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1. THE D Y N A M I C S  OF S O F T W A R E  PROJECT 
S C H E D U L I N G :  A N  I N T R O D U C T I O N  
T h e  sof tware  i ndus t ry  is young,  growing,  and m a r k e d  by 
rapid change  in t e chno logy  and  appl ica t ion .  It is not  sur-  
prising, then,  that  the  abi l i ty  to e s t ima te  pro jec t  re- 
squrces,  i n c l u d i n g  the  t i m e  resource ,  is still  r e l a t ive ly  
u n d e v e l o p e d .  In a r ecen t  s tudy  inves t iga t ing  the  ma jo r  
p r o b l e m  areas  faced by sof tware  pro jec t  m a n a g e r s  today,  
" . . .  the  abi l i ty  to e s t ima te  a c c u r a t e l y  the  resources  re- 
q u i r e d  to a ccompl i sh  a sof tware  d e v e l o p m e n t "  and  
" . . .  the  abi l i ty  to e s t ima te  a c c u r a t e l y  the  d e l i v e r y  t ime  
on a sof tware  d e v e l o p m e n t "  w e r e  two  of the  t h i r t e e n  
" d e f i n i t e "  p r o b l e m  areas  iden t i f i ed  [8]. 

The problem of resource estimating of computer pro- 
gram system development is fundamentally qualitative 
rather than quantitative. We don't understand what has 
to be estimated well enough to make accurate estimates. 
Quantitative analyses of resources will augment our qual- 
itative understanding of program system development, 
but such analyses will never substitute for this under- 
standing [1]. 

This  is w h y  w h e n  m e t h o d s  of e s t ima t ing  are  ranked ,  
the  list is h e a d e d  by w h a t  A a r o n  ca l led  the  e x p e r i e n c e  
m e t h o d - - e s t i m a t e s  that  are  largely  based  on h u m a n  
j u d g e m e n t s  ga ined  t h rough  p rev ious  e x p e r i e n c e s  w i t h  
sof tware  projects  [1]. 

In the  last f ew years  the re  has  b e e n  a surge  in ac t iv i ty  
to deve lop  " q u a n t i t a t i v e "  r e source  e s t ima t i on  me thods ,  
for example ,  TRW's  C O C O M O  m o d e l  [3] and P u t n a m ' s  
SLIM [5]. A closer  look, h o w e v e r ,  r evea l s  that  "a t  h e a r t "  
such  m e t h o d s  are  still  of the  e x p e r i e n c e  type,  s ince  they  
all get ca l ib ra ted  us ing  h is tor ica l  data  on c o m p l e t e d  soft- 
ware  projects .  

For  example :  

The initial COCOMO m o d e l . . ,  was calibrated using 12 
completed projects. The resulting model was then evalu- 
ated with respect to a fairly uniform sample of 36 proj- 
ects, primarily aerospace applications, producing fairly 
good agreement between estimates and ac tua | s . . .  

The calibration and evaluation of COCOMO has not 
relied heavily on advanced statistical techniques. After 
trying to apply advanced statistical techniques to software 
cost estimation, and after observing similar efforts by oth- 
ers, I have become convinced that the software field is 
currently too primitive, and software cost driver interac- 
tions too complex, for standard statistical techniques to 
make much headway; and that more initial progress 
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could be made by trying to formulate empirically the 
nature of the interactions between cost drivers, using 
functional forms which reflected the best available per- 
spectives and data on software life-cycle phenomenology. 

Because the cur ren t ly  avai lable  quant i ta t ive  techniques  
are usual ly  ta i lored to a l imi ted  set of p ro jec t /o rgan iza -  
t ional types and are still imperfect ,  the developers  of 
such techniques  emphasize  the necessi ty to cont inuous ly  
collect project  data via the p lanning  and control  activi- 
ties, compare  est imates to actuals,  and use the results to 
improve the es t imat ing tools. 

Fur thermore ,  research findings over  the past few years  
have clearly shown that  the decisions that  people make 
in organizat ions and the actions they  choose to take are 
s igni f icant ly  inf luenced by the pressures,  perceptions,  
and incent ives  produced by the organizat ion 's  p lanning  
and control  system(s) [9]. In par t icular ,  knowledge of 
project  schedules was found to affect the real progress 
rate that is achieved,  as well  as the progress and prob- 
lems that are repor ted upward  in the organization.  

What  this implies  is the exis tence of a feedback loop 
(see Figure 1): an est imat ion technique  produces  project  
schedules,  which  affect the decisions and actions of the 
technical  performers  and thei r  managers,  which  in turn  

I'-st imot ion 
y Method 

Per formonce Schedules 

Act ions, Y Decisions 
FIGURE 1. Scheduling Feedback Loop. 

affect work performance,  which  eventua l ly  is fed into 
the organizat ion 's  projects '  database  to inf luence future 
est imations.  

But what  does the exis tence of such a feedback loop 
mean? Is it good or bad? To most of us, the answers  to 
such quest ions will  not be in tu i t ive ly  obvious, that  is, we 
cannot  answer  them with confidence mere ly  on the basis 
of our pr ivate  menta l  models. The h u m a n  mind  is not 
adapted  to correct ly  ant ic ipate  the dynamic  conse- 
quences  of interact ions be tween  the parts of a complex  
societal system [4], such as that of software project  man-  
agement.  The most famil iar  example  in the l i te ra ture  is 
perhaps  "Brooks'  Law.' When  a project  falls beh ind  
schedule,  managers  often a t tempt  to speed up the project  
by adding more people. Brooks suggests that managers  
fail to ant ic ipate  the dynamic  consequences  of such an 
action, for example ,  the increase in the communica t ion  
overhead and the need to divert  product ive  t ime of the 
current  personnel  to the t ra ining of the new people. The 
net effect is that  the project  may actual ly  fall fur ther  
behind  schedule.  

A Systems Dynamics  Model is impor tant  because  "Un- 
like a menta l  model,  a system dynamics  compute r  model  
can re l iably  trace through t ime the impl icat ions  of any 
messy maze of assumptions  and in teract ions"  [6]. It can 
do so wi thout  s tumbl ing  over  phraseology, emot ional  
bias, or gaps in intuit ion.  Even for those gifted few who 
can correct ly  answer  the above quest ions on the basis of 
mere  intui t ion,  a formal system dynamics  model  can 
provide a powerful  communica t ion  tool that  can mini-  
mize misunders tand ing  and miscommunica t ion .  

In the r ema inde r  of this paper  we will  e laborate  the 
above argument  further.  We will  a t tempt  to demons t ra te  
how the modeling,  s imulat ion,  and analysis  techniques  
of system dynamics  (SD) can be powerful  tools in s tudy-  
ing the complex  area of software project  management  in 
general,  and the schedul ing issues discussed above in 
part icular .  

2. COMPUTER MODELING OF SOCIAL SYSTEMS: 
THE SYSTEM DYNAMICS PERSPECTIVE 

People would never attempt to send a sp/lceship to the 
moon without first testing the equipment by constructing 
prototype models and by computer simulation of the an- 
ticipated space trajectories. No company would put a new 
kind of household appliance or electronic computer into 
production without first making laboratory tests. Such 
models and laboratory tests do not guarantee against fail- 
ure, but they do identify many weaknesses which can 
then be corrected before they cause full-scale disasters. 

Our social systems are far more complex and harder to 
understand than our technological systems. Why, then, 
do we not use the same approach of making models of 
social systems and conducting laboratory experiments on 
those models before we try new laws and government 
programs in real life? The answer is often stated that our 
knowledge of social systems is insufficient for construct- 
ing useful models. But what justification can there be for 
the apparent assumption that we do not know enough to 
construct models but believe we do know enough to di- 
rectly design new social systems by passing laws and 
starting new social programs? I am suggesting that we 
now do know enough to make useful models of social 
systems. Conversely, we do not know enough to design 
the most effective social systems directly without first 
going through a model-building experimental phase. But I 
am confident, and substanci~ ! supporting evidence is be- 
ginning to accumulate, that the proper use of models of 
social systems can lead to far better systems, laws, and 
programs [4]. 

Indeed, it is now possible to use the modeling,  s imula-  
tion, and system analysis  techniques  of system dynamics  
in the laboratory  to construct  models  of manager ia l  sys- 
tems. Such models  are obviously simplif icat ions of the 
actual  social systems but  can be far more comprehens ive  
than the menta l  models  that are o therwise  used. 

System Dynamics  (SD) is the appl icat ion of feedback 
control  systems principles  and techniques  to manager ia l  
and organizat ional  problems.  The SD phi losophy rests on 
a bel ief  that  the behavior  (or t ime history) of an organi- 
zat ional  ent i ty  is pr inc ipal ly  caused by its s tructure.  The 
s t ructure  includes,  not only the physical  aspects, but  
more important ly ,  the policies and tradit ions,  both tangi- 
ble and intangible,  that  domina te  decision making in the 
organizat ional  entity.  Such a s t ructura l  f ramework  con- 
tains sources of amplif icat ion,  t ime lags, and informat ion 
feedback s imilar  to those found in complex engineer ing 
systems. 

The system dynamics  approach begins wi th  an effort 
to unders tand  the system of forces that  has created a 
problem and cont inues  to sustain it. Relevant  data are 
gathered usual ly  from a var ie ty  of sources, for example ,  
l i terature,  informed people,  etc. As soon as a rud imen-  
tary measure  of unders tand ing  has been achieved,  a for- 
mal model  is developed.  This model  is ini t ia l ly  in the 
format of a set of logical d iagrams showing cause-and-  
effect relat ionships.  As soon as is feasible, the visual 
model  is t ransla ted into a mathemat ica l  version. The 
model  is exposed to crit icism, revised, expressed again, 
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and so on, in an i terat ive process that cont inues as long 
as it proves to be useful. Just as the model  is improved  as 
a result of successive exposures  to critics, a successively 
bet ter  unders tanding  of the problem is achieved by the 
people who par t ic ipate  in the process. 

Such an approach forces those involved in system de- 
sign to make explici t  and thoroughly  test the assump- 
tions that under l ie  their  design decisions: the na ture  of 
problems,  their  causes, the consequences  of a l ternat ive  
actions, and how various human,  managerial ,  economic,  
and operat ional  factors interrelate.  Weil reports that  his 
exper ience  has shown that  this is a very valuable  proc- 
ess; people are real ly quite surpr ised  when  it turns  up 
things no one had thought  of before, incorrect  assump- 
tions, and differences of opinion about  cause and effect 
[9]. 

Roberts has stated that people 's  

. . .  intuition about the probable consequences of pro- 
posed policies frequently proves to be less reliable than 
the model's meticulous mathematical approach . . .  This is 
not surprising as it may first appear. Management systems 
contain as many as 100 or more variables that are known 
to be related to one another in various nonlinear fashions. 
The behavior of such a system is complex far beyond the 
capacity of intuition. Computer simulation is one of the 
most effective means available for supplementing and 
correcting human intuition [7]. 

System dynamics  is sui table for addressing certain 
kinds of complex  problems.  In addi t ion to complexi ty ,  
such problems have at least two features in common.  
First, they are dynamic ,  that  is, they involve quant i t ies  
that  change over  t ime and that can, therefore,  be ex- 
pressed in terms of graphs of var iables  over  time. Oscil- 
lat ing levels of employmen t  in an industry,  a decl ine in a 
ci ty 's  tax base and qual i ty  of life, and the dramat ica l ly  
rising pa t te rn  of heal th  care costs are all dynamic  prob- 
lems [6]. Cost overruns,  sl ippages in scheduled  comple-  
t ion dates, and the var iabi l i ty  in product iv i ty  are some of 
the dynamic  problems that  can arise in a software pro- 
ject. 

A second feature of the problems to which  the system 
dynamics  perspect ive  applies involves the notion of feed- 
back. "Most succinct ly,  feedback is the t ransmission and 
re turn  of information.  The emphasis ,  inheren t  in the 
word feedback itself is on the re tu rn"  [6]. A feedback 
system exists wheneve r  an action taker  will  later  be in- 
f luenced by the consequences  of his or her  actions. The 
consequences  may  be quick and direct ly  apparent  in re- 
sults produced,  for example ,  when  the hir ing of ten more 
programmers  increases  the programmers '  workforce to a 
cer ta in  desired level, which  in turn feeds back to affect 
the hir ing rate, that  is, s topping fur ther  hiring. Or the 
consequences  may  be de layed  though direct ly  apparent  
in results  produced,  for example ,  when  a software devel-  
opment  manager ' s  decis ion to use a par t icu lar  package to 
es t imate  h i s / h e r  h u m a n  resource requ i rements  affects 
the project ' s  complet ion  t ime and cost, which  in turn  
inf luences the manager ' s  later  es t imat ion procedure.  Fi- 
nally,  the consequences  may be both de layed  and quite 
indirect  in perce ived  results,  for example ,  when  a deci- 
sion to increase  the software deve lopment  budget  leads 
to the hir ing of higher  qual i ty  managers  and ana ly s t s /  
programmers ,  who may  then develop improved  products ,  
which  may  enhance  the company ' s  compet i t ive  position, 
in turn  increasing sales a n d / o r  profits, which  may  then  
inf luence the decision on the software deve lopment  

budget.  In all these cases a "closing of the loop" occurs. 
A delay, whe the r  short  or long, in tervenes  be tween  ini- 
tial action and feedback results. Closed loops and t ime 
delays in consequences  are character is t ic  of all feedback 
processes. 

It is apparent  from the above that  the managemen t  of 
software deve lopment  is a pr ime candida te  for applica- 
t ion of the system dynamics  method.  It c lear ly  is com- 
plex, it is dynamic ,  and it does exhibi t  feedback behav-  
ior. 

In [2] we discuss, in some detail ,  a system dynamics  
model  we developed of software project  management .  
The model  was developed to be a tool in invest igat ing 
the many  manager ia l  problems that  seem to be plaguing 
software deve lopment  activi t ies in most organizations,  
for example ,  cost and schedule  overruns.  In par t icular ,  
the model  serves as a "ske le ton"  on top of which  "cus-  
tom" models  can be buil t  to fit different  o rgan iza t iona l /  
project  settings. 

In Sec. 4 we use the model  to analyze  the dynamics  of 
software project  scheduling,  an exercise  we hope will  
produce  some insights into the issues raised in Sec. 1. To 
set the stage for this discussion, we will  character ize ,  
next  in Sec. 3, the software project  (which we will  sim- 
ply call EXAMPLE) to be used in our analysis.  

3. CHARACTERIZING THE "EXAMPLE" SOFTWARE 
PROJECT 
One of the a t t ract ive  features of a compute r  model  is its 
high versati l i ty.  By s imply changing a few model  param-  
eters, for example ,  one can easily s imula te  a wide range 
of software project  types. The software project  EXAM- 
PLE involves the deve lopment  of a 400,000 DSI system. 
(DSI stands for "Del ivered Source Instruct ions."  See [3] 
for a complete  definition.) All of the model ' s  graphical  
output,  wil l  be in terms of the unit,  task, where  a task is 
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FIGURE 2. The "Flawless" Project. 
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equivalent to 400 DSI. (Our project is, thus, of size 1000 
tasks.) The development period modeled begins at the 
beginning of the product design phase and ends at the 
end of the integration and test phase. We deliberately 
excluded the requirements definition/specification 
phase so we could incorporate the use of TRW's COn- 
structive COst MOdel (COCOMO) [3]. That is, we assume 
that management will use COCOMO to estimate the ef- 
fort in man-months (MM), the total development time in 
months (TDEV), and the staff size (SS). 

In this section we characterize our EXAMPLE software 
project. We will do it in a stepwise fashion. We will start 
with an "ideal" project situation and then, step-by-step, 
add increments of "reality." 

Step (1): The "Flawless" Project 
In the ideal case, managemenrs estimate of the project's 
size will be exactly on target, that is, 400,000 DSI or 1000 
tasks. Using the (Basic form of the) COCOMO model, an 
estimate of the effort in man-months (MM) can then be 
made. 

MM = 2.4 (DSI/1000) '.°'~ 
= 2.4 (400,000/1000) 1°5 
= 1295 man-months 

From this an estimate of the project's total develop- 
ment time (TDEV) can be calculated. 

TDEV = 2.5 (MM) ":m 
= 2.5 (1295) "38 
= 38 months 

Finally, the average staff size (SS) is determined. 

SS = MM/TDEV 
= 34 people 

The dynamic behavior of the "flawless" project situa- 
tion is shown in Figure 2. The project's scheduled com- 
pletion duration is set to 38 months and a workforce of 
34 people is assembled (e.g., during the requirements/ 
specification phase). As can be seen, the project proceeds 
"smoothly" and is completed on schedule at a total cost 
of $7,810,600. (It is assumed that a rather uniform effort 
is required throughout the project. This simplifying as- 
sumption will be relaxed in a later version of the model 
in which the software lifecycle will be explicitly divided 
into three phases: design, coding, and testing.) 

Unfortunately the project behavior of Figure 2 is rarely 

0.4 

0.3 

~: 0.2 .,'e 

0.1 

0 .0  v 

0 . 0  0.2 0.4 0.6 0.8 1.0 

Fraction of Tasks Completed 

FIGURE 3. Assumed Shape of FERR. 

(if ever) realized in real organizations. It will, therefore, 
only serve us as a reference point for further analysis. 

Step (2): Introducing Rework 
Not all work done in the course of a large software pro- 
ject is errorless. Some fraction of the work will be less 
than satisfactory (e.g., inconsistent design, defective 
code, etc.) and must be redone. The unsatisfactory work 
may not be discovered right away, however. For some 
time it passes unrecognized, until the need for reworking 
the tasks shows up. The discovery of unsatisfactory work 
that needs reworking can, of course, cause major disrup- 
tions in a software project (e.g., people are diverted from 
new tasks to redoing old ones) and is, therefore, a signifi- 
cant element of the software development environment. 

In the model, the generation of rework is regulated by 
FERR, which is the fraction of work that is erroneous. 
For example, a value of FERR equal to 0.1 means that 10 
percent of the tasks completed in a particular unit of 
time will be defective, and will thus require reworking. 
FERR is not modeled as a constant, however. It is a 
variable that changes during the life of the project. Fig- 
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/ 

FIGURE 4, Introducing Rework. 

ure 3 depicts the assumed relationship between FERR 
and the fraction of tasks completed. 

The rationale for making FERR a variable in this fash- 
ion is the realization that tasks near the beginning of a 
large software project (e.g., design) are much different 
from those near the end (e.g., documentation). Near the 
beginning, the project is being defined, different ap- 
proaches are being explored, ideas are on the drawing 
board, etc. Near the end, the tasks are more like finish- 
ing touches: assembling documentation, typing reports, 
and so on. The likelihood of performing work that must 
be redone is, thus, modeled to be greater at the begin- 
ning of the project than at the end. 

The behavior of the model is shown in Figure 4. At the 
bottom of the figure, the level of rework perceived (i.e., 
discovered) throughout the life of the project is shown. 
The generation of rework means, of course, that more 
effort will be required to complete the project satisfactor- 
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ily. After month 13 enough rework is discovered to cause 
management to start hiring more people in order to meet 
the initial scheduled completion date. This policy con- 
tinues until month 29, when management chooses in- 
stead to extend the project's target completion date and 
slow down the hiring of new people. The project eventu- 
ally completes after 41.5 months, at a total cost of 
$9,024,700. 

Step (3): Introducing Personnel Turnover 
In this run we divert even further from the flawless 
project situation. In addition to the generation of re- 
work, we introduce the effect of personnel turnover. In 
the flawless project run it was assumed that people do 
not quit (after all, who would quit an ideal project?). For 
this run, we assume that the average employment time 
is 24 months. As shown in Figure 5, the project is ad- 
versely affected, finishing even later at month 51 and at 
a higher cost of $9,582,400. 

Step (4): Introducing Estimating Error 
In the flawless project we assumed that management's 
estimate of the project's size was exactly on target, that 
is, 1000 tasks. Obviously this is too optimistic an assump- 
tion. 
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FIGURE 6. Introducing Estimating Error. 

For this run, we assume that management initially 
estimates the system's size to be 320,000 DSI or 800 
tasks, that is, 20 percent lower than the real size of 
400,000 DSI or 1000 tasks. The resulting project behavior 
is shown in Figure 6. The project completes in 51 
months but at the slightly higher cost of $9,757,200. 

Notice that the "currently perceived project size" 
starts at 800 tasks, but as the project progresses and the 
level of uncertainty decreases, it is adjusted upwards 
until at about month 35 "currently perceived project 
size" is in fact equal to 1000 tasks--the true project size. 
As management learns about the upward adjustments in 
the project's size, it adjusts its workforce upwards to the 
level it perceives is sufficient to complete the project 
within the scheduled 35 months. However, unexpected 
problems arise, for example, a system integration test 
fails miserably, which will necessitate the reworking of 
tasks believed to be successfully completed. When such 
disruptions occur towards the end of the project, man- 
agement is reluctant to hire new employees, and there is 
almost no other alternative but to extend the scheduled 
completion date, as shown in Figure 6. 

In the next section we will use EXAMPLE to analyze 
the dynamics of software project scheduling. In all our 
subsequent simulation runs we will maintain our pro- 
ject's present level of "realism," that is, include rework, 
personnel turnover, and underestimation. 

4. THE DYNAMICS OF SOFTWARE PROJECT 
SCHEDULING: A SIMULATION EXPERIMENT 
In Sec. 1 we suggested that project schedules create pres- 
sures, perceptions, and incentives that affect the deci- 
sions and actions of the technical performers and their 
managers, that this in turn affects work performance, 
which is all eventually fed into the organization's proj- 
ects' database to influence future scheduling activities. 
We also suggested that the dynamic consequences of 
such a feedback loop are not intuitively obvious. The 
modeling, simulation, and analysis techniques of system 
dynamics were then proposed as a powerful tool to relia- 
bly deduce and analyze the dynamic behavior of com- 
plex feedback systems, such as that of managing software 
projects. In this section we use our system dynamics 
model of software project management to conduct a lab- 
oratory experiment to investigate the software project 
scheduling issues raised in Sec. 1. 

The experiment involves a hypothetical situation in 
which a company undertakes a sequence of ten identical 
software projects, all identical to project EXAMPLE of 
Sec. 3. On the first such project, EXAMPLE1, the com- 
pany (lacking the experience) underestimates the size of 
the project by 20 percent, that is, estimates the project's 
size to be only 800 tasks. Using the (TRW calibrated) 
COCOMO model, the project's total effort and duration 
are then estimated to be 1025 man-months and 35 
months, respectively. But as we have already seen in 
Sec. 3 (Figure 6), the project actually consumes 1626 
man-months and is completed in 51 months. 

After completing project EXAMPLE1, the following is 
learned: 

• Project EXAMPLE1 is really 1000 (and not 800) 
tasks. 
• It consumes 1626 man-months. 
• It takes 51 months to complete. 
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The COCOMO model ' s  "guard ian"  in the company  
then  notes that  had an accurate  est imate of project  size 
(i.e., 1000 tasks) been  made,  COCOMO's est imates for 
effort and project  dura t ion  would  have been  1295 
m a n - m o n t h s  and 38 months,  respectively.  Knowing that  
COCOMO is an imperfect  es t imat ion tool that  needs to 
be cont inuous ly  improved,  ad jus tments  are made  such 
that  for any  future projects ident ical  to EXAMPLE1 esti- 
mates of 1626 m a n - m o n t h s  and 51 months  would  be 
produced.  

Some t ime later  when  project  EXAMPLE2 (which is 
ident ical  to EXAMPLE1) comes along, managemen t  will  
be in a posit ion to bet ter  es t imate  its true size. In fact, we 
assume that  EXAMPLE2's size will  be es t imated  per- 
fectly, that  is, to be 1000 tasks. Fur thermore ,  the now 
" improved"  COCOMO model  will  p roduce  est imates  of 
1626 m a n - m o n t h s  and 51 months  for EXAMPLE2's total 
effort and durat ion,  respectively.  Based on these figures, 
management  de te rmines  that  a staff size of 32 will  be 
required.  

Conduct ing project  EXAMPLE2 under  such c i rcum- 
stances produces  the behavior  of Figure 7. The project  
s t i l l  finishes late, 56 months  after it started,  and  is 5 
months  behind  the " improved"  schedule.  

When  we repeated the above sequence of act ions and 
reactions eight more t imes for projects  EXAMPLE3 
through EXAMPLEIO, we were  surpr ised to observe that  
the schedule  was over run  in each case. As a resul t  man-  
agement  s tar ted each project  (e.g., EXAMPLEi) wi th  a 
sl ightly longer scheduled  dura t ion  than  the previous  one 
(i.e., EXAMPLEi-1). However,  EXAMPLEi would  still  
overrun  its schedule,  which  caused management  to use 
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FIGURE 7. EXAMPLE 2 [Notice change in the COST scale], 

an even longer scheduled  dura t ion  for the next  project.  
The results  for the ten s imula t ion  runs are shown in 
Figure 8. 

It seems our  feedback loop tu rned  out to be qui te  a 
villain, producing  devasta t ing effects, especial ly over  the 
long run. Notice that  EXAMPLE1 was comple ted  in 51 
months,  whi le  nine  projects later,  EXAMPLE10 com- 
ple ted  in 81.25 months! A very significant de ter iora t ion  
indeed.  

The, surpr is ing phenomenon  we observed is one that  
has been  f requent ly  encoun te red  in system dynamics  
studies of real  organizations.  It has been  t e rmed  "The 
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FIGURE 8. Results of the Ten Simulation Runs. 

Policy Resistance of Social Systems,"  "Shift ing the Bur- 
den to the Intervenor ,"  and "Addic t ion ,"  among other  
things. A s imple example  of such a phe nome non  is that  
of caffeine addict ion,  whe reby  an addic t  has to consume 
a cer ta in  amount  of caffeine per  day  to main ta in  a cer- 
tain level of alertness.  As t ime goes on the bu rden  of 
main ta in ing  aler tness will  keep shift ing from the normal  
physiological  body processes to the ex terna l ly  suppl ied  
caffeine dose. The result ,  of course,  is that  higher  and 
higher  doses will  be requi red  to main ta in  the  s a m e  level  
of alertness.  

Forres ter  put  it this way: 
Social systems are inherently insensitive to most policy 
changes that people select in an effort to alter the behav- 
ior of the system. In fact, a social system tends to draw 
our attention to the very points at which an attempt to 
intervene will fail. Our experience, which has been de- 
veloped from contact with simple systems, leads us to 
look close to the symptoms of trouble for a cause. When 
we look, we discover that the social system presents us 
with an apparent cause that is plausible according to 
what we have learned from simple systems. But this ap- 
parent cause is usually a coincident occurrence that, like 
the trouble symptom itself, is being produced by the feed- 
back-loop dynamics of a larger system [4]. 

In our exper imen t  we saw how looking at the symp- 
toms of t rouble  (i.e., schedule  overruns)  for a cause and 
opting for the most apparen t  one, namely,  that  schedules  
were  too tight, might  lead to re laxing the schedules.  
However ,  this turns  out  to be qui te  ineffective in cur ing 
the sys tem's  problemat ic  behavior .  

An  at t ract ive feature of system dynamics  models  is the 
abi l i ty  to conduct  s imula t ion  exper iments  in which  we 
can isolate the effects of factors we suspect  are causing 
the problemat ic  behavior .  By explor ing the behavior  gen- 
e ra ted  by ind iv idua l  feedback loops and by var ious  com- 
binat ions  of loops in a model,  the  mode le r  can precisely 
p inpoint  the s t ructure  responsible  for the behavior .  

By conduct ing  such exper imenta t ion  wi th  our model,  
we were  able to ident i fy the real  cause of the persist ing 
schedule  over run  problem in our  mode led  software de- 
ve lopment  project.  It tu rned  out to be a consequence  of 
the in terac t ion  be tween  management ' s  h i r ing / f i r ing  pol- 
icy and the "e lus ive"  na ture  of software errors. 

When  deciding upon the n u m b e r  of employees,  man-  
agement  (in the model) takes into account  the perce ived  
t ime remain ing  for the project.  Toward  the end of the 
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project, for example, management would be very reluc- 
tant to bring in new people, even though the perceived 
time and effort remaining imply more people are needed. 
It would just take too much time to acquaint new people 
with the mechanics of the project, integrate them into 
the project team, and train them in the necessary techni- 
cal areas. 

While such a policy may sound perfectly reasonable, 
and may in fact be successfully employed in many areas 
of managerial endeavour, it does pose certain risks (our 
model reveals) when applied to the software develop- 
ment area. As was mentioned in Sec. 3, not all work 
done in the course of a large software project is errorless. 
Some fraction of the work will be less than satisfactory 
and must be redone. The unsatisfactory work is not dis- 
covered right away, however. For some time it passes 
unrecognized, until the need for reworking the tasks in- 
volved shows up. When the unsatisfactory work does get 
discovered, it usually causes major disruptions. The 
problems, however, are particularly devastating when 
this happens towards the end of the project, for example, 
at system integration testing, when management (under 
the above hiring/firing policy) is very reluctant to hire 
new employees. When this happens, management will 
have almost no other alternative but to extend the pro- 
ject's scheduled completion date. 

There is still, though, an interesting and as yet unan- 
swered question: Why was the system so "unresponsive" 
to the "schedule relaxing policy?" The answer is because 
of the compensating property of complex societal sys- 
tems. Changes in most (but certainly not all) parameters 
in one part of such systems may weaken or strengthen 
some feedback loop, but the multiloop nature of complex 
feedback systems will, in most cases, "naturally" 
strengthen or weaken other loops to compensate [6]. In 
our particular software project situation, extending the 
project's schedule weakens the strength of the schedule 
pressure in the system, to which the hiring loop (for one) 
simply compensates by causing the project to start with a 
smaller workforce. For example, in EXAMPLE2, on the 
basis of an estimated project duration of 51 months, 
management starts the project with 32 people. When 
supplied with the more generous and presumably more 
accurate estimate of 56 months for EXAMPLE3, manage- 
ment simply (and rationally) factors that in the decision 
h~aking process, and then determines that a workforce of 
29 people (1626 MM/56 months) is needed. 

5. CONCLUSIONS 
It is clear from the above discussion that viewing the 
problem of software project scheduling as simply a prob- 
lem of generating improved schedules is too limited a 
view, and one which can in fact lead to a serious long 
term deterioration in an organization's effectiveness in 

managing its software projects. Our own research efforts, 
as well as those of others, have convinced us that the 
project management of software development is a very 
complex undertaking in which a complex network of 
interrelationships and interactions exists. It is, therefore, 
essential that software project managers adopt an inte- 
grative perspective or model of software project dynam- 
ics in order to effectively answer the difficult questions 
they need to raise when assessing their organizations' 
health, selecting improvement interventions, and imple- 
menting their choices. Such an integrative model would 
be useful to alert managers to all the important elements 
or aspects of a problematic situation, and to help them 
assess the second- and third-order consequences of some 
set of actions. 

However, such an integrative model will undoubtedly 
contain a large number of components with a complex 
network of interrelationships: What would still be 
needed is an effective means to determine both accu- 
rately and efficiently the dynamic behavior implied by 
such component interactions. We feel (and hopefully 
have demonstrated) that the computer-based simulation 
techniques of system dynamics can be a powerful tool to 
do just that. 

REFERENCES 
1. Aaron, J. D. Estimating resources for large programming systems. Soft- 

ware Engineering: Concepts and Techniques. Edited by J. M. Buxton, 
P. Naur, and B. Randell. Litton Educational Publishing, Inc., 1976. 

2. Abdel-Hamid, T. K. and Madnick, S. E. A model of software project 
management dynamics. The Sixth lnt'l Computer Software and Appli- 
cations Conference (COMPSAC), November 8-12, 1982. 

3. Boehm, B. W. Software Engineering Economics, Prentice-Hall, Inc., En- 
glewood Cliffs, New Jersey, 1981. 

4. Forrester, J. W. Counterintuitive behavior of social systems. Technol- 
ogy Review, January, 1971. 

5. Putnam, L. H. Software cost estimation and life-cycle control: Getting 
the software numbers. IEEE Computer Society, IEEE Catalog No. 
EHO 165-1, 1980. 

6. Richardson, G. P. and Pugh lIl, A. L. Introduction to System Dynamics 
Modeling with Dynamo. The MIT Press, Cambridge, Massachusetts, 
1981. 

7. Roberts, E. B.,'Ed. Managerial Applications of System Dynamics. The 
MIT Press, Cambridge, Massachusetts, 1981. 

8. Thayer, R. H., Pyster, A. B., and Wood, R. C. Major issues in software 
engineering project management. IEEE Trans. on Software Engineer- 
ing, July, 1981, pp. 333-342. 

9. Weil, H. B. Industrial dynamics and management information systems. 
Managerial Applications of System Dynamics. Edited by E. B. Rob- 
erts. The MIT Press, Cambridge, Massachusetts, 1981. 

CR Categories and Subject Descriptors: D.2.9 [Software Engineering]: 
Management--cost elimination; K.6.1 [Management of Computing and 
Information Systems]: Project and People Management--management 
techniques 

General Terms: Management 
Additional Key Words and Phrases: software project scheduling, com- 

puter simulation, system dynamics 

Received 6/82; revised 9/82; accepted 10/82 

ACM 84 San Francisco, California October 8-10 

3~,6 Communications of the ACM May 1983 Volume 26 Number 5 


