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The :impressive improvements that are continuously 
being made in the cost-effectiveness of computer hard- 
ware are causing an enormous expansion in the num- 
ber of applications for which computing is becoming a 
feasible and economical solution. This, in turn, is plac- 
ing greater and greater demands for the development 
and operation of computer software systems. A conser- 
vative estimate indicates a hundredfold increase in the 
demand for software in the last two decades [32]. 

The growth of the software industry has not, how- 
ever, been painless. The record shows that the develop- 
ment of software has been marked by cost overruns, 
late deliveries, poor reliability, and users’ dissatisfac- 
tion [16, 34, 411. 

In an effort to bring discipline to the development of 
software systems, attempts have been made since the 
early 1970s to apply the rigors of science and engineer- 
ing to the software production process. This led to sig- 
nificant advances in the technology of software 
production (e.g., structured programming, structured 
design, formal verification, language design for more 
relia’ble coding, diagnostic compilers). 

The managerial aspects of software development, on 
the other hand, have attracted much less attention 
from the research community [51]. Cooper [17] pro- 
vides an insightful explanation for the reasons why: 

Perhaps this is so because computer scientists believe 
that management per se is not their business, and the 
management professionals assume that it is the com- 
puter scientists’ responsibility. 

This “deficiency” in the field’s research repertoire 
may account for the persistence of the difficulties in 
producing software systems. A chief concern expressed 
is that, as of yet, we still lack a fundamental under- 

O1989ACM 0001.0782/R9/~200-1426 51.50 

1426 Comlnunications of the ACM 

standing of the software development process. Without 
such an understanding the possibility or 1ikeIihood of 
any significant gains on the managerial front is ques- 
tionable [13, 301. 

This article reports on a stream of research designed 
to address these concerns. Specifically, our goal is to 
develop a comprehensive model of the dymnnics of 
software development that enhances our understanding 
of, provides insight into, and makes predictions about 
the process by which software development is man- 
aged. The following examples illustrate some of the 
critical management decisions that have been ad- 
dressed in this research effort: 

I. A project is behind schedule. Possible manage- 
ment actions include: revise completion date; hold to 
planned completion date, but hire more staff; hold 
to planned completion date, but work current staff 
overtime, etc. What are the implications of these 
alternatives? 

2. How much of the development effort should be 
expended on quality assurance and how does that 
affect completion time and total cost? 

3. What is the impact of different effort distributions 
among project phases (e.g., should the ratio cd effort 
between development and testing be 80 : 20 or 60 : 40)? 

4. What are the reasons for and implications of the 
differences between potential productivity, actual pro- 
ductivity, and perceived productivity? 

5. Why does the “90% completion syndrome” chroni- 
cally recur? 

In the rest of this article we discuss the integrative 
dynamic model of software project managem.ent that 
has been developed. We will provide an overview of 
both the model’s structure and its behavior followed by 
a discussion of the insights gained. We begin our pre- 
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sentation, however, by first presenting arguments for 
the necessity of an integrative and dynamic modeling 
approach in the study of software project management. 

THE HIGH COMPLEXITY OF THE SOFTWARE 
PROJECT MANAGEMENT PROCESS 
A simple view of the dynamics of project management 
is illustrated by the single-loop model shown in Fig- 
ure 1 [45]. The model portrays how project work is 
accomplished through the use of project resources 
(manpower, facilities, equipment; see item 1 in Fig- 
ure I). As work (2) is accomplished on the project, it is 
reported (3) through some project control system. Such 
reports cumulate and are processed to create the proj- 
ect’s forecast completion time (4) by adding to the cur- 
rent date the indicated time remaining on the job. As- 
sessing the job’s remaining time involves figuring out 
the magnitude of the effort (e.g., in man-days) believed 
by management to be remaining to complete the proj- 
ect, the level of manpower working on the project, and 
the perceived productivity of the project team. The 
feedback loop is completed (closed) as the difference, if 
any, between the scheduled completion date (5) and the 
forecast completion date (4) causes adjustments (6) in 
the magnitude or allocation of the project’s resources 
(1). This new level of resources results in a new work 
rate (2) and the loop is repeated again. 

What is attractive about the above model is that it is 
reasonable, simple, and manageable. It is the mental 
model that many project managers rely on [45]. But is it 
an adequate model of the dynamics of software project 
management? 

The software project management system is a far 
more complex conglomerate of interdependent vari- 
ables that are interrelated in various nonlinear fash- 
ions. By excluding vital aspects of the real software 
project environment, the model depicted in Figure 1 
could seriously misguide the unsuspecting software 
manager. To see how, let us consider just a few of the 
many typical decisions pondered in a software project 
environment. 

Adding More People to a Late Project. The mental pic- 
ture of Figure 1 suggests a direct relationship between 
adding people resources and increasing the rate of work 
on the project, i.e., the higher the level of project re- 
sources, the higher the work rate. This ignores one vital 
aspect of software project dynamics, namely, that add- 
ing more people often leads to higher communication 
and training overheads on the project, which can in 
turn dilute the project team’s productivity. Lower pro- 
ductivity translates into lower progress rates, which 
can, therefore, delay the late project even further. This, 
in turn, can trigger an additional round of work force 
additions and another pass around this vicious cycle. 
These dynamic forces create the phenomenon often re- 
ferred to as Brooks’ Law, i.e., adding more people to a 
late software project makes it later [Is]. In Figure 2a 
we, therefore, amend Figure 1 by incorporating the vi- 
tal link between the work force level and productivity. 
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FIGURE 1. A Model of Software Project Management 

Adjusting the Schedule of a Late Project. Another part of 
the real system that is ignored by Figure 1 concerns the 
impact of schedule pressures on the software devel- 
opers’ actions and decisions. For example, when faced 
with schedule pressures that arise as a project falls be- 
hind schedule, software developers typically respond 
by putting in longer hours and by concentrating more 
on the essential tasks of the job [25]. In one experi- 
ment, Boehm [14] found that the number of man-hours 
devoted to project work increased by as much as 100 
percent. This additional link between schedule pres- 
sure and productivity is captured in Figure 2b. 

The impact of schedule pressures on software devel- 
opment, however, is not limited to the above relatively 
direct role. Schedule pressures can also play less visible 
roles. For example, as Figure 2c suggests, schedule 
pressures can increase the error rate of the project team 
and thus the amount of rework on the project [31,40]. 

People under time pressure don’t work better, they 
just work faster. . . . In the struggle to deliver any 
software at all, the first casuality has been consid- 
eration of the quality of the software delivered 
[19, p. 341. 

The rework necessary to correct such software errors 
obviously diverts the project team’s effort from making 
progress on new project tasks, and thus can have a 
significant negative impact on the project’s progress 
rate. 

How Late is a Late Software Project? Because software 
remains largely intangible during most of the develop- 
ment process, it is often difficult for project managers to 
assess real progress on the project [12]. To the extent 
that the perceived progress rate differs from the real 
progress rate, an error in perceived cumulative progress 
will gradually accumulate (Figure 2d). Furthermore, 
bias, often in the form of overoptimism, and delay in 
gathering and processing control information addition- 
ally distorts the reported progress. This undoubtedly 
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FIGURE 2. Amendments to the Project Management Model 

poses yet another complication that is too real for the 
software project manager to exclude from a model of 
the process. 

AN INTEGRATIVE SYSTEM DYNAMICS 
PERSPECTIVE OF SOFTWARE DEVELOPMENT 
While the preceding discussion is still far less than a 
complete picture, it does illustrate that many variables, 
both tangible and intangible, impact the software devel- 
opment process. Furthermore, these variables are not 

independent, but are related to one another in complex 
fashions. Perhaps most importantly, understanding the 
behavior of such systems is complex far beyond the 
capacity of human intuition [45]. 

A major deficiency in much of the resea& to date 
on software project management has been thfa inability 
to integrate our knowledge of the microcomponents of 
the software development process such as scheduling, 
productivity, and staffing to derive implications about 
the behavior of the total socio-technical system. In the 
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research effort described in this article we build upon 
and extend what has been learned about the micro- 
components, to construct a holistic model of the soft- 
ware development process. It integrates the multiple 
functions of software development, including both the 
management-type functions (e.g., planning, controlling, 
staffing) as well as the software production-type activi- 
ties (e.g., designing, coding, reviewing, testing). 

A second unique feature of our modeling approach is 
the use of the feedback principles of system dynamics 
to structure and clarify the complex web of dynami- 
cally interacting variables. Feedback is the process in 
which an action taken by a person or thing will eventu- 
ally affect that person or thing. Examples of such feed- 
back systems in the software project environment have 
already been demonstrated in the preceding discussion 
and are evident in Figures 1 and 2. 

The significance and applicability of the feedback 
systems concept to managerial systems has been sub- 
stantiated by a large number of studies [45]. For exam- 
ple, Weick [49, p. 71 observes that 

The cause-effect relationships that exist in organiza- 
tions are dense and often circular. Sometimes these 
causal circuits cancel the influences of one variable 
on another, and sometimes they amplify the effects of 
one variable on another. It is the network of causal 
relationships that impose many of the controls in 
organizations and that stabilize or disrupt the orga- 
nization. It is the patterns of these causal links that 
account for much of what happens in organizations. 
Though not directly visible, these causal patterns 
account for more of what happens in organizations 
than do some of the more visible elements such as 
machinery, timeclocks, . . . , 

One of the pioneering works in the field is Roberts’ 
[44] published doctoral dissertation, which involved the 
development of a comprehensive system dynamics 
model of R&D project management. The model traces 
the full life cycle of a single R&D project and incorpo- 
rates the interactions between the R&D product, the 
firm, and the customer. Roberts’ work spurred a large 
number of system dynamics studies of project manage- 
ment phenomena. For example, Nay [33] and Kelly [26] 
extended Roberts’ work in their research on multi- 
project environments. Richardson [42] took a different 
tack, focusing on the development group. His model 
reproduces the dynamics of a development group over 
an eight-year period as a continuous stream of products 
are developed and placed into production. 

While the bulk of the system dynamics modeling 
work in the project management area has been devoted 
to the R&D environment, the applicability of the meth- 
odology to the domain of software production has been 
alluded to in the literature (e.g., [24, 28, 391). Perhaps 
this should come as no surprise, since “the stages of 
research and development are similar in many respects 
to the stages of software analysis and design” [23]. In 
the remainder of this section we describe how the sys- 

tem dynamics modeling technique was extended to the 
software project domain. 

Model Development and Structure 
The model was developed on the basis of a field study 
of software project managers in five organizations. The 
process involved three information gathering steps: 

First, we conducted a series of interviews with soft- 
ware development project managers in three organiza- 
tions. The purpose of this set of interviews was to pro- 
vide us with a first-hand account of how software 
projects are currently managed in software developing 
organizations. The information collected in this phase, 
complemented with our own software development ex- 
perience, formed the basis for formulating a skeleton 
system dynamics model of software project manage- 
ment. 

The second step was to conduct an extensive review 
of the literature. The skeleton model served as a useful 
road map in carrying out this literature review. When 
this exercise was completed, many knowledge gaps 
were filled, giving rise to a second much more detailed 
version of the model. 

In the third, and final step: 

The model is exposed to criticism, revised, exposed 
again and so on in an iterative process that continues 
as it proves to be useful. Just as the model is im- 
proved as a result of successive exposures to critics 
a successively better understanding of the problem 
is achieved by the people who participated in the 
process [45, p. 61. 

The setting for this was a second series of intensive 
interviews with software project managers at three 
organizations (only one of which was included in the 
first group). 

Figure 3 depicts a highly aggregated view of the mod- 
el’s four subsystems, namely: (1) the human resource 
management subsy-stem; (2) the software production 
subsystem; (3) the controlling subsystem; and (4) the 
planning subsystem. The figure also illustrates some of 
the interrelationships among the four subsystems. Simi- 
larities to Figure 2d can be recognized. Since the actual 
model is very detailed, containing over a hundred 
causal links, only a high-level description of the model 
can be presented in the limited space of this article. For 
a full discussion of the model’s structure and its mathe- 
matical formulation the reader is referred to [l, 91. 

Human Resource Management Subsystem 
The human resource management subsystem captures 
the hiring, training, assimilation, and transfer of the 
human resource. The project’s total work force is segre- 
gated into different types of employees, e.g., newly 
hired work force and experienced work force. Segregat- 
ing the work force into such categories is necessary for 
two reasons. First, newly added team members are nor- 
mally less productive (on the average) than the “old 
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timers” [la]. Secondly, it allows us to capture the train- 
ing processes involved in assimilating the new mem- 
bers into the project team. 

On. deciding upon the total work force level needed, 
project managers consider a number of factors. One 
important factor, of course, is the project’s completion 
date. As part of the planning subsystem (to be discussed 
later:), management determines the work force level 
that it believes is necessary to complete the project on 
time. In addition, though, consideration is also given to 
the stability of the work force. Thus, before adding new 
project members, management contemplates the dura- 
tion for which the new members will be needed. In 
general, the relative weights given to work force stabil- 
ity v’ersus on-time completion is dynamic, i.e., will 
change with the stage of project completion. For 
example, toward the end of the project there could be 
considerable reluctance to bring in new people. This 
reluctance arises from the realization that there just 
woulldn’t be enough time to acquaint the new people 
with the mechanics of the project, integrate them 
into the project team, and train them in the necessary 
tech:nical areas. 

Software Production Subsystem 
This software production subsystem models the soft- 
ware development process. The operation and mainte- 
nance phases of the software life cycle are, thus, not 
included. The development life cycle phases incorpo- 
rated include the designing, coding, and testing phases. 
Notice that the initial requirements definition phase is 
also excluded. There are two reasons for this. The pri- 
mary reason relates to the desire to focus this study on 
the endogenous software development organi.zation, 
i.e., the project managers and the software develop- 
ment professionals, and how their policies, decisions, 
actions, etc., affect the success/failure of software de- 
velopment. The requirements definition phase was, 
thus, excluded since in many environments .the defini- 
tion of user requirements is not totally within the con- 
trol of the software development group [29]. As soft- 
ware is developed, it is also reviewed to detect any 
errors, e.g., using quality assurance activities such as 
structured walkthroughs. Errors detected through such 
activities are reworked. 

The formulation of software productivity is based on 
the work of the psychologist Ivan Steiner [4~7]. Steiner’s 
model can simply be stated as follows: 
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Actual Productivity 

= Potential Productivity 

- Losses Due to Faulty Process 

Potential productivity is defined as “the maximum 
level of productivity that can occur when an individual 
or group . . . makes the best possible use of its re- 
sources.” It is a function of two sets of factors, the na- 
ture of the task (e.g., product complexity, database size) 
and the group’s resources (e.g., personnel capabilities, 
experience level, software tools). Losses due to faulty 
process refer to the losses in productivity incurred as 
a result of the communication and coordination 
overheads and/or low motivation. 

Control Subsystem 
Decisions made in any organizational setting are based 
on what information is actually available to the deci- 
sion maker(s). Often, this available information is inac- 
curate. Apparent conditions may be far removed from 
the actual or true state, depending on the information 
flows that are being used and the amount of time lag 
and distortion in these information flows. Thus, system 
dynamicists go to great lengths to differentiate between 
actual and perceived model variables [21]. 

True productivity of a software project team is a good 
example of a variable that is often difficult to assess. To 
know what the true value of productivity is at a partic- 
ular point in time requires accurate knowledge regard- 
ing the rates of accomplishment and resources ex- 
pended over that period of time. However, because 
software is basically an intangible product during most 
of the development process, “It is difficult to measure 
performance in programming . . . It is difficult to evalu- 
ate the status of intermediate work such as undebugged 
programs or design specification and their potential 
value to the complete project” [31, p. 671. 

How, then, is progress measured in a software proj- 
ect’s control system? Our own field study findings cor- 
roborate those reported in the literature, namely, that 
progress, especially in the earlier phases of software 
development, is typically measured by the actual ex- 
penditure of budgeted resources rather than by some 
count of accomplishments [19]. Baber [12, p. 1881 
explains: 

It is essentially impossible for the programmers to 
estimate the fraction of the program completed. What 
is 45% of a program? Worse yet, what is 45% of three 
programs? How is he to guess whether a program is 
46% or 50% complete? The easiest way for the pro- 
grammer to estimate such a figure is to divide the 
amount of time actually spent on the task to date by 
the time budgeted for that task. Only when the pro- 
gram is almost finished or when the allocated time 
budget is almost used up will he be able to recognize 
that the calculated figure is wrong. 

When progress in software development is measured 
solely by the expenditure of budgeted resources, status 
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reporting ends up being nothing more than an echo of 
the original plan. 

As the project advances toward its final stages, work 
accomplishments become relatively more visible and 
project members become increasingly more able to per- 
ceive how productive the work force has actually been. 
As a result, perceived productivity gradually ceases to 
be a function of projected productivity and is deter- 
mined instead on the basis of actual tasks developed. 

Planning Subsystem 
In the planning subsystem, initial project estimates (e.g, 
for completion time, staffing, man-days) are made at the 
beginning of the project using a variety of techniques 
[u]. These estimates are then revised, as necessary, 
throughout the project’s life. For example, to handle a 
project that is perceived to be behind schedule, plans 
can be revised to add more people, extend the sched- 
ule, or do a little of both. Such planning decisions are 
driven by variables that can change dynamically 
throughout the project life cycle. For example, while 
it is common for management to respond to a delay in 
the early stages of the project by increasing staff level, 
there is often great reluctance to do that later in the life 
cycle. This reluctance arises from the realization that 
there just wouldn’t be enough time to acquaint the new 
people with the mechanics of the project, integrate 
them into the project team, and train them in the 
necessary technical areas. 

MODEL VALIDATION 
Validation Tests Performed 
The process of judging the validity of a system dynam- 
ics model includes a number of objective tests [43] all 
of which were performed to validate this model: 

Face validity. To test the fit between the rate/level/ 
feedback structure of the model and the essential 
characteristics of the real system. This was confirmed 
by the software project managers involved in the 
study. 
Replication of referetice modes. To test whether the 
model can endogenously reproduce the various refer- 
ence behavior modes characterizing the system under 
study. Reference modes are the observed behavior 
patterns over time of important variables characteriz- 
ing the system under study, including problematic 
behavior patterns and observed responses to past pol- 
icies [43]. Reference modes reproduced by the model 
include: work force staffing patterns in the human 
resource management area [6], the “66% syndrome” 
in the control area [a], the impact of schedule com- 
pression on project cost and schedule in the planning 
area [6], and the deadline effect on software produc- 
tivity in the software production area [lo]. 
Extreme condition simulations. To test whether the 
model behaves reasonably under extreme conditions 
or extreme policies. As noted by Forrester and Senge 
[22, p. 2031. 
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It is not an acceptable counterargument to assert Once an original estimate is made, it’s all too tempt- 
that particular extreme conditions do not occur in ing to pass up subsequent opportunities t’o estimate 
real life and should not occur in the model; the by simply sticking with your previous numbers. This 
nonlinearities introduced by approaches to extreme often happens even when you know your old esti- 
condition can have important effect in normal op- mates are substantially off. There are a few different 
erating ranges. Cjften the nonlinearities in the tran- possible explanations for this effect: It’s too early to 
sition from normal to extreme conditions are the show slip . . . If I re-estimate now, I risk having to do 
very mechanisms that keep the extreme conditions it again later (and looking bad twice). . . . As you can 
from being reached. see, all such reasons are political in nature. 

To make the extre,me condition tests, we examined 
each policy, represented by a rate equation in the 
model, traced it back through any auxiliary equations 
to the state variables, represented as state variables, 
on which the rate depends, and tested the implica- 
tions of imaginary maximum and minimum values of 
each state variable and combination of state variables 
to (determine the plausibility of the resulting rate 
equations. Examples of extreme conditions examined 
include: if the work force level reaches zero, then the 
software production rate must be zero; even if the 
turnover rate is set to extremely high values, the 
work force level should never become negative; if the 
sizse of the project is suddenly and dramatically in- 
creased, then adjustments in the work force level 
and/or the schedule will not be instantaneous (de- 
lays will be incu.rred); if the error generation rate is 
set to zero, then no rework effort will be incurred but 
effort would still be allocated to QA and testing. 

l Case study. After the model was completely devel- 
oped, a case study was conducted at NASA’s Goddard 
Space Flight Center (GSFC) to validate the model. 
(NASA was not one of the five organizations studied 
during model development.) The case study involved 
a simulation of one of GSFC’s software projects, 
namely, the DE-A project. 

DE-A Case Study 
The objective of the DE-A project was to design, imple- 
ment, and test a software system for processing teleme- 
try data and providing attitude determination and con- 
trol for the DE-A satellite. The project’s size was 24,000 
delivlared source instructions (24 KDSI), the develop- 
ment and target operations machines were the IBM 
S/360-95 and -75, and the programming language was 
FORTRAN. Initially, the project was estimated to re- 
quire 1,100 man-days and to be completed in 320 work- 
ing days. The actual results were 2,200 man-days and 
380 days, respectively. 

The model’s DE-A simulation run is depicted in 
Figure 4. As shown, the model’s results (represented by 
lines) conformed quite accurately to the project’s actual 
behavior (represented by the circular points in the fig- 
ure). Notice how project DE-A’s management was in- 
clined not to adjust the project’s estimated schedule in 
days during most of the development phase of the proj- 
ect. Adjustments, in the earlier phases of the project, 
were instead made to the project’s work force level. 
This behavior is not atypical. It arises, according to 
DeMarco [19, p. lo] because of political reasons: 

The work force pattern, on the other hand, is quite 
atypical. In the literature, work force buildup tends to 
follow a concave curve that rises, peaks, and then drops 
back to lower levels as the project proceeds toward the 
system testing phase [14]. Because NASA’s launch of 
the DE-A satellite was tied to the completion of the 
DE-A software, serious schedule slippages were not tol- 
erated. Specifically, all software was requirfecl to be ac- 
cepted and frozen three months before launch. As this 
date was approached, pressures developed that over- 
rode normal work force stability considerations. That 
is, project management became increasinglyy willing to 
pay any price necessary to avoid overshooting the three 
months before-launch date. This translated. as the fig- 
ure indicates, into a management that was increasingly 
willing to add more people. (In [5] we investigate 
whether that staffing policy did or did not c:ontribute to 
the project’s late completion.) 

On the other hand, various typical behavior patterns 
can be seen, such as the 90% completion syndrome 
[4, 191: 

. . . estimates of the fraction of the work completed 
(increase) as originally planned until a level of about 
80-90% is reached. The programmer’s individual es- 
timates then increase only very slowly unt:l the task 
is actually completed [12, p. 1881. 

Its manifestation in the DE-A project is depici.ed in 
Figure 5. By measuring progress in the earl& phases 
of the project by the rate of expenditure of resources, 
status reporting ended up being nothing more than an 
illusion that the project was right on target. fiowever, 
as the project approached its final stages (e.g., when 80 
to 90% of the resources are consumed), discrepancies 
between the percentage of tasks accomplished and the 
percentage of resources expended became increasingly 
more apparent. At the same time, project members be- 
came increasingly able to perceive how productive the 
work force has actually been. This resulted in a better 
appreciation of the amount of effort actually remaining. 
As this appreciation developed, it started to, in effect, 
discount the project’s progress rate. Thus, although the 
project members proceeded toward the final stages of 
the project at a high work rate because of sc:hedule 
pressures, their net progress rate slowed down consider- 
ably. This continued until the end of the project. 
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EXPERIMENTS UNDERTAKEN AND 
IMPLICATIONS OF RESULTS 
“In software engineering it is remarkably easy to pro- 
pose hypotheses and remarkably difficult to test them” 
[SO, p. 571. Many in the field have, thus, argued for the 
desirability of having a laboratory tool for testing ideas 
and hypotheses in software engineering [46]. 

making (e.g., on the allocation of the quality assurance 
effort); and (3) provided insight into software project 
phenomena (e.g., 60% syndrome and Brooks’ Law]. 

Dysfunctional Consequences of 
Some Current Policies 

The computer simulation tools of system dynamics 
provide us with such an experimentation vehicle. The 
effects of different assumptions and environmental fac- 
tors can be tested. In the model system, unlike the real 
systems, the effect of changing one factor can be ob- 
served while all other factors are held unchanged. 
Internally, the model provides complete control of the 
system’s organizational structure, its policies, and its 
sensitivities to various events. 

Currently, the model is being used to study and pre- 
dict the dynamic implications of managerial policies 
and procedures on the software development process in 
a variety of areas. This has produced three kinds of 
results: (1) Uncovered dysfunctional consequences of 
some currently adopted policies (e.g., in the scheduling 
area); (2) Provided support for managerial decision 

We investigated the project scheduling practices in a 
major U.S. minicomputer manufacturer [Z]. In the par- 
ticular organization, software project managers use 
Boehm’s [14] COCOMO model to determine initial 
project estimates, which are then adjusted upward us- 
ing a judgmental safety factor to come up with the 
project estimates actually used. In this organization, 
project managers were rewarded based upon how 
closely their project estimates matched actual project 
results. The purpose of the experiment was to investi- 
gate the implications of this safety factor policy. 

To test the efficacy of various safety factor policies, 
we ran a number of simulations on a prototypical soft- 
ware project that we will call project Example. Project 
Example’s actual size is 64,000 DSI. At its initiation, 
however, it was incorrectly estimated to be 42.88 KDSI 
in size (that is, 33 percent smaller than 64 KDSI). This 
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incorrectly perceived project size of 42.88 KDSI was the 
input used in COCOMO’s estimation equations. We ex- 
perimented with safety factor values ranging from 0 
(the base run) to 100 percent. For a 50 percent safety 
factor, for example, the actual estimate used on the 
project would be (1. + 50/100) * COCOMO’s estimates. 

In Figure 6, the percent relative error in estimating 
man-days, defined as 100 x 1 Actual - Estimate j Actual, 
is plotted against different values of the safety factor. 
Notice that the safety factor policy seems to be work- 
ing-the larger the safety factor, the smaller the estima- 
tion error. 

The rationale for using a safety factor is based on the 
following assumptions: 

1. Past experience indicates a strong bias among soft- 
ware developers to underestimate the scope of software 
projects [14]. 

2. One might think biases are the easiest of estimat- 
ing problems to correct since they involve errors mov- 
ing always in the same direction. But as [19] suggests, 
biases are almost by definition invisible; the same psy- 
chological mechanism that creates the bias (for exam- 
ple, the optimism of software developers) works to 
conceal it. 

3. To rectify such bias, project managers often use a 
safety factor. Pietrasanta [37] observes that when proj- 

ect managers add contingency factors (ranging, say, 
from 25 to 100 percent), they are saying in essence: I 
don’t know all that is going to happen, so I’ll estimate 
what I don’t know as a percentage of what I do know. 

In other words, the assumption is that safety factors 
are simply mechanisms to bring initial man-day esti- 
mates closer to true project size in man-days (see Fig- 
ure 7a). Such an assumption cannot be contested solely 
on the basis of Figure 6 which provides only part of the 
story. Figure 7b presents a more complete pjcture; here, 
we used the model to calculate the actual man-days 
consumed by the project Example when different safety 
factors were applied to its initial estimate. The Figure 
?‘a assumption is obviously invalidated. As we use 
higher safety factors, leading to increasingly generous 
initial man-days allocations, the actual amount of man- 
days consumed does not remain at some inherently de- 
fined value. In the base run, for example, project Exam- 
ple would be initiated with a man-day estimate of 2,359 
man-days and would consume 3,795 man-da.ys. When a 
50 percent safety factor is used, leading to a 3,538 man- 
day initial estimate, Example ends up consuming not 
3,795 man-days but 5,080 man-days. 

These results clearly indicate that by imposing differ- 
ent estimates on a software project we would, in a real 
sense, be creating different projects. This can be ex- 
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plained by realizing that schedules have a direct influ- 
ence on decision-making behavior throughout a soft- 
ware project’s life. In TRW’s COCOMO model [la], for 
example, the project’s average staff size would be deter- 
mined by dividing the man-day estimate by the devel- 
opment time estimate (TDEV). Thus, a tight time sched- 
ule means a larger work force. Also, scheduling can 
dramatically change manpower loading throughout the 
life of a project. For example, the work force level in 
some environments shoots upward toward the end of a 
late project when there are strict constraints on the 
extent to which the project’s schedule is allowed to 
slip. Through its effects on the work force level, a proj- 
ect’s schedule also affects productivity (as illustrated in 
Figure 3). For example, a higher work force level means 
more communication and training overhead, affecting 
productivity negatively. 

Productivity is also influenced by how tight or slack 
a project schedule is. If a project falls behind under a 
tight schedule, software developers often decide to 
work harder in an attempt to compensate for the per- 

I I I I I e 
0 25 50 7s 100 

Safety factor percent 

(a) 

ceived shortage and bring the project back on schedule. 
Conversely, man-day excesses could arise if project 
management initially overestimates a project; as a re- 
sult, the project would be perceived ahead of schedule. 
When such a situation occurs, “Parkinson’s law indi- 
cates that people will use the extra time for. . . per- 
sonal activities, catching up on the mail, etc.” [la]. Of 
course, this means that they become less productive. 

One important managerial lesson learned from the 
above experiment is this: more accurate estimates are 
not necessarily “better” estimates. An estimation 
method should not be judged only on how accurate it 
is; it should also be judged on how costly the projects it 
creates are. For example, in one situation studied, we 
found that the estimation error which would have been 
38 percent had been reduced to 9 percent by the safety 
factor policy. But, that policy resulted in a 43 percent 
cost increase in the project. For the first time manage- 
ment had a realization of the cost of their more accu- 
rate schedule estimation policy. 

Provide Support for Management Decision Making 
The quality assurance (QA) function has, in recent 
years, gained the recognition of being a critical factor in 
the successful development of software systems. How- 
ever, because the use of QA tools and techniques can 
add significantly to the cost of developing software, the 
cost effectiveness of QA has been a pressing concern to 
the software quality manager. As of yet, though, this 
concern has not been adequately addressed in the 
literature. 

We have investigated the tradeoffs between the eco- 
nomic benefits and costs of QA in [6] and [8]. To do 
this, we used the model as a laboratory vehicle to con- 
duct controlled experiments on QA policy. Effects con- 
sidered in this experiment included error generation 
rate factors, such as schedule pressures and phase of 
project, and error detection factors, such as productiv- 
ity, error types, error density. The results showed that 

A Mawdays 
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mawdays 
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FIGURE 7. Differences between Assumed Man-Days and Actual Man-Days: (a) Comparison of Assumed Man-Days with Estimated 
Man-Days; (b) Comparison of Actual Man-Days with Estimated Man-Days 
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element of the decision making, so that such knowl- 
edge may be approp:riately reflected in the model” [%I. 

The management of software projects is such an ap- 
plication area. Capturing the decision-making process 
(e.g., in the staffing area) in a rule-based knowledge 
base, rather than using the traditional representation in 
procedural code has a number of benefits. For example, 
it allows for the incorporation of an explanation capa- 
bilit:y to the model. 

The experiments that have been performed already, 
described in the previous section, illustrate the insights 
that can be gained from applying this paradigm to the 
myrjad of concerns facing software development man- 
agers. Further work in these directions will help to 
resolve many more of these concerns. 
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