
REPO/Trs AND
ARTICLES

THE DYNAMICS OF
SOFTWARE PROJECT
SCHEDULING
TAREK K, ABDEL.HAMID and STUART E, MADNICK Massachusetts Institute of Technology

Tarek K. Abdel-Hamid' s pres-
ent research interests include
the management of software
development projects, appli-
cation of system dynamics to
software engineering. Stuart

E. Madnick's research in-
cludes system design method-

ologies, management infor-
mation systems and database
computers. He is an associate

editor of TODS, a trustee of
the VLDB Foundation, a for-
mer member of the board of
governors of the IEEE Com-

puter Society, and a founding
member and past chairman
of the IEEE Technical Com-

mittee on Database
Engineering.

Authors' Present Address:
Tarek K. Abdel-Hamid and

Stuart E. Madnick,
Center for Information

Systems Research,
MIT, Sloan School

of Management,
50 Memorial Drive,

Cambridge, MA 02139.

Madnick @ MIT-Multics
Permission to copy without

fee all or part of this material
is granted provided that the
copies are not made or dis-
tributed for direct commer-

cial advantage, the ACM co-
pyright notice and the title of

the publication and its date
appear, and notice is given

that copying is by permission
of the Association for Com-
puting Machinery. To copy
otherwise, or to republish,

requires a fee and/or specific
permission. © 1983 ACM

0001-0782/83/
0500-0340500.75.

1. THE D Y N A M I C S OF S O F T W A R E PROJECT
S C H E D U L I N G : A N I N T R O D U C T I O N
T h e sof tware i ndus t ry is young, growing, and m a r k e d by
rapid change in t e chno logy and appl ica t ion . It is not sur-
prising, then, that the abi l i ty to e s t ima te pro jec t re-
squrces, i n c l u d i n g the t i m e resource , is still r e l a t ive ly
u n d e v e l o p e d . In a r ecen t s tudy inves t iga t ing the ma jo r
p r o b l e m areas faced by sof tware pro jec t m a n a g e r s today,
" . . . the abi l i ty to e s t ima te a c c u r a t e l y the resources re-
q u i r e d to a ccompl i sh a sof tware d e v e l o p m e n t " and
" . . . the abi l i ty to e s t ima te a c c u r a t e l y the d e l i v e r y t ime
on a sof tware d e v e l o p m e n t " w e r e two of the t h i r t e e n
" d e f i n i t e " p r o b l e m areas iden t i f i ed [8].

The problem of resource estimating of computer pro-
gram system development is fundamentally qualitative
rather than quantitative. We don't understand what has
to be estimated well enough to make accurate estimates.
Quantitative analyses of resources will augment our qual-
itative understanding of program system development,
but such analyses will never substitute for this under-
standing [1].

This is w h y w h e n m e t h o d s of e s t ima t ing are ranked ,
the list is h e a d e d by w h a t A a r o n ca l led the e x p e r i e n c e
m e t h o d - - e s t i m a t e s that are largely based on h u m a n
j u d g e m e n t s ga ined t h rough p rev ious e x p e r i e n c e s w i t h
sof tware projects [1].

In the last f ew years the re has b e e n a surge in ac t iv i ty
to deve lop " q u a n t i t a t i v e " r e source e s t ima t i on me thods ,
for example , TRW's C O C O M O m o d e l [3] and P u t n a m ' s
SLIM [5]. A closer look, h o w e v e r , r evea l s that "a t h e a r t "
such m e t h o d s are still of the e x p e r i e n c e type, s ince they
all get ca l ib ra ted us ing h is tor ica l data on c o m p l e t e d soft-
ware projects .

For example :

The initial COCOMO m o d e l . . , was calibrated using 12
completed projects. The resulting model was then evalu-
ated with respect to a fairly uniform sample of 36 proj-
ects, primarily aerospace applications, producing fairly
good agreement between estimates and ac tua | s . . .

The calibration and evaluation of COCOMO has not
relied heavily on advanced statistical techniques. After
trying to apply advanced statistical techniques to software
cost estimation, and after observing similar efforts by oth-
ers, I have become convinced that the software field is
currently too primitive, and software cost driver interac-
tions too complex, for standard statistical techniques to
make much headway; and that more initial progress

ABSTRACT: Software project
scheduling is one of the major
problem areas faced by software
project managers today. While
several quantitative software
project resource and schedule es-
timation methods have been de-
veloped, such techniques raise
some important, but as yet unre-
solved, dynamic issues. A sys-
tems dynamics (SD) approach is
used to analyze several key dy-
namic software project schedul-
ing issues.

340 Communications of the ACM May 1983 Volume 26 Number 5

REPORTS AND ARllCLES

could be made by trying to formulate empirically the
nature of the interactions between cost drivers, using
functional forms which reflected the best available per-
spectives and data on software life-cycle phenomenology.

Because the cur ren t ly avai lable quant i ta t ive techniques
are usual ly ta i lored to a l imi ted set of p ro jec t /o rgan iza -
t ional types and are still imperfect , the developers of
such techniques emphasize the necessi ty to cont inuous ly
collect project data via the p lanning and control activi-
ties, compare est imates to actuals, and use the results to
improve the es t imat ing tools.

Fur thermore , research findings over the past few years
have clearly shown that the decisions that people make
in organizat ions and the actions they choose to take are
s igni f icant ly inf luenced by the pressures, perceptions,
and incent ives produced by the organizat ion 's p lanning
and control system(s) [9]. In par t icular , knowledge of
project schedules was found to affect the real progress
rate that is achieved, as well as the progress and prob-
lems that are repor ted upward in the organization.

What this implies is the exis tence of a feedback loop
(see Figure 1): an est imat ion technique produces project
schedules, which affect the decisions and actions of the
technical performers and thei r managers, which in turn

I'-st imot ion
y Method

Per formonce Schedules

Act ions, Y Decisions
FIGURE 1. Scheduling Feedback Loop.

affect work performance, which eventua l ly is fed into
the organizat ion 's projects ' database to inf luence future
est imations.

But what does the exis tence of such a feedback loop
mean? Is it good or bad? To most of us, the answers to
such quest ions will not be in tu i t ive ly obvious, that is, we
cannot answer them with confidence mere ly on the basis
of our pr ivate menta l models. The h u m a n mind is not
adapted to correct ly ant ic ipate the dynamic conse-
quences of interact ions be tween the parts of a complex
societal system [4], such as that of software project man-
agement. The most famil iar example in the l i te ra ture is
perhaps "Brooks' Law.' When a project falls beh ind
schedule, managers often a t tempt to speed up the project
by adding more people. Brooks suggests that managers
fail to ant ic ipate the dynamic consequences of such an
action, for example , the increase in the communica t ion
overhead and the need to divert product ive t ime of the
current personnel to the t ra ining of the new people. The
net effect is that the project may actual ly fall fur ther
behind schedule.

A Systems Dynamics Model is impor tant because "Un-
like a menta l model, a system dynamics compute r model
can re l iably trace through t ime the impl icat ions of any
messy maze of assumptions and in teract ions" [6]. It can
do so wi thout s tumbl ing over phraseology, emot ional
bias, or gaps in intuit ion. Even for those gifted few who
can correct ly answer the above quest ions on the basis of
mere intui t ion, a formal system dynamics model can
provide a powerful communica t ion tool that can mini-
mize misunders tand ing and miscommunica t ion .

In the r ema inde r of this paper we will e laborate the
above argument further. We will a t tempt to demons t ra te
how the modeling, s imulat ion, and analysis techniques
of system dynamics (SD) can be powerful tools in s tudy-
ing the complex area of software project management in
general, and the schedul ing issues discussed above in
part icular .

2. COMPUTER MODELING OF SOCIAL SYSTEMS:
THE SYSTEM DYNAMICS PERSPECTIVE

People would never attempt to send a sp/lceship to the
moon without first testing the equipment by constructing
prototype models and by computer simulation of the an-
ticipated space trajectories. No company would put a new
kind of household appliance or electronic computer into
production without first making laboratory tests. Such
models and laboratory tests do not guarantee against fail-
ure, but they do identify many weaknesses which can
then be corrected before they cause full-scale disasters.

Our social systems are far more complex and harder to
understand than our technological systems. Why, then,
do we not use the same approach of making models of
social systems and conducting laboratory experiments on
those models before we try new laws and government
programs in real life? The answer is often stated that our
knowledge of social systems is insufficient for construct-
ing useful models. But what justification can there be for
the apparent assumption that we do not know enough to
construct models but believe we do know enough to di-
rectly design new social systems by passing laws and
starting new social programs? I am suggesting that we
now do know enough to make useful models of social
systems. Conversely, we do not know enough to design
the most effective social systems directly without first
going through a model-building experimental phase. But I
am confident, and substanci~ ! supporting evidence is be-
ginning to accumulate, that the proper use of models of
social systems can lead to far better systems, laws, and
programs [4].

Indeed, it is now possible to use the modeling, s imula-
tion, and system analysis techniques of system dynamics
in the laboratory to construct models of manager ia l sys-
tems. Such models are obviously simplif icat ions of the
actual social systems but can be far more comprehens ive
than the menta l models that are o therwise used.

System Dynamics (SD) is the appl icat ion of feedback
control systems principles and techniques to manager ia l
and organizat ional problems. The SD phi losophy rests on
a bel ief that the behavior (or t ime history) of an organi-
zat ional ent i ty is pr inc ipal ly caused by its s tructure. The
s t ructure includes, not only the physical aspects, but
more important ly , the policies and tradit ions, both tangi-
ble and intangible, that domina te decision making in the
organizat ional entity. Such a s t ructura l f ramework con-
tains sources of amplif icat ion, t ime lags, and informat ion
feedback s imilar to those found in complex engineer ing
systems.

The system dynamics approach begins wi th an effort
to unders tand the system of forces that has created a
problem and cont inues to sustain it. Relevant data are
gathered usual ly from a var ie ty of sources, for example ,
l i terature, informed people, etc. As soon as a rud imen-
tary measure of unders tand ing has been achieved, a for-
mal model is developed. This model is ini t ia l ly in the
format of a set of logical d iagrams showing cause-and-
effect relat ionships. As soon as is feasible, the visual
model is t ransla ted into a mathemat ica l version. The
model is exposed to crit icism, revised, expressed again,

May 1983 Volume 26 Number 5 Communications of the ACM 341

REPO/Trs AND A/Tr/CLES

and so on, in an i terat ive process that cont inues as long
as it proves to be useful. Just as the model is improved as
a result of successive exposures to critics, a successively
bet ter unders tanding of the problem is achieved by the
people who par t ic ipate in the process.

Such an approach forces those involved in system de-
sign to make explici t and thoroughly test the assump-
tions that under l ie their design decisions: the na ture of
problems, their causes, the consequences of a l ternat ive
actions, and how various human, managerial , economic,
and operat ional factors interrelate. Weil reports that his
exper ience has shown that this is a very valuable proc-
ess; people are real ly quite surpr ised when it turns up
things no one had thought of before, incorrect assump-
tions, and differences of opinion about cause and effect
[9].

Roberts has stated that people 's

. . . intuition about the probable consequences of pro-
posed policies frequently proves to be less reliable than
the model's meticulous mathematical approach . . . This is
not surprising as it may first appear. Management systems
contain as many as 100 or more variables that are known
to be related to one another in various nonlinear fashions.
The behavior of such a system is complex far beyond the
capacity of intuition. Computer simulation is one of the
most effective means available for supplementing and
correcting human intuition [7].

System dynamics is sui table for addressing certain
kinds of complex problems. In addi t ion to complexi ty ,
such problems have at least two features in common.
First, they are dynamic , that is, they involve quant i t ies
that change over t ime and that can, therefore, be ex-
pressed in terms of graphs of var iables over time. Oscil-
lat ing levels of employmen t in an industry, a decl ine in a
ci ty 's tax base and qual i ty of life, and the dramat ica l ly
rising pa t te rn of heal th care costs are all dynamic prob-
lems [6]. Cost overruns, sl ippages in scheduled comple-
t ion dates, and the var iabi l i ty in product iv i ty are some of
the dynamic problems that can arise in a software pro-
ject.

A second feature of the problems to which the system
dynamics perspect ive applies involves the notion of feed-
back. "Most succinct ly, feedback is the t ransmission and
re turn of information. The emphasis , inheren t in the
word feedback itself is on the re tu rn" [6]. A feedback
system exists wheneve r an action taker will later be in-
f luenced by the consequences of his or her actions. The
consequences may be quick and direct ly apparent in re-
sults produced, for example , when the hir ing of ten more
programmers increases the programmers ' workforce to a
cer ta in desired level, which in turn feeds back to affect
the hir ing rate, that is, s topping fur ther hiring. Or the
consequences may be de layed though direct ly apparent
in results produced, for example , when a software devel-
opment manager ' s decis ion to use a par t icu lar package to
es t imate h i s / h e r h u m a n resource requ i rements affects
the project ' s complet ion t ime and cost, which in turn
inf luences the manager ' s later es t imat ion procedure. Fi-
nally, the consequences may be both de layed and quite
indirect in perce ived results, for example , when a deci-
sion to increase the software deve lopment budget leads
to the hir ing of higher qual i ty managers and ana ly s t s /
programmers , who may then develop improved products ,
which may enhance the company ' s compet i t ive position,
in turn increasing sales a n d / o r profits, which may then
inf luence the decision on the software deve lopment

budget. In all these cases a "closing of the loop" occurs.
A delay, whe the r short or long, in tervenes be tween ini-
tial action and feedback results. Closed loops and t ime
delays in consequences are character is t ic of all feedback
processes.

It is apparent from the above that the managemen t of
software deve lopment is a pr ime candida te for applica-
t ion of the system dynamics method. It c lear ly is com-
plex, it is dynamic , and it does exhibi t feedback behav-
ior.

In [2] we discuss, in some detail , a system dynamics
model we developed of software project management .
The model was developed to be a tool in invest igat ing
the many manager ia l problems that seem to be plaguing
software deve lopment activi t ies in most organizations,
for example , cost and schedule overruns. In par t icular ,
the model serves as a "ske le ton" on top of which "cus-
tom" models can be buil t to fit different o rgan iza t iona l /
project settings.

In Sec. 4 we use the model to analyze the dynamics of
software project scheduling, an exercise we hope will
produce some insights into the issues raised in Sec. 1. To
set the stage for this discussion, we will character ize ,
next in Sec. 3, the software project (which we will sim-
ply call EXAMPLE) to be used in our analysis.

3. CHARACTERIZING THE "EXAMPLE" SOFTWARE
PROJECT
One of the a t t ract ive features of a compute r model is its
high versati l i ty. By s imply changing a few model param-
eters, for example , one can easily s imula te a wide range
of software project types. The software project EXAM-
PLE involves the deve lopment of a 400,000 DSI system.
(DSI stands for "Del ivered Source Instruct ions." See [3]
for a complete definition.) All of the model ' s graphical
output, wil l be in terms of the unit, task, where a task is

o0OOO
c~O 0(5

~ o O o o
ooooo I ~ I
-~o at}- Current ly Perceived

Pro jec t S ize

00000
O O O (5 (5
o Loo o ~, 1 - -

r--~. Or'-- ScheduIed
Dura t i on

, ' /

00000
0000 ~ 0 O0 d _ _ Work force ,'5 W
0~00~n ,,'~ .n ~<r

.,2"
,9"

Cumulatlve ,~
Tosks
Wor.d ~ ,2

00000
00000 ,.~
O~Oo~ --
,,2_~ o'' ,'Y~--- c 0 ~t .¢"

/z
• D,scovered

~- ,~ / Rewot W

o°°o°q° ~" I I 00000
0 0 00 I0000 2 0 0 0 0

O ° T i m e (m o n t h s)
o

I
3 0 0 0 0

W Work force (people)
C , C u m u l o t l v e Tasks WorWed (TosWs)
D ~ D i s c o v e r e d Rework (Tosks)
S ~ Scheduled Ouraf lon (mon ths)
T ' Cos t ($1,OOO)
P : Currently Perceived Project Size (Tasks)

FIGURE 2. The "Flawless" Project.

342 Communications of the ACM May 1983 Volume 26 Number 5

REPORTS AND ART/CLES

equivalent to 400 DSI. (Our project is, thus, of size 1000
tasks.) The development period modeled begins at the
beginning of the product design phase and ends at the
end of the integration and test phase. We deliberately
excluded the requirements definition/specification
phase so we could incorporate the use of TRW's COn-
structive COst MOdel (COCOMO) [3]. That is, we assume
that management will use COCOMO to estimate the ef-
fort in man-months (MM), the total development time in
months (TDEV), and the staff size (SS).

In this section we characterize our EXAMPLE software
project. We will do it in a stepwise fashion. We will start
with an "ideal" project situation and then, step-by-step,
add increments of "reality."

Step (1): The "Flawless" Project
In the ideal case, managemenrs estimate of the project's
size will be exactly on target, that is, 400,000 DSI or 1000
tasks. Using the (Basic form of the) COCOMO model, an
estimate of the effort in man-months (MM) can then be
made.

MM = 2.4 (DSI/1000) '.°'~
= 2.4 (400,000/1000) 1°5
= 1295 man-months

From this an estimate of the project's total develop-
ment time (TDEV) can be calculated.

TDEV = 2.5 (MM) ":m
= 2.5 (1295) "38
= 38 months

Finally, the average staff size (SS) is determined.

SS = MM/TDEV
= 34 people

The dynamic behavior of the "flawless" project situa-
tion is shown in Figure 2. The project's scheduled com-
pletion duration is set to 38 months and a workforce of
34 people is assembled (e.g., during the requirements/
specification phase). As can be seen, the project proceeds
"smoothly" and is completed on schedule at a total cost
of $7,810,600. (It is assumed that a rather uniform effort
is required throughout the project. This simplifying as-
sumption will be relaxed in a later version of the model
in which the software lifecycle will be explicitly divided
into three phases: design, coding, and testing.)

Unfortunately the project behavior of Figure 2 is rarely

0.4

0.3

~: 0.2 .,'e

0.1

0 .0 v

0 . 0 0.2 0.4 0.6 0.8 1.0

Fraction of Tasks Completed

FIGURE 3. Assumed Shape of FERR.

(if ever) realized in real organizations. It will, therefore,
only serve us as a reference point for further analysis.

Step (2): Introducing Rework
Not all work done in the course of a large software pro-
ject is errorless. Some fraction of the work will be less
than satisfactory (e.g., inconsistent design, defective
code, etc.) and must be redone. The unsatisfactory work
may not be discovered right away, however. For some
time it passes unrecognized, until the need for reworking
the tasks shows up. The discovery of unsatisfactory work
that needs reworking can, of course, cause major disrup-
tions in a software project (e.g., people are diverted from
new tasks to redoing old ones) and is, therefore, a signifi-
cant element of the software development environment.

In the model, the generation of rework is regulated by
FERR, which is the fraction of work that is erroneous.
For example, a value of FERR equal to 0.1 means that 10
percent of the tasks completed in a particular unit of
time will be defective, and will thus require reworking.
FERR is not modeled as a constant, however. It is a
variable that changes during the life of the project. Fig-

oooo~o o .o d oOo~ o oOddo
~0-~0- -

oooO~ o o .oo
Q~Q

OoO~Oo o o ooo8O
o°0~

OoO~O o , o o o o o ~

8qg~
oOOQU
0 d o

1 ,~ I I
Currently Perceived
Project Size

so S'

/,///

/ s , /

Scheduled p /

- - Work force ~ ." /

/
// /

Curnulotive / /
Tosks /
Worked }/i/

I0.000 20.000

Time (months)

30000

I

/

FIGURE 4, Introducing Rework.

ure 3 depicts the assumed relationship between FERR
and the fraction of tasks completed.

The rationale for making FERR a variable in this fash-
ion is the realization that tasks near the beginning of a
large software project (e.g., design) are much different
from those near the end (e.g., documentation). Near the
beginning, the project is being defined, different ap-
proaches are being explored, ideas are on the drawing
board, etc. Near the end, the tasks are more like finish-
ing touches: assembling documentation, typing reports,
and so on. The likelihood of performing work that must
be redone is, thus, modeled to be greater at the begin-
ning of the project than at the end.

The behavior of the model is shown in Figure 4. At the
bottom of the figure, the level of rework perceived (i.e.,
discovered) throughout the life of the project is shown.
The generation of rework means, of course, that more
effort will be required to complete the project satisfactor-

May 1983 Volume 26 Number 5 Communications of the ACM 343

REPORTS AND AR'r/CLES

8oo~o
o o 0 OOoO o

°°0°°]

Oo° o 8 8 ooo~o

oo8~o
8ooo 8

ooO~o o o o .

ooo o odo8 o ooo o
o oo

o

Cur rently Perceived .

Scheduled
~/, C)UTOtlO n ~ ' /

." /
. . . .

.-°" ,/ ~. ~.

/ " /
Cumula,,ve .° /
Tasks ." ~"
Worke d " ~ s " / . f

o" /

I0 OOO 20 OO0

FIGURE 5.

50000 4O000 50O00

Time (months)

Introducing Personnel Turnover.

ily. After month 13 enough rework is discovered to cause
management to start hiring more people in order to meet
the initial scheduled completion date. This policy con-
tinues until month 29, when management chooses in-
stead to extend the project's target completion date and
slow down the hiring of new people. The project eventu-
ally completes after 41.5 months, at a total cost of
$9,024,700.

Step (3): Introducing Personnel Turnover
In this run we divert even further from the flawless
project situation. In addition to the generation of re-
work, we introduce the effect of personnel turnover. In
the flawless project run it was assumed that people do
not quit (after all, who would quit an ideal project?). For
this run, we assume that the average employment time
is 24 months. As shown in Figure 5, the project is ad-
versely affected, finishing even later at month 51 and at
a higher cost of $9,582,400.

Step (4): Introducing Estimating Error
In the flawless project we assumed that management's
estimate of the project's size was exactly on target, that
is, 1000 tasks. Obviously this is too optimistic an assump-
tion.

o o o ~ O
o O O O ~oOOO

Curren~ly Percelved o '"-L._/ / ,
0°o% / ..-2." 8 ~ . ~ - - Scheduled J~ --

. / s / /

O o o o o o8 - / / > 0°°°8 /

Cu~ulahve s J
Tosks #" ooo~o ~0,.d "~." / o o s

o ° o ~ 8 / I /

~N~N~ S## /Rework / 5 / " ~ C o s t O,scove,ea

o od~',~ I0 000 20OOO 50000 40OO0 5OOOO
O
O Time (months)
d

FIGURE 6. Introducing Estimating Error.

For this run, we assume that management initially
estimates the system's size to be 320,000 DSI or 800
tasks, that is, 20 percent lower than the real size of
400,000 DSI or 1000 tasks. The resulting project behavior
is shown in Figure 6. The project completes in 51
months but at the slightly higher cost of $9,757,200.

Notice that the "currently perceived project size"
starts at 800 tasks, but as the project progresses and the
level of uncertainty decreases, it is adjusted upwards
until at about month 35 "currently perceived project
size" is in fact equal to 1000 tasks--the true project size.
As management learns about the upward adjustments in
the project's size, it adjusts its workforce upwards to the
level it perceives is sufficient to complete the project
within the scheduled 35 months. However, unexpected
problems arise, for example, a system integration test
fails miserably, which will necessitate the reworking of
tasks believed to be successfully completed. When such
disruptions occur towards the end of the project, man-
agement is reluctant to hire new employees, and there is
almost no other alternative but to extend the scheduled
completion date, as shown in Figure 6.

In the next section we will use EXAMPLE to analyze
the dynamics of software project scheduling. In all our
subsequent simulation runs we will maintain our pro-
ject's present level of "realism," that is, include rework,
personnel turnover, and underestimation.

4. THE DYNAMICS OF SOFTWARE PROJECT
SCHEDULING: A SIMULATION EXPERIMENT
In Sec. 1 we suggested that project schedules create pres-
sures, perceptions, and incentives that affect the deci-
sions and actions of the technical performers and their
managers, that this in turn affects work performance,
which is all eventually fed into the organization's proj-
ects' database to influence future scheduling activities.
We also suggested that the dynamic consequences of
such a feedback loop are not intuitively obvious. The
modeling, simulation, and analysis techniques of system
dynamics were then proposed as a powerful tool to relia-
bly deduce and analyze the dynamic behavior of com-
plex feedback systems, such as that of managing software
projects. In this section we use our system dynamics
model of software project management to conduct a lab-
oratory experiment to investigate the software project
scheduling issues raised in Sec. 1.

The experiment involves a hypothetical situation in
which a company undertakes a sequence of ten identical
software projects, all identical to project EXAMPLE of
Sec. 3. On the first such project, EXAMPLE1, the com-
pany (lacking the experience) underestimates the size of
the project by 20 percent, that is, estimates the project's
size to be only 800 tasks. Using the (TRW calibrated)
COCOMO model, the project's total effort and duration
are then estimated to be 1025 man-months and 35
months, respectively. But as we have already seen in
Sec. 3 (Figure 6), the project actually consumes 1626
man-months and is completed in 51 months.

After completing project EXAMPLE1, the following is
learned:

• Project EXAMPLE1 is really 1000 (and not 800)
tasks.
• It consumes 1626 man-months.
• It takes 51 months to complete.

344 Communications of the ACM May1983 Volume26 Number5

REPORTS A N D ART/CLES

The COCOMO model ' s "guard ian" in the company
then notes that had an accurate est imate of project size
(i.e., 1000 tasks) been made, COCOMO's est imates for
effort and project dura t ion would have been 1295
m a n - m o n t h s and 38 months, respectively. Knowing that
COCOMO is an imperfect es t imat ion tool that needs to
be cont inuous ly improved, ad jus tments are made such
that for any future projects ident ical to EXAMPLE1 esti-
mates of 1626 m a n - m o n t h s and 51 months would be
produced.

Some t ime later when project EXAMPLE2 (which is
ident ical to EXAMPLE1) comes along, managemen t will
be in a posit ion to bet ter es t imate its true size. In fact, we
assume that EXAMPLE2's size will be es t imated per-
fectly, that is, to be 1000 tasks. Fur thermore , the now
" improved" COCOMO model will p roduce est imates of
1626 m a n - m o n t h s and 51 months for EXAMPLE2's total
effort and durat ion, respectively. Based on these figures,
management de te rmines that a staff size of 32 will be
required.

Conduct ing project EXAMPLE2 under such c i rcum-
stances produces the behavior of Figure 7. The project
s t i l l finishes late, 56 months after it started, and is 5
months behind the " improved" schedule.

When we repeated the above sequence of act ions and
reactions eight more t imes for projects EXAMPLE3
through EXAMPLEIO, we were surpr ised to observe that
the schedule was over run in each case. As a resul t man-
agement s tar ted each project (e.g., EXAMPLEi) wi th a
sl ightly longer scheduled dura t ion than the previous one
(i.e., EXAMPLEi-1). However, EXAMPLEi would still
overrun its schedule, which caused management to use

[I I t i I ..°°°
Curr~tly PercelveO
Project Size

Scheduled J
Duro lion

I I l l

• s S

• i s ! • • ~

Work force
...,.-.~.~ - ~-- - - - - ~ . . ~ .

Cumulotive s°
Tosks l * ~
wor~ld ~ . • Cost ~ /

D~seove~e~

oo o O OOO 20000 30000 4000O 5OOOO

8 Time (months) d

FIGURE 7. EXAMPLE 2 [Notice change in the COST scale],

an even longer scheduled dura t ion for the next project.
The results for the ten s imula t ion runs are shown in
Figure 8.

It seems our feedback loop tu rned out to be qui te a
villain, producing devasta t ing effects, especial ly over the
long run. Notice that EXAMPLE1 was comple ted in 51
months, whi le nine projects later, EXAMPLE10 com-
ple ted in 81.25 months! A very significant de ter iora t ion
indeed.

The, surpr is ing phenomenon we observed is one that
has been f requent ly encoun te red in system dynamics
studies of real organizations. It has been t e rmed "The

o o o o o
o 0 O O o O o O O o
0 o 0 o o

o o o o

, ~ o . §ooog

o o ~ o

o o g

==
|

80

70

60

50

40

30 I
1 2

- Actual
Project Duration

_

/ ~ / / Project Duration

_ / /
/

/

I I I I I I I 1 -
3 4 5 6 7 8 9 1 0 v

EXAMPLE i
FIGURE 8. Results of the Ten Simulation Runs.

Policy Resistance of Social Systems," "Shift ing the Bur-
den to the Intervenor ," and "Addic t ion ," among other
things. A s imple example of such a phe nome non is that
of caffeine addict ion, whe reby an addic t has to consume
a cer ta in amount of caffeine per day to main ta in a cer-
tain level of alertness. As t ime goes on the bu rden of
main ta in ing aler tness will keep shift ing from the normal
physiological body processes to the ex terna l ly suppl ied
caffeine dose. The result , of course, is that higher and
higher doses will be requi red to main ta in the s a m e level
of alertness.

Forres ter put it this way:
Social systems are inherently insensitive to most policy
changes that people select in an effort to alter the behav-
ior of the system. In fact, a social system tends to draw
our attention to the very points at which an attempt to
intervene will fail. Our experience, which has been de-
veloped from contact with simple systems, leads us to
look close to the symptoms of trouble for a cause. When
we look, we discover that the social system presents us
with an apparent cause that is plausible according to
what we have learned from simple systems. But this ap-
parent cause is usually a coincident occurrence that, like
the trouble symptom itself, is being produced by the feed-
back-loop dynamics of a larger system [4].

In our exper imen t we saw how looking at the symp-
toms of t rouble (i.e., schedule overruns) for a cause and
opting for the most apparen t one, namely, that schedules
were too tight, might lead to re laxing the schedules.
However , this turns out to be qui te ineffective in cur ing
the sys tem's problemat ic behavior .

An at t ract ive feature of system dynamics models is the
abi l i ty to conduct s imula t ion exper iments in which we
can isolate the effects of factors we suspect are causing
the problemat ic behavior . By explor ing the behavior gen-
e ra ted by ind iv idua l feedback loops and by var ious com-
binat ions of loops in a model, the mode le r can precisely
p inpoint the s t ructure responsible for the behavior .

By conduct ing such exper imenta t ion wi th our model,
we were able to ident i fy the real cause of the persist ing
schedule over run problem in our mode led software de-
ve lopment project. It tu rned out to be a consequence of
the in terac t ion be tween management ' s h i r ing / f i r ing pol-
icy and the "e lus ive" na ture of software errors.

When deciding upon the n u m b e r of employees, man-
agement (in the model) takes into account the perce ived
t ime remain ing for the project. Toward the end of the

May 1983 Volume 26 Number 5 Communications of the ACM 345

REPORTS AND ART~I.ES

project, for example, management would be very reluc-
tant to bring in new people, even though the perceived
time and effort remaining imply more people are needed.
It would just take too much time to acquaint new people
with the mechanics of the project, integrate them into
the project team, and train them in the necessary techni-
cal areas.

While such a policy may sound perfectly reasonable,
and may in fact be successfully employed in many areas
of managerial endeavour, it does pose certain risks (our
model reveals) when applied to the software develop-
ment area. As was mentioned in Sec. 3, not all work
done in the course of a large software project is errorless.
Some fraction of the work will be less than satisfactory
and must be redone. The unsatisfactory work is not dis-
covered right away, however. For some time it passes
unrecognized, until the need for reworking the tasks in-
volved shows up. When the unsatisfactory work does get
discovered, it usually causes major disruptions. The
problems, however, are particularly devastating when
this happens towards the end of the project, for example,
at system integration testing, when management (under
the above hiring/firing policy) is very reluctant to hire
new employees. When this happens, management will
have almost no other alternative but to extend the pro-
ject's scheduled completion date.

There is still, though, an interesting and as yet unan-
swered question: Why was the system so "unresponsive"
to the "schedule relaxing policy?" The answer is because
of the compensating property of complex societal sys-
tems. Changes in most (but certainly not all) parameters
in one part of such systems may weaken or strengthen
some feedback loop, but the multiloop nature of complex
feedback systems will, in most cases, "naturally"
strengthen or weaken other loops to compensate [6]. In
our particular software project situation, extending the
project's schedule weakens the strength of the schedule
pressure in the system, to which the hiring loop (for one)
simply compensates by causing the project to start with a
smaller workforce. For example, in EXAMPLE2, on the
basis of an estimated project duration of 51 months,
management starts the project with 32 people. When
supplied with the more generous and presumably more
accurate estimate of 56 months for EXAMPLE3, manage-
ment simply (and rationally) factors that in the decision
h~aking process, and then determines that a workforce of
29 people (1626 MM/56 months) is needed.

5. CONCLUSIONS
It is clear from the above discussion that viewing the
problem of software project scheduling as simply a prob-
lem of generating improved schedules is too limited a
view, and one which can in fact lead to a serious long
term deterioration in an organization's effectiveness in

managing its software projects. Our own research efforts,
as well as those of others, have convinced us that the
project management of software development is a very
complex undertaking in which a complex network of
interrelationships and interactions exists. It is, therefore,
essential that software project managers adopt an inte-
grative perspective or model of software project dynam-
ics in order to effectively answer the difficult questions
they need to raise when assessing their organizations'
health, selecting improvement interventions, and imple-
menting their choices. Such an integrative model would
be useful to alert managers to all the important elements
or aspects of a problematic situation, and to help them
assess the second- and third-order consequences of some
set of actions.

However, such an integrative model will undoubtedly
contain a large number of components with a complex
network of interrelationships: What would still be
needed is an effective means to determine both accu-
rately and efficiently the dynamic behavior implied by
such component interactions. We feel (and hopefully
have demonstrated) that the computer-based simulation
techniques of system dynamics can be a powerful tool to
do just that.

REFERENCES
1. Aaron, J. D. Estimating resources for large programming systems. Soft-

ware Engineering: Concepts and Techniques. Edited by J. M. Buxton,
P. Naur, and B. Randell. Litton Educational Publishing, Inc., 1976.

2. Abdel-Hamid, T. K. and Madnick, S. E. A model of software project
management dynamics. The Sixth lnt'l Computer Software and Appli-
cations Conference (COMPSAC), November 8-12, 1982.

3. Boehm, B. W. Software Engineering Economics, Prentice-Hall, Inc., En-
glewood Cliffs, New Jersey, 1981.

4. Forrester, J. W. Counterintuitive behavior of social systems. Technol-
ogy Review, January, 1971.

5. Putnam, L. H. Software cost estimation and life-cycle control: Getting
the software numbers. IEEE Computer Society, IEEE Catalog No.
EHO 165-1, 1980.

6. Richardson, G. P. and Pugh lIl, A. L. Introduction to System Dynamics
Modeling with Dynamo. The MIT Press, Cambridge, Massachusetts,
1981.

7. Roberts, E. B.,'Ed. Managerial Applications of System Dynamics. The
MIT Press, Cambridge, Massachusetts, 1981.

8. Thayer, R. H., Pyster, A. B., and Wood, R. C. Major issues in software
engineering project management. IEEE Trans. on Software Engineer-
ing, July, 1981, pp. 333-342.

9. Weil, H. B. Industrial dynamics and management information systems.
Managerial Applications of System Dynamics. Edited by E. B. Rob-
erts. The MIT Press, Cambridge, Massachusetts, 1981.

CR Categories and Subject Descriptors: D.2.9 [Software Engineering]:
Management--cost elimination; K.6.1 [Management of Computing and
Information Systems]: Project and People Management--management
techniques

General Terms: Management
Additional Key Words and Phrases: software project scheduling, com-

puter simulation, system dynamics

Received 6/82; revised 9/82; accepted 10/82

ACM 84 San Francisco, California October 8-10

3~,6 Communications of the ACM May 1983 Volume 26 Number 5

