Datafair 69
The British Computer Society
Mancester, England
August 1969

ANALYSIS OF MODERN FILE SYSTEMS
by

Stuart E. Madnick
Massachusetts Institute of Technology
Project MAC .
Cambridge, Massachusetts 02139
U.S.A.

Classification: :
: IV. Advances in programming, and
V. Data bases.

Abstract:
This paper presents a flexible strategy for the
design of modern general purpose file systems.
The model system developed is used as a basis
for comparison among several of the most
advanced file systems currently in use.



Analysis of Modern File Systems
by Stuart Madnick

The fields of computer appllcatlons and computer
programming have grown at an impressive rate. Computer
systems programming has probably outpaced most of the other
areas of computer software technology. For many complex
reasons, the computer software technology used in the
development of modern operatlng systems remains more of an
art than a science. It is difficult to build on the work of
others and, as a result, many software projects have failed.

A typical physical computer system has a varied assortment
of secondary storage devices (e.g. disks, drums, data cells,
etc.) in addition to the prlmary storage (i.e. core memory).

It is generally true that if primary memory size was limitless
and very inexpensive, there would be no need for secondary
storage (possible exceptions may be for backup requirements
and transfer of data). In the framework of this paper, a file
system will be defined as the software mechanism that extends
the capacity of primary storage by handling and coordinating
the transfer of information to and from the secondary storage
devices (i.e. produces an "augmented computer" which is more
flexible than the physical computer). This definition is
somewhat more restrictive than other common interpretations
which include as part of the file system definition the physical
devices or the programs that operate uponithe data (i.e:
application programs or "general purpose data management
packages"). In this interpretation the file system merely
stores and transfers information but does not operate uypon it.

This paper considers the role of sophisticated file
systems for general purpose operatlng systems and presents a
generalized model for these systems. The model is intended
to serve two functions: (1) provide a basis for analysis and
comparison of modern file systems, and (2) provide the
foundations for the synthesis of new file systems.

The model developed is primarily based upon two principles:
(1) hierarchical modularity, relating strongly to the work of
Dijkstra, and (2) virtual memory, similar in concept to the
endeavors of TSS/360 and Multics. The operation of a file
system is described by a strict hierarchy of seven levels:

. Access Methods and User Interface
Logical File System

Basic File System

. File Organization Strategy Modules
. Allocation Strategy Modules

6. Device Strategy Modules

7. Input/Output Control System

U s W N



Madnick, Analysis of Modern File Systems : Page 2

It is a basic premise of this paper that all modern file
systems perform the functions embodied in the above seven
levels. By carefully organizing the interdependencies of the
levels to "build" on each other, it is claimed that powerful
file systems can be effected easily and conveniently.

Although a precise description of a file system cannot
be presented briefly, there are several general characteristics
common to most file systems. In particular, a user specifies
his request, such as read or write, by designating a file and
an element within the file. Most advanced file systems allow
considerable flexibility in the mechanism used to specify a
file, it is typically described by means of a symbolic file
name. Furthermore, the element within the file is specified
~in terms .0f the uniform logical representation of elements
(i.e. device independent) in the particular file system which
may, but usually does not, correspond to a precise physical
specification of how and where the element is stored. For
example, a typical request might be of the form:

"Read item 23 from file ALPHA into location 1564."

Realizing that information must usually be stored on
devices in somewhat obscure ways, there must be some sequence
of transformations required to convert the user's request
into its final form that physically operates of the secondary
storage device. Quite often the transformation is viewed as
a single step, but that is a gross oversimplification that
hides the fundamental mechanisms in use. In the diagram
below the conversion process is illustrated in terms of a
discrete sequence of logical transformations.

A simple analogy is presented in Figure 1 that loosely
parallels the file system transformations. The analogy is
only intended to provide some insight into the rationale
behind each stage of the transformation. The transformation
stages are briefly described below:

Logical File System (LFS):

The process starts from the user's request to "read item
23 from the file ALPHA into location 1564"., The first step
is to convert the symbolic file name into a unique numeric file
identifier using a data base called the File Name Directory.
In the analogy, this corresponds to looking up John Doe's
identifier which is a Social Security Number in this
illustration. The purpose for using an identifier is
basically the same in both cases. It is usually more
convenient to store information, manually or automatically,
by means of a unique numeric "key" rather than a symbolic
name which may, under certain circumstances, not even be



Madnick, 2Analysis of Modern File Systems

LFS

BFS

FOSM

DSM

I0Cs

FILE SYSTEM.

READ ITEM 23 FROM
FILE ALPHA INTO
LOCATION 1564.

"SYMBOLIC

FILE NAME

, V
NUMERIC
FILE IDENTIFIER

A\
FILE DESCRIPTOR

W/
LOGICAL
I/0 COMMANDS

N4

PHYSICAL
I/0 COMMANDS

A\
I1/0 DEVICE

Figure 1.

ANALOGY
SEND LETTER TO

JOHN DOE'S
HOME ADDRESS.

JOHN DOE

Birth date

Office Address

Home address
etc.

N

EXTRACT
HOME ADDRESS

A\
SEND TO
POST OFFICE

A4
POSTMAN DELIVERY

Logical Transformations in File System

Page 3



Madnick, Analysis of Modern File Systems Page 4

unique (i.e. there may be more than one John Doe in which
case other factors must be considered in order to uniquely
identify the person under consideration).

Basic File System (BFS):

The file identifier can then be used in conjunction
with. a data base called the File Descriptor Directory to
conveniently access all the information known about a file,
this information collectively is known as the file's
descriptor. In the analogy, this would correspond to
requesting all information inthe social security records of
030-34-1234. ' '

File Organization Strategy Modules (FOSM):

Now that everything is known about the file, it is
necessary to consider the specific operation to be performed.
Using the file descriptor and a data base called the File
Map, a sequence of logical 1/0 commands can be produced.

These are called logical 1/0 commands because they do not
consider the specific physical characteristics of the secondary
storage device to be used. This is analogous to putting an
address on a letter which can be done without considering the
physical destination nor the route to be taken.

Device Strategy Modules (DSM):

In order to complete the transformation, the logical
1/0 commands must be converted into the appropriate sequence
of physical 1/0 commands using a data base called the Device
-Map. This conversion may be trivial or complex depending
upon the peculiarities of the device and 1/0 interfaces to
the devices. 1In the analogy this process is performed at
the Post Office where the address is used to determine the
physical routing needed to get the letter to its destination.

Input/Output Control System (IOCS):

, The final step in the process is the physical transfer
of information. This isusually performed by means of
software/hardware interactions to. activate the appropriate
device and confirm the successful completion of the request.
Of course, in the analogy this transfer is accomplished by
the postman assisted by trucks, planes, trains, and other
automation.

In this paper, the manner in which several diverse
modern file system perform these logical transformations is
discussed. The IBM Operating System/360 Data Management
facility is probably one of the most comprehensive file
systems incorporated in a batch-oriented operating system.



Madnick, Analysis of Modern File Systems . Page 5

On the other hand, the demands of general-purpose time-
sharing forced the MIT CTSS (Compatible Time Sharing System)
and SDS 940 systems to adopt a more flexible file system
structure. 1In general, none of these systems have taken
full advantage of the inherent modularity of the transforma-
tion levels.

Recently, the modular design has been used to develop
two new file systems for very dissimilar computer system,
a small IBM 1130 with 8,000 16-bit words of memory and a
large IBM 360/67 with 512,000»8—bit»bytes of memory.

, Flnally, MIT's Multics (Multlplexed Information and
Computing Service) illustrates a - design that exploits the
effectiveness of utilizing the logical hierarchy, augmented
by elaborate hardware features, to build an extremely
powerful .and flexible file system capability.



Madnick, Analysis of Modern File Systems Page 6

BIBLIOGRAPHY

Barrow, D. W., Fraser, A. G., Hartley, D. F., Landy, B., and
Needham, R. M., File Handling at Cambridge University,
Proceedings Spring Joint Computer Conference, pp. 163-167,
1967. '

Bleier, R. E., Treating hierarchical data structures in the
SDC time- shared data management system (TDMS), ACM .
"National Conference Proceedings, 1967.

Corbato, F. J., et al, The Compatible Time-Sharing System,
MIT Press, Cambrldge, 1962.

Daley, R. C., and Dennis, J. B., Virtual memory, processes
and sharing in Multics, Communications of the ACM, May
1968.

Daley, R{»C.,.and,Neumann, P. G., A general purpose file
system for secondary storage, Proceedings Fall Joint
Computer Conference, 1965.

Dennis, J. B., Segmentation and the design of multi-programmed
computer systems, Journal of the ACM, October 1965.

Dijkstra, E. W., The structure of the 'THE' multiprogamming
. system, ACM Symposium on Operating Systems Principles,
Gatlinburg, Tennessee, October 1967.

Dijkstra, E. W., Complexity controlled by hierarchical ordering
of function and variability, Working Paper for the NATO
Conference on Computer Software Engineering, Garmisch,
Germany, October 7-11, 1968.

Dixon, P. J., and Sable, D. J., DM-1 - A generalized data
management system, Proceedings Spring Joint Computer
Conference, 1967.

Henry, W. R., Hierarchical structure for data management,
IBM Systems Journal, Volume 8, No. 1, 1969.

IBM Cambridge Scientific Center, CP-67/CMS Program Logic
Manual, Cambridge, Massachusetts, Aprll 1968,

IBM Corporation, IBM System/360 Time Sharing System Access
Methods, Form ¥28~-2016~1, 1968.




Madnick, Analysis of Modern File Systems Page 7

Lett, Alexander S., and Konisgsford, William L., TSS/360:
- .a time-shared operating system, Proceedings Fall Joint
Computer Conference, 1968.

Lockemann, Peter C., and”Knutsen, W. Dale, Recovery of disk
contents after system fallure, Communlcatlons of the ACM,
1968..

Madnick, Stuart E., Multi-processor software lockout, ACM |
National Conference Proceedings, August 1968.

Madnick, Stuart E., De51gn strategies for file systems:
a working model, FILE/68 International Seminar on File
Organization, Helslng¢r.Denmark November 1968.

Madnick, Stuart E., Modular approach to file system design,
Proceedings Spring Joint Computer Conference, 1969.

" Nelson, T. H., A file structure for the complex, the changing
and the indeterminate, ACM National Conference Proceedlngs,
August 1965.

Nelson, D. B., Pick, R. A., and Andrews, K. B., GIM-1 - A

- generalized information management language and computer
system, Proceedings Spring Joint Computer Conference,
1967.

O'Neill, R. W., Experlence using a time-shared multi-
programming system with dynamic address relocation
hardware, Proceedings Spring Joint Computer Conference,
1967.

Randell, B., Towards a methodology of computer system design,
Working Paper for the NATO Conference on Computer Software
Engineering, Garmisch, Germany, October 7-11, 1968.

Rappaport, R. L., Implementing multi-process primitives in a
multiplexed computer system, S. M. Thesis MIT Department
of Electrical Engineering, August 1968.

Rosen, Saul, Programming Systems and Languages, McGraw-Hill,
New York, 1967.

Rosen, Saul, Electronic computers: a historical survey,
ACM Computing Surveys, Volume 1, Nol, 1, p. 24,
March 1969.




Madnick, Analysis of Modern File Systems Page 8

Rosin, Robert F., Supervisory and monitor systems, ACM
Computing Surveys, Volume ‘1, No. 1, pp. 37-54, March 1969.

Saltzer, J. H., CTSS technical notes, MIT Project MAC Report
MAC-TR-16, August 1965.

Saltzer, J. H., Traffic control in a multiplexed computer
system, Sc.D Thesis, MIT Department of Electrical
Engineering, August 1968.

Scherr, A. L., An analysis of time-shared computer systems,
MIT Project MAC Report MAC-tr-18, June 1965.

Schwartz, Jules I., Coffman, Edward G., and Weissman, Clark,
A general-purpose time-sharing system, Proceedings Spring
Joint Computer Conference, 1964.

Schwartz, Jules I., and Weissman, Clark, The SDC time=-sharing
system revisited, ACM National Conference Proceedings,
1267.

Scientific Data Systems, SDS 940 Time-Sharing System Technical
Manual, Santa Monica, California, August 1968.

Seawright, L. H., and Kelch, J. A., An introduction to CP-67/
CMS, IBM Cambridge Scientific Center Report 320-2032,
Cambridge, Massachusetts, September 1968.

. Wilkes, M. V., Time-Sharing Computer Systems, pp. 75-90,
American Elsevier Publishing Company, Inc., New York, 1968.




