor
1 -
(}‘s Meg\ory —

Central

Processor

Memory

'— Eeﬁ?—ol_

SEITISS

VMM
,E&
L
lU
=|8
2|2
28
J
\

(a) Real Information (b) Virtual Information
System Hardware ‘ System Hardware

Figure 2. Real and Virtual Information Systems

213

if necessary different, operating system. The feasiblillity of
this solution has been demonstrated on the VM/370 system and the
earlier CP-67 system. The extra VMM software and hardware do
introduce additional overhead In the Information system
operation, but this overhead can be kept rather 1low (e.g.,
10-15%). Depending upon the precise economics and benefits of a
large-scale system, the VMM approach Is often preferable to the

operation of the multiple physically Isolated real systems.

I11. SECURITY AND RELIABILITY IN A VIRTUAL MACHINE ENVIRONMENT

In the preceeding sectlon It was shown that the virtual
machine approach solves the 0S compatibllity problems by allowing
different operating systems to run and coexist on the same
computer at the same time, In this sectlon we will analyze
securlty and rellabillty In a virtual machine environment., Ve
will show that the virtual machine approach results In a system
that Is much 1less susceptible to such fallures than a
conventional multiprogramming operating system. The problems of
software reliablility and security are qulte similar. A

rellabllity fallure is any action of a user's program that causes

the system to cease correct operation (e.g., "stops" or
“erashes'"), a securlty fallure is a form of rellability failure

that allows one user's program to access or destroy the data or
programs of another Isolated user or galn control of the entlire

computer system, The reliability problem has been studied by

214

Buzen, Chen, and Goldberg (1).

1. Contemporary Operatling System Environment

Most contemporary operating systems, In conjunction wlth
appropriate hardware support, provide mechanisms to prevent
reliability and securlty fallures (e.g., supervisor/problem state
modes of operatlon, etc.). In this paper we are only concerned
about complete Isolation security (l.e., no user Is allowed
access to any other wuser's Information). The problem of
generallized controlled access (l.e., a user Is allowed
restrictlive access to another user's Information) Is much more
difficult but, fortunately, such a facllity Is not needed for the

environment lllustrated In Flgure 1.

Under '"ldeal" clrcumstances, most current operating systems
can provide |Isolatlon security. 0S/360, for example, uses the
System/360's lock and key protection to lnsulate users from each
other and from the operating system. The supervisor/problem
state modes further prevent users from "galning control" of the

system. Thus, It should be possible to Isolate users.

Flgure 3(a) Illustrates the coexlistence of multiple programs
on the same Informatlon system. Such a system is susceptible to
a securlty vlolatlon If a single hardware or software fallure
were to occur, Typlcal modern operating systems consist of
thousands, possibly millions, of Instructions. The user programs

Interface with the operating system through hundreds of

215

S| S2 S3
N —N e
/4 N\ N
All concurrent
programs required R P> B, R, Ps, PR3
for all
installations.
Common Operating System
(a) Conventional Operating System Approach
Si S2 S3
e N N e N
s Y A
-
Programs run
concurrently at P2 P Y Ps2 Pz
on each
installation.
S
Operating Operating Operating Operating
system for < 5 z
each System | System System
installation L
Virtual Machine Monitor
(b) Virtual Machine Approach
Figure 3. Comparison of OS and VMM/0OS Approaches

216

parameterlzed entries (e.g., supervisor calls, program
Interrupts, 1/0 requests and Interrupts, etc.). At the present
time there is no known way to systematically validate the correct
functioning of the operatling system for all possible parameters
for all entrles. In fact, most systems tend to be hlighly
vulnerable to Invalld parameters. For example, a popular form of
sabotage 1Is to [Issue certaln data-returnling supervisor calls
(e.g., "what time 1Is 1t?" request) providing an Invalid address
as a parameter. The operating system, running with protection
disabled and assuming that the address parameter corresponds to a
user's data area, transfers the return data to that location. |If
the address provided actually corresponds to locations within the
operating system, the system can be made to destroy or dlsable
Itself. Most "secure'" systems, of course, attempt to detect this
kind of error but there are many other sabotage technliques and

complete security Is unlikely,

Referring back to Figure 3(a) we can see some of the factors
contributling to the problem. In order to provide sufficlent
functionality to be effective for a large and heterogeneous
collection of user programs, thé operating system must be quite
comprehensive and, thus, more vulnerable to error. I!n general, a
single 1loglcal error In the operating system software can
Invalidate the entlire security mechanlism, Furthermore, as
depicted In Figure 3(a), there Is no more protection between the
programs of differing user groups or the operating system than

there Is between the application programs of a slngle user group.

217

The securlty of such conventional operating systems s
sufficiently weak that the military has strict regulations that
appear to forbld the use of the same Information system for both
SECRET and TOP SECRET use - even though using separate systems |s
more costly. Even Industrial competitors or dlfferent functlons

In the same company (e.g., payroll and englneering) are often

reluctant to share the same computer.

2, Virtual Machine Environment

Flgure 3(b) Illustrates the virtual machlne approach to a
physlcally shared system. This arrangement has numerous security
advantages. |If we define Ps(P) to be the probability that a
glven run of program P will cause a securlity violation to occur,

the following conditions would be expected to hold:

A. Ps(P|0S(n)) < Ps(P]0OS(m)) for n<m
0S(1) refers to a conventlonal operating system multiprogramming
at level 1 (l.e., supporting | concurrent programs). The
probabillty of system fallure tends to Increase with the load on
the operating system (l.e., the number of dlifferent requests
Issued, the variety of functions provided, the frequency of
requests, etc.). In particular, a monoprogramming system, 0S(1),
tends to be much simpler and rellable than a comprehensive
mul tiprogramming system. Furthermore, the m-degree
multiprogramming system often requlres Intricate alterations to
support the speclal needs of the m users, especlally If m Is

large. These problems have been experienced In most large-scale

218

multlprogramming systems. These problems are diminished In a VM
environment slince each virtual machine may run a separate
operating system. Each operating system may be simpler and less
error-prone than a single comprehensive all-encompassing

operatlng system,

B, Ps(0S|VMM(k)) < Ps(P}0S(m)) for k<m
VMM(1) means a virtual machine monltor, VMM, supporting | virtual
machlines. The operating system, 0S, on a particular virtual
machine has the same relatlonship to the VMM(k) as a wuser's
program, P, has to a conventlional multiprogramming operating
system, 0S(m). Usling the same ratlonale as In A above, the
smaller the degree of multlprogramming (l.e., k<m), the smaller
the probabillity of a security violation. Furthermore, since
virtual machine monitors tend to be shorter, simpler, and easier
to debug than conventional multiprogramming operating systems,
even when k=m, the VMM [Is less error-=prone. For example, since
the VMM 1s defined by the hardware speclficatlions of the real
machine, the fleld englneer's hardware dlagnostic software can be

used to checkout the correctness of the VMM,

We can define the probabllity of a program P on one virtual
machine violating the security of another concurrent program on

another virtual machine as:
C. Ps(PiOS(n) |VMM(Kk)) = Ps(P|0S(n))xPs(0S]vMM(k))
Based on the lInequalltlies of A and B above and the multiplicative

dependency In C, we arrive at the conclusion:

219

D. Ps(P|OS(n)|VMM(K)) << Ps(P|0S(m)) ~ for n,k<m
Ps(PI0OS(n)|VMM(k)) s the probabillty of the slimultaneous
security fallure of P's operating system and the virtual machine
monitor. |If a slngle operating system's security falls, the VMM
isolates thls fallure from the other virtual machines. If the
VMM's security falls, It exposes Information of other virtual
machines to the operating system of one virtual machine. But, If
functionling correctly, P's operating system will not take
advantage of the securlty breach. Thls assumes that the
desligners of the Indlvidual operating systems are not In
colluslion with mallclous users, this seems to be a reasonable
hypothesls; otherwise, using the same collusion, Ps(P|0S(m))=1

could be attalned by subverting the common operating system.

We are particularly concerned about the overall system
security, that Is, the probabllity that a security violation
occurs due to any program In the system. Thils sltuation can be
computed by:

E. Ps(Pl1,Pl2,...,P33)

Ps(P11)x(1-Ps(P12))x...x(1=-Ps(P33))
+ (1-Ps(P11))xPs(P12)x...x(1=-Ps(P33))

+ ..
+ Ps(P1l1)xPs(P12)x...xPs(P33)
Alternately, It can be represented as:
Ps(P11,P12,...,P33) = 1 = (1-Ps(P11))x(1-Ps(P12))x...x(1-Ps(P33))
We note that Ps(P1l1,P12,...,P33) Is minimized when the Individual

Ps's are minimized. The effect Is accentuated due to the

multlpllicative nature of Equation E. Thus, from the Inequality

220

of D, we conclude:
F. Ps(P11,P12,...,P33]0S(n)|VMM(k)) <<< Ps(P11,P12,...,P33|0S(m))
for n, k<m.
That s, the security In a virtual machine environment Is very
much better than In a conventional multiprogramming operating
system environment, This conclusion depends upon the
probabilistic Independence of the security fallures. In the

following section we show that the Independence conditlion

applles.,

3, Redundant Securlity Mechanisms

If the Individual operating systems, 0S, and the virtual
machine monltor, VMM, used Identical securlty mechanisms and
algorithms, then any user actlon that resulted In penetratlion of
one could also penetrate the other. That Is, first take control
of the 0S and then, using the same technique, take control of the
VMM, This Is 1loglically analogous to placing one safe Inside
another safe - but having the same combinatlon on both safes. To
combat thls danger, the 0S and VMM must have redundant securlity
based upon Independent mechanlsms. A similar approach has been
taken in the PRIME modular computer system belng constructed at
the Unlversity of California, Berkeley. They use the term
dypnamlc verlflcatlon to mean "that every tlme a decision Is made
there 1Is a consistency check performed on the decision wusing

Independent hardware and software' (Fabry(2)).

Table 1 1Illustrates redundant security mechanlisms possible

221

In a VMM/0S environment uslng VM/370 and 0S/360 as example
systems. Let us consider maln memory security first, 0S/360
uses the System/360-370 1lock and key hardware to Isolate one
user's memory area from lnvallid access by another user's program.
VM/370, on the other hand, uses the System/370 Dynamlic Address
Translatlon (DAT) hardware to provide a separate virtual memory
(t.e., address space) for each vlrtual machine - Independent of
the 1locks and keys. Thus, a mallclous user would have to
overwhelm both the lock and key and the DAT mechanisms to vlolate
the Isolation security of another coexlsting program on another
virtual machlne. The software algorithms, of course, used by
0S/360 and VM/370 for memory security are qulte different slince
the mechanlsms that are used are so different. Thus, 1t 1Is
highly unlikely that they would both be susceptible to the same

penetration technlques.

We find the same kind of redundant security In the area of
secondary storage devices. 0S/360, especially with the Resource
Security System (RSS) optlon, provides an elaborate set of
mechanisms to restrict access to data sets (flles). Each storage
volume has a recorded label that Is read by 0§/360 to verify that
It Is the correct volume to be used (i.e., Automatic Volume
Recognitlion, AVR). Furthermore, under RSS, the speciflc data
sets on the volume may be Individually protected by means of
password codes or user authorlizatlon restrictions. VM/370, on
the other hand, may have the volumes assigned to the vlrtual

machines by the computer operator or a dlrectory on the basls of

222

FUNCTION Il VMM Mechanlism
|| (e.g., VM/370)

0S8 Mechanism
(e.z., 0S/360)

| I

| I

Maln Memory || Dynamic Address | Locks and Keys |
Security || Translatlion (DAT)| Il
-------------------- o e e o e e e o e e e e e o o o
Storage Device || Device Address | Volume Label |1
Securlty |1 Mapping | Verification and ||
1 | Data Set Passwords]||
-------------------- D L R i Tt T e Y X)
Process Allocation || Clock Comparator | Priority Interrupt]|
Security || and Time=Slicing | (and, optlonally, ||
| | Interval Timer) i
-------------------- L T T T %

Table 1.

Examples of Redundant Security Mechanisms In
a VMM/0S Environment

the physical storage device address belng used. Once again, the
logical mappling of 0S/360 is Independent of the physical mapplng
of VWM/370, These redundant security mechanisms can be found In

many other areas.

Although most existlng VMM's were not designed specifically
to provide such comprehensive Isolatlon, they frequently Include
substantial redundant security mechanisms., In order to provide
the needed Isolation, future VMM's may be designed with Increased

redundant security,

IV. CONCLUSIONS

In this paper we have shown that the VMM/0S approach to

Information system Isolation provides substantially better

223

software reliabllity and security than a conventlional
multiprogramming 0S approach. Thils added protection s obtained
through the use of redundant security mechanlsms that are

Inherent In the design of most VMM/0S systems.

REFERENCES

1. Buzen, J. P., Peter P. Chen, and Robert P,
Goldberg, "Virtual Machine Technlques for Improving
System Rellability", Proceedlings of the ACM Workshop on
Virtual Computer Systems, (March 26-27, 1973).

2. Fabry, R. S., "Dynamlic Veriflication of Operating
. System Declslons'", submlitted for publlication In the
Communicatlions of the ACM, (February 23, 1972).

3. Goldberg, R. P., "Wlrtual Machines: Semantics and

Examples", Proceedings of 1EEE Computer Soclety
Conference, (September 1971), 1u4l-142,

L, Goldberg, R. S., Architectural Princliples for
Virtual Computer Systems, PhD dlssertation, Harvard
University, (November 1972).

5. Madnick, S. E., "TIme-Sharing Systems: Virtual
Machine Concept vs. Conventlonal Approach", Modern Data
2, 3 (March 1969), 34-36.

6. Parmelee, R, P., T. |. Peterson, C. C. Tillman,
and D. J. Hatfleld, "Virtual Storage and Virtual
Machine Concepts", 1BM Systems Journal 11, 2 (1972),
99-130.

224

