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SUMMARY

A generalized model or "blue-print” for the design of sophisticated
file systems for operating systems is presented. The model is
: . based upon the concepts of hierarchical modularity, as discussed
by Dijkstra, and virtual memory, similar to that of TSS[360 and
Multics.:
The design is elaborated by considering its application in a multi-
computer . network environment with the added complexities of
coordination, structured file directories, and removable volumes.

A similar paper of the same title was presented by the author at
the May 1969 AFIPS Spring Joint Computer Conference, Boston,
Mass. Furthermore, he presented a paper relating to this general
area at the Datafair 69 Conference in Manchester, held at the
end of August.
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ment. The details of the file sys-
tem model are presented in three
steps: (1) the basic concepts and

Introduction

A generalized model or “blue-
print” for the design of sophisti-
cated file systems is presented in
this paper. The model exploits the
concepts of “hierarchical modula-
rity” and “virtual memory”.

Any general file system design
model must, of course, be modi-
fied and refined to satisfy the re-
quirements of a specific environ-
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overview are discussed, (2) an
example environment -consisting
of a multi-computer network with
the added complexities of coordi-
nation, structured file directories,
and removable volumes is des-
cribed, and (3) each of the hier-
archical levels of the file system
is elaborated in terms of the as-
sumed environment.




Basic concepts used in file system
design

Two concepts are basic to the
general file system model to be
introduced. These concepts have
been described by the terms
“hierarchical modularity” and
Pvirtual memory”. They will be
discussed briefly below.

Hierarchical Modularity

The term “modularity” means
many different things to different
people. In the context of this
paper we will be concerned with
an organization similar to that
proposed by Dijkstra [6] [7] and
Randell [14]. The important aspect
of this organization is that all ac-
tivities are divided into sequential
processes. A hierarchical structure
of these sequential processes re-
sults in a level or ring organiza-
tion wherein each level only com-
municates with its immediately
superior and inferior levels.

The notions of “levels of abstrac-
tion” or “hierarchical modularity”
can best be presented briefly by
an example: Consider an aeronau-
tical engineer using a matrix in-
version package to solve space
flight problems. At his level of
abstraction, the computer is view-
ed as a maftrix inverter that ac-
cepts the matrix and control in-
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formation as input and provides
the inverted matrix as output. The
application - programmer who
wrote the matrix inversion pack-
age need not have had any know-
ledge of its intended usage (supe-
rior levels of abstraction). He
might view the computer as a
"FORTRAN machine”, for exam-
ple, at his level of abstraction.
He need not have any specific
knowledge of the internal opera-
tion of the FORTRAN system (in-
ferior level of abstraction), but
only of the way in which he can
interact with it.

Finally, the FORTRAN compiler
implementer operates at a diffe-
rent (lower) level of abstraction.
In the above example the inter-
action between the 3 levels of ab-
straction is static since after the
matrix inversion program is com-
pleted, the engineer need not in-
teract, even indirectly, with the
applications programmer or com-
piler implementer. In the form of
hierarchical modularity used in
the file system design model, the
multi-level interaction is continual
and basic to the file system ope-
ration.

There are several advantages to
such a modular organization.
Possibly the most important is the
logical completeness of each level.
It is easier for the system desig-
ners and implementers to under-
stand the functions and interac-

LEVEL K+1 |
LEVEL K
LEVEL K-1

Figure 1.
Hierarchical Levels

tions of each level and thus the
entire system. This is often a very
difficult problem in very complex
file systems with tens or hund-
reds of thousands of instructions
and hundreds of inter-dependent
routines. .

Another by-product of this struc-
ture is “debugging” assistance.
For example, when an error oc-
curs it can usually be localized at
a level and identified easily. The
complete verification (reliability
checkout) of a file system is usual-
ly an impossible task since it
would require tests using all pos-
sible data input and system re-
guests. In order to construct a
finite set of relevant fests, it is
necessary to consider the internal
structure of the mechanism to be
tested. Therefore, an important
goal is to design the internal struc-
ture so that at each level, the
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number of test cases is sufficient-
ly small that they can all be tried
without overlooking a situation. In
practice, level 0 would be checked-
out and verified, then level 1, level
2, etc., each level being more
powerful, but because of the ab-
stractions introduced, the number
of ”special cases” remains within
bounds.

Virtual Memory

There are four very important
and difficult file system objec-
‘tives: (1) a flexible and versatile
format, (2) as much of the me-
chanism as possible should be in-
visible, (3) a degree of machine
and device independence, and (4)
dynamic and automatic allocation
of secondary storage. There have
been several techniques developed
to satisfy these objectives in an
organized manner: the concept ex-
ploited in this generalized f{ile
system has been called “segmen-
tation” [5] or “named virtual me-
mory” [3]. Under this system
each file is treated as an ordered
sequence of addressable elements,
where each element is normally
the same size unit as the main
storage, a byte or word. Therefore,
each individual file has the form
of a ”virtual” core memory, from
whence the name of the techni-
que came. The size of each file is
allowed to be arbitrary and can
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dynarnically grow and shrink.
There is no explicit data format
associated with the file; the basic
operations of the file system move
a specified number of elements
between designated  addresses in
“real” memory and the “virtual”
memory of the file system.
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-Figure 2.
”Real” Memory -and ”Virtual”
File Memory

There are several reasons for
choosing such a file concept. In
some systems the similarity be-
tween  files and main storage is
used to establish a single me-
chanism that serves as both a file
system for static ‘data and pro-
gram storage and a paging system
[31[5] [18] for  dynamic storage
management. “Virtual memory”
provides a very flexible and ver-
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satile format. When specific for-
matting is desired, it can be ac-
complished by the outermost file

system level or by the user pro-

gram. For example, if a file is to
be treated as a collection of card-
image records, it is merely neces-
sary to establish a routine to ac-
cess 80 characters at 4 time start-
ing at byte locations 0, 80, 160, ...
Almost all other possible formats'
can be realized by similar proce-
dures.

Except for the formatting modu-
les, the entire file system me-
chanism, including: allocations,
buffering, and physical location, is
completely hidden and invisible
to the user. This relates closely to
the objective of device indepen-
dence. In many file systems the
user must specify which device
should be used, its record size (if
it is a hardware formatable de-
vice), blocking and buffering fac-
tors, and sometimes even the phy-
sical addresses. Although the pa-
rameters and algorithms chosen
might, in some sense, be optimal,

many changes might be necessary

if the program is required to run

with a different configuration or

environment.

There are very serious gquestions

of efficiency raised by this file

system  strategy. Most of these

fears can be eased by the follow-

ing considerations. First, if a file

is to be used very seldom as in

program development, efficiency
is not of paramount importance;
if, on the other hand, it is for
long-term use as in a commercial
production program, the device-
independence and flexibility for
change and upkeep will be very
important. Second, by relieving
the programmer of the complexi-
ties of the formats, devices, and
allocations, he is.able to utilize his
energy more constructively and
creatively to develop clever al-
gorithms relating to the logical
structuring of his problem rather
than clever "tricks” to overcome
the shortcomings or peculiarities
of the file system. Third, in view
of the complexity of current di-
rect-access devices, it is quite pos-
sible that the file system will be
better able to coordinate the files
than the average user attempting
to specify critical parameters.

Overview of file system design
model

The file system design model to
be presented in this paper can be
viewed as a hierarchy of six le-
vels. In a specific implementation
certain levels may be further sub-
divided or combined as required.
A recent study of several modern
file systems, which will be pu-

blished in a separate report, at-
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tempts to analyze the systems in
the framework of this basic mo-
del. In general all of the systems:
studied' fit into the model, al-
though certain levels in the model
are occasionally reduced to tri-
vial form or are incorporated into
other parts of the operating sys-
tem.

The six hierarchical Hm<mum. are:

1. Input/output Control System
(IOCS)

2. Device Strategy Modulées
(DSM) v

3. File Organization Strategy Mo-
dules (FOSM)

4. Basic File System (BFS)
5. Logical File System (LFS)

6. Access Methods and User In-
terface.

The hierarchical organizations can
be described from the “top” down
or from the "’bottom” up. The file
system would ordinarily be im-
plemented by starting at the low-
est level, the Input/Output Con-
trol System, and working up. It
appears more meaningful, how-
ever, to present the file system
organization starting at the most
abstract level, the access routines,
and removing the abstraction as
the levels are “peeled away”.
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Figure 3.

12 Hierarchical File System

Devices

In the following presentation the
terms "file name”, “file identi-
fier”, and "file descriptor” will be
introduced. Detailed explanations
cannot be provided until later sec-
tions, the following analogy may
be used for the reader’s assistance.
A person’s name (file name), due
to the somewhat haphazard pro-
cess of assignment, is not neces-
sarily unique or manageable for
computer processing. A unique
identifier (file identifier) is usual-
ly assigned to each person, such
as a Social Security number. This
identifier can then. be used to lo-
cate efficiently the information
(file descriptor) known about that
person. .

Access Methods (AM)

This level consists of the set of
routines that superimpose a for-
mat on the file. In general there
will probably be routines to si-
mulate sequential fixed-length re-
cord - files, sequential variable-
length record files, and direct-
access fixed-length record files,
for example. Many more elaborate
and specialized format routines,
also called access methods or data
management, can be supplied as
part of the file system. Obvious-
ly, a user may write his own
access methods to augment this
level.
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Logical File System (LFS)

Routines above this level of ab-
straction associate a symbolic
name with a file. It is the function
of the Logical File System to use
the symbolic file name to find
the corresponding unique file
identifier”. Below this level the
symbolic file name abstraction is
eliminated.

Basic File System (BFS)

The Basic File System must con-
vert the file identifier into a file
descriptor. In an abstract sense,
the file descriptor provides all in-
formation needed to physically
locate the file, such as the
”length” and “location” of the file.
The file descriptor is also used to
verify access rights (read-only,
write-only, etc.), check read-write
interlocks, and set up system-wide
data bases. The Basic File System
performs many of the functions
ordinarily associated with “open-
ing” or ”closing” a file. Finally,
based upon the file descriptor, the
appropriate FOSM for the file is
selected.

File Organization Strategy
Modules (FOSM)

Direct-access devices physically
do not resemble a virtual memory.
A file must be split into many
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Mapping Virtual Memory Into Physical Records

separate physical  records. Each
record has a unique address as-
sociated with it. The File Organi-
zation Strategy Module maps a
logical virtual memory address
into the corresponding physical
record address and offset within
the record.

To read or write a portion of a
file, it is necessary for the FOSM
to translate the logically conti-
guous virtual memory area into
the correct collection of physical
records or portion thereof. The
list of records to be processed is
passed on to the appropriate DSM.
To minimize redundant or unne-
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cessary I/0, the FOSM allocates
“hidden” file buffers as needed.
If the requested portion of virtual
memory is contained in a current-
ly buffered record, the data can
be transferred to the designated
user main storage area without
intervening I/0. Conversely out-
put to the file may be buffered.
If a sufficiently large number of
buffer areas are allocated to a
file, it is possible that all read
and write requests can be per-
formed by merely moving data in
and out of the buffers. When a
file is ”closed”, the buffers are
emptied by updating the physical

records on the secondary storage
device and released for use by
other files. Buffers are only al-
located to files that are actively
in use (i.e. "open”).

Device mswagne Modules (DSM)

When a large portion of a file is
to be read or written, many re-
cords must be processed. The De-
vice Strategy Module considers
the device characteristics such as
latency and access time to pro-
duce an optimal 1/0 sequence from
the FOSM requests.

The DSM also keeps track of the
available records on the device.
It is responsible: for allocating re-
cords for a file that is being crea-
ted or expanded, and deallocating
records for a file. that is being
erased or truncated. The FOSM
requests that a record be allo-
cated when needed, the DSM se-
lects the record.

Input/Output Control System
(IOCS)

The Input/Output Control System
coordinates all physical I/O on the
computer. Status of all outstand-
ing I/0 in process is maintained,
new I/O requests are issued di-
rectly if the device and channel
are available, otherwise the re-
quest is queued and automatically
issued as soon as possible. Auto-
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matic error recovery is attempted
when  possible. Interrupts from
devices  and unrecoverable error
conditions are directed to the ap-
propriate routine. Almost all mo-
dern operating  systems have an
I0CS.

File Systems versus Data
Management Systems

In the literature there is often
confusion between systems as des-
cribed above, which this. paper.
calls ”file systems” and. systems
which will be called “data. ma-
nagement systems”, such as DM-1.
[8], GIM-1[13], and TDMS[17]. The
confusion is to be expected: since
both types of systems contain all
of the functional levels described
above. The systems differ prima-
rily on the emphasis placed on
certain levels.

In general file systems, the file
is considered the most important
item and emphasis is placed on
the directory organization (Logical
File System) and the lower hier-
archical levels. It is expected that
specialized access methods will be
written by users or supplied with
the system as needed.

In most data management systems,
the individual data items are eon-
sidered the most important aspect,
therefore emphasis is placed on
elaborate access methods with mi-
nimal emphasis on the lower
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levels of abstraction. Because of
the heavy emphasis on a single
level, data management systems
tend to appear less hierarchical
than file systems since the lower
levels are often absorbed into the
access methods.

Multi-computer network
environment

A general file system design model
must, of course, be modified and
elaborated to satisfy the needs of
any specific desired file system
environment, To illustrate the re-
finement process, a unique file
system design will be presented
for a multi-computer network.

Multi-computer networks are be-

coming an increasingly important
area of computer technology [11].
There are several significant rea-
sons behind the growth of multi-
computer networks:

1. To increase the power of a
computer installation in a mo-
dular manner, especially if (a)
it is not possible to acquire a
larger processor, (b) reliability
is important, or (c) there are
real-time or time-sharing con-
straints.

2. To serve the co-ordination re-
quirements of a network of re-
gional computer centres.

3. To support the accessibility to
a nation-wide data base.

 CcPU_|  cPU CPU
MEMORY MEMORY MEMORY |
CHANNELS CHANNELS [CHANNELS |
DEVICE DEVICE DEVICE DEVICE
CONTROLLER|  |CONTROLLER|  |CONTROLLER|  |CONTROLLER
s o @ ﬁ

(oo

(o)

Figure 5.
Example of Multi-computer File System Network
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An example of the environment to
be considered for this paper can
be illustrated in Figure 5. This
type of multi-computer network
has been in limited use for several
years in many configurations. The
IBM  7094/7044 Direct-Coupled
System was probably one of the
earliest practical examples of such
an inter-connected arrangement.

There are several implicit con-

straints imposed upon the multi-

computer system illustrated in Fi-

gure 5:

1. Independence of Central Pro-
Cessors.

Fach of the central processors
operate independently such
that there are no direct proces-
sor-to-processor data transfer
nor. signalling, and furthermore
there is no “master” processor.

2. Non-shared Memory.

- Each central processor has its
own main storage unit. These
units are not shared with nor
accessed by another central
processor.

3. Inter-locked Device Control-
lers.

The device controllers act as
»traffic cops” to the actual 1/O
direct access devices. They
control the traffic between a
computer’s I/O channel and a
selected I/O device. A single
device -controller will only ac-
cept requests from one channel
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‘gt a time and will only select
one I/0 device (among those
under its control) at a time:
Ornce a device controller con-
nects a channel with a device,
the connection remains intact
until the channel releases the
device or an I/O error occurs.
The environment described above,
although well within the boun-
daries of current technology, has
not been the subject of much in-
vestigation. Such configurations
are presently very expensive and,
therefore, chosen only for very
specialized situations. Even then
there are only two or three pro-
cessors and very specialized soft-
ware and operational factors. A
discussion of the CP-67/CMS Time
Sharing System [9] [21] will serve
to establish the relevance of the
multi-computer network environ-
ment. ,
The CP-67/CMS Time Sharing
System uses the special hardware
features of a single IBM System/
360 model 67 processor augmented
by software to produce an appa-
rant environment corresponding
to the multi-computer network
illustrated in Figure 5, with many
independent central processors,
device controllers, and direct ac-
cess T/O devices. In practice a ty-
pical single processor 360/67 con~
figuration would -produce the af-
fect of about 30 active proces-
sors (’virtual” System/360 model

17




65 processors each with a 256,000
byte memory) and 50 active de-
vice controllers. More ' detailed
descriptions of the CP-67/CMS
System can be found in the Re-
ferences. In the traditional sense
of time-sharing, each user of the
CP-67/CMS System is provided
with a "virtual” computer opera-
ted from a simulated operator con-
sole (actually an augmented re-
mote terminal). Most importantly,
each "virtual” computer (i.e. user)
operates logically independently
of all other "virtual” computers
except for the specified inter-con-
nected I/O devices and device
controllers.

Problems arising in multi-
computer networks

There are many problems asso-
ciated with the multi-computer
file system network. Some of
these problems are unique to this
environment. Other problems have
been solved in traditional file
systems  [2] ' [17] [20], but the
solutions: require major revisions
due to the peculiarities: of the en-
vironment. The most significant
problems are listed briefly below.

1. No shared memory.

Usually 'file systems co-ordinate
the status of the files and devices
by using main storage accessible
tables and data areas that describe
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file -status, -access rights, inter-
locks, and allocation. There is no
such common communication area
in main storage that can be ac-
cessed by all the independent pro-
Cessors. v :

2. No inter-computer communi-
cation.

Multi~computer configurations
usually provide a mechanism -for
sending signals or data transfers
between the separate processors.

With this capability the non-.

shared memory problem could be
solved by either (a) electing one
processor to be the “master” pro-
cessor that coordinates the other
processors, or (b) supply all the
processors with enough informa-
tion such that each processor
knows what all the other proces-
sors are doing. The concept of a
"master” processor opposes the
intended homogeneous, indepen-
dent processor assumption. The
possibility of supplying status.in-
formation to all other processors,
although reasonable for a three
or four processor configuration,
was not considered a feasible so-
lution for a system with hundreds
of processors and devices and
thousands of files. For these rea-
sons, inter-computer communica-
tion, although an available capa-
bility, was not included as a re-
quired capability of the -multi-

computer environment described
above.

3. No pre-arranged allocations.

For small specialized multi-com-
puter file networks, each proces-
sor. can be “assigned” a specific
area of a device or set of devices
that can be used to write new
files, all other processors can only
read from this area by conven-
tion. This -prevents the danger of
two independent processors writ-
ing files at the same place. Such
an “arrangement” is not practical
for a large, flexible multi~com-~
puter file network since the static
assignment of secondary storage
space does not take account of the
dynamic and unpredictable requi-
rements of the independent pro-
Cessors.

4. Extendable device and file
allocation.

The number of devices and sizes
of devices as well as the number
and sizes of files are, within
reason, unlimited. For example, a
specific amount of secondary
storage equivalent ‘to 100,000 card
images could be used to hold 10
files of 10,000 cards each or 1,000
files of 100 cards each. This con-
sideration disourages techniques
that result in a strong efficiency
or main storage capacity depen-
dency on the ”size and shape” of
the file system. Of course, the
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magnitude of the file system size
will affect the operation, but ar-
bitrary  restrictions - such- as "no
more than 64 files on a device”
would be discouraged unless es-
sential. _

5. Removable volumes.

It. has become common to: diffe-
rentiate between the I/O mecha-
nism used to record or read in-
formation, called a "device”, and
the physical medium on which the
information is stored, called a "vo-
lume”. For most drums and many
disk units; the device and volume
are inseparable. But, for magne-
tie tape units and many of the
smaller disk units the volume,
magnetic tape reel and disk pack
respectively, are removable. It is
intended that the file system in-
clude files that are on unmounted
volumes (disconnected " from an
1/0 device) as -well as' mounted
volumes. Therefore, a configura-
tion that consists of fen disk units
may have a file system that en-
compasses - hundreds of - volumes,
only ten of which may be actively
in use at a time. Since removing
and mounting a volume takes se-
veral minutes of manual effort, it
will be assumed that the "work-
ing set” of volumes (volumes that
contain files that are actively in
use) remains static for reasonable.
periods of time and is less than
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or equal to the number of de-
vices available. The fact that vo-
lumes are removable and inter-
changeable (i.e. may be mounted
on different devices at .different
times) does affect the organization
of the file system. For example,
a scheme that involved linking
files together by means of poin-
ters (chained addressing) could re-
quire mounting volumes just to
continue the path of the chain
even though little or no ”logical”
information was requested from
files on that volume. In the worst
case, it might be necessary to
mount and unmount all the vo-
lumes of the file system to locate
a desired file. Such a situation
should ‘definitely be avoided if not
totally eliminated by the file m%m-
ﬁmg.

6. Structured. Em &Smoﬂoznm a:&
file sharing.
In a traditional file system, the
mapping between the symbolic file
name and ‘the’ corresponding file
was accomplished by means of :a
single Master File Directory. For
modern file systems with thou-
sands -of files scattered ~over
hundreds of volumes, it. became
desirable, if not necessary, to form
groupings of files by means of Se-
condary File Directories [4]. These
groupings are- often used by the
system to associate users with files
they own (User File Directories).
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This capability is also available to
the user to arrange his files into
further sub-groups (libraries) or
into separate project-related group-
ings. Occasionally ‘it becomes ne-
cessary for a file to-be included
in- two or more " groupings (e.g.
accessible by more than one User
File Directory) with potentially
different access privileges (protec-
tion) associated with each group-
ing. Many -of these features that
are relatively easy to implement
in a traditional file system are
complicated by the. introduction
of independent processors msm re-
movable volumes.

7 . Fail-safe operation.

Reliable operation is'a very im-
portant requirement of a general
purpose file system. There are
many known techniques for I/O
error and systematic backup and
salvage procedures that are ap-
plicable to this environment. The
important problem associated with
the. multi-computer network " i
that potential error. conditions
exist that are not normally found
in traditional single computer file
systems. For a single computer
system, a processor error (in-
cluding unexpected processor dis-
connection, i.e. “tuthing off”) is a
rare occurrence. Such a situation
is'remedied by repairing whatever
physical. hardware is necessary
and then running ‘a special “sal-

vager” program to bring the file
system into a well-defined opera-
tional state. In the environment of
a multi-computer network, pro-
cessors may be connected or dis-
connected at any time without any
awareness by the other proces-

sors. To prevent any inconsistent

file system operation by the other
processors and eliminate the need
for usually time-consuming sal-
¢mm6 techniques, it is necessary to

keep the file system in a well-de- "

fined consistent state at all times,
A file system design

The purpose of the remainder of
this paper is to apply the organi-
zation presented in the File Sys-
tem Design Model section to solve
the problems associated with a
multi-computer file system net-
work. Discussion of the Access

Methods and Input/Output Control.
System will be omitted. This -is-

necessitated for brevity and con-
sideration of the facts that the
Access Methods are highly appli-
cation oriented, as discussed in a
previous section, and that the In-
put/Output Control System is
usually a basic and common com-
ponent of all Operating Systems.
The principal contribution of this
model lies in the structure of the
four other levels.

Logical File System

To present the goals and require-
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ments of the Logical File System
in a brief and demonstrative man-
ner, an example will be used. The
reader should refer to Figure 6
for the following discussion. It is
important that the peculiarities of
the example, such as the choice of
file names (e.g. “FILE6” and
»DIR4”), not be confused with the
general characteristics of the Lo-
gical File System.

" In Figure 6, there are 12 files
“illustrated. Associated with each
“file' is an identifier of the form
. ’VOL1@)”.

The usage of this
identifier will not be discussed
until later, in the meanwhile no-
tice that each file’s identifier is
unique. The 12 files are divided
into 2 types, directory files (i.e.
VOLI1(3), VOL2(3), VOL3(2),
and VOL3(5)), and data files
(i.e. VOLI1(2), VOL1(6), VOLI(4),
VOL1(5), VOL2(4), VOL2(2), VOL3
(4), and VOL3(3)). The distinction
between directory files and data
files is only a matter of usage,
the Access Methods may operate
upon a directory-file-in the same
manner as a data file, further-
more, all lower levels (e.g. Basic
File System) treat all files as data
files. This factor will be elabo-
rated shortly.

It is the stated function of the
Logical File System to map a file
name reference into a unique file
identifier. This mapping is a func-
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tion of the requested file name
(symbolic file name path) and a
starting point (base directory) in
the file directory structure. In Fi-
gure 6, three example base direc-
tories are illustrated by associating
VOL1(3) with user 1, VOL2(3) with
user. 2, and VOL3(2) with user 3.
Therefore, user 1 references to the
file name FILE2 yields the file
VOL1(4).

A more complex example can be
illustrated by considering the file
VOL3(4). User 3 can refer to this
file under the name FILES. Alter-
natively, it can be referenced by
the name DIR3.FILE7. The file
DIR3, which is associated with
VOL3(5) from user 3’s base direc-

tory, is interpreted as a lower:

level directory. Then from file
VOL3(5), the file name FILET7 is
mapped into VOL3(4) as intended.
The file VOL3(4) can be refe-
renced from user 2’s base directory
as DIR3.FILES or DIR3.DIR3.
FILE7, for example. From user 1’s
base directory, it can be referenced
as FILE3, DIR2.DIR3.FILES, DIR2.
DIR3.DIR3.FILET7, or even DIR2.
DIR3.DIR4.DIR3.DIR3.FILEY.

Two important side effects of the
base file directory and file name
path facilities are that (1) a speci-
fic file may be referenced by many
different names, and (2) the same

name be used to reference many

different files.
The headings VOLUME ”VOL1”,
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VOLUME ”VOL2”; and VOLUME
»VOL3” are intended to indicate
that the 12 files are scattered over
3 separately detachable volumes:
VOLI (containing VOL1(2), VOL1
(3), VOL1(4), VOL1(5), and- VOL1
(6)), VOL2 (containing VOL2(2),
VOL2(3), and VOL2(4)), and VOL3
(containing VOL3(2), VOLS3(3),
VOL3(4), and VOL3(5)). If volume
VOL2 were detached from the
system, user 1 could still refe-
rence VOL1(4) as FILE2 and VOL3
(4) as FILE3, but could not refe-
rence VOL3(4) as DIR2.DIR3.
FILES8 nor VOLI1(5) as DIR2.DIR3.
DIR3.FILE6 since the path would
logically require passing through
volume VOL2. Furthermore, user
3 'is allowed to erase (i.e. remove
from file system structure) the
file VOL3(4) under the name
FILES, assuming appropriate pro-
tection privileges, whether or not
volume VOLI1 is mounted in spite
of user 1's reference to file VOL3
(4) under the name FILES.

The Logical File System could be
extremely complex if it had to
specifically consider the physical
addresses of volumes, the device
characteristics, and the location
of file directories on volumes, in
addition to its obvious require-
ment of searching file directories.
These problems are eliminated by
introducing the file identifier and
the interface with the Basic File
System.
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The Basic File System processes
requests that specify a file in
terms of a file identifier consist-
ing-of a volume name and index,
such as (VOL3,4), rather than a
file name. A sample call from the
Logical File System to the Basic
File System, in PL/I-like notation,
is: CALL BFS - READ (VOLUME,
INDEX, CORE - ADDR, FILE
-ADDR, COUNT); where VOLUME
is the name of the volume con-
taining the file, INDEX is the cor-
responding unique index of the
file, CORE - ADDR is the main

DECLARE 1 FILE_ENTRY,

2 FILENAME CHARACTER (8),

2 VOLUME

2 INDEX

Lo I = 1TC PATH_LENGTH;

CHARACTER (8),

storage address into which data
is to be read, FILE - ADDR is the
file virtual memory address from
which the data is to be read, and
COUNT is the number of bytes
to be transmitted. Using these
features, the heart of the Logical
File System (ignoring opening and
closing files, file access protection,
illegal file names, etc:) reduces to
the PL/I-like code presented in
Table 1. It is assumed that the
file name has been broken down
into an array of path element
names (e.g. if name is DIR2. DIR3.

FIXEL BINARY,

Do J =0 BY N WHIIE (FILE_ENTRY.PILENAME -~= PATH(I)):

CALL BFS_READ(BASE_VOLUME,BASE_INDEX,FILE_ENTRY,J*N,N);

END;

BASE_VOLUNE = FILE_ENTRY.VOLUHE;

BASE_INDEX = FILE_ENTRY.INDEX;

END;

Table 1.

Example Procedure to Perform Logical File System Search

FILES, then PATH(1) = 'DIR2,
PATH(2) = 'DIR3, PATH (3) =
'FILES’, and PATH-LENGTH =
3), that BASE - VOLUME and
BASE-INDEX initially specify the
(VOLUME, INDEX) identifier of

the base directory, and that each .

entry in a file directory is N bytes
long and formatted as indicated
in the FILE-ENTRY declaration.
Of course, the handling of access
(protection) rights, errors, and
other responsibilities will make
the Logical File System much
more complex, but it is important
to note that the design and im-
plementation of the Logical File
System escapes all physical file
organization and device characte-
ristic considerations .and com-
plexities.

wg&nm‘:mm@mgs
The Basic File System must con-
vert file identifier supplied from
the Logical File System into a
file descriptor than can be proces-
sed by the File Organization Stra-
tegy Module. A file descriptor is
essentially an entry in the Active
File Directory (AFD) that contains
information such as the volume

name, physical location of the file

on the volume, and the length of
the file. Every file must have an
associated file descriptor, but since
the number of passive files (i
not actively in use) might be very
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large, the file descriptors are
maintained on secondary- storage
until needed (i.e. file is 7opened”).
In organizing the secondary sto-
rage maintenance of the file des-
criptors there are several. impor-
tant considerations: :

1. There must be a unique’ file

" descriptor. for each file regard-
less of how often’ the file ap-
pears in file directories or what
symbolic names are used. This
is required to maintain con-
sistent interpretation of a file’s
status.

's. The file descriptor information
for a file must reside on the
same volume as the file. This
is reasonable since if either the
file or its descriptor is not ac-
cessible at some time by the
system (i.e. unmounted) the file
cannot be used, this possibility
is minimized by placing them
on the same volume.

3. In the same manner that the
Logical File System was’sim-
plified by using the facilities
of the lower hierarchical level,
the file descriptors should be
maintained in a manner that
allows the File Organization
Strategy Module to process
them as normal files.

These problems are solved by the

use of.the Volume File Descriptor
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Direc¢tory (VFDD). There is a
single VFDD for each volume, it
contains the file descriptors for
all files residing on the volume.
The file descriptors are of fixed
length and are located within the
VFDD positionally according to
the corresponding file identifier’s
index. In order to exploit the fa-
cilities provided by the File Orga-
nization Strategy Module, the
VFDD can be processed by the
lower levels as a normal file. It
is assigned an unique file identi-

‘fier consisting of the volume name

and an index of 1, in fact the file
descriptor for a VFDD is stored
(when not in use) as its own first
entry. Figure 7 presents diagram-
matically the logical file struc-
ture of Figure 6 with the added
detail of the Volume File Descrip-
tor Directories and File Directory
formats.

The File Organization Strategy
Module processes requests that
specify a file in terms of a file
descriptor (the entry extracted
from the VFDD) rather than a
file name or file identifier. A
sample call from the Basic File
System to the File Organization
Strategy Module, in PL/I-like no-
tation, is:

CALL FOSM - READ (DESCRIP-
TOR, CORE - ADDR, FILE -
ADRR, COUNT);
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where CORE-ADDR, FILE-ADRR,
and COUNT have the same inter-
pretation as discussed above.

The primary function of the ;wm.mwn
File System reduces to the single
request:

CALL FOSM-READ (VFFD-DES-
CRIPTOR, DESCRIPTOR, M*
(INDEX-1), M);

where VFDD DESCRIPTOR is the
descriptor of the VFDD associated
with the volume name supplied
by the Logical File System as part
of the file identifier, INDEX is
from the specified file identifier,
M is the standard length of a
VFDD entry, and DESCRIPTOR
is the desired file descriptor.

The Basic File System performs
several other tasks, such.as pro-
tection validation and maintenan-
ce of the core-resident Active File
Directory that enables efficient as-
sociation between a file’s identifier
and descriptor for files that are
in use (i.e. "open”). But, as in the
Logical File System, the domain
of the Basic File System is suf-
ficiently small and narrow that it
remains a conceptually simple
level in the hierarchy.

File Organization Strategy
Modules

The Logical File System and Basic
File System are, to a great extent,

27




application and device indepen-
dent. The File Organization Strate-
gy Modules are usually the most
critical area of the file system in
terms of overall performance, for
this reason it is expected that more
than one strategy may be used in
a large system. Only one strategy
will be discussed in this section,
the reader may refer to the papers
listed in the References [2] [12]
[17] [20] for other possible alter-
natives. :

The FOSM must map the logical
file address onto a physical re-
cord address or hidden buffer
based upon the supplied file des-
criptor information. In the sim-
plest case, the mapping could be
performed by including a two-
part table in the file descriptor.

The first part of each entry would
indicate ‘a continuous range of
virtual file addresses, the second
part of each entry would designate
the corresponding physical record
address. It has been assumed, how-
ever, that all file descriptors
have a specific length, whereas
the mapping table is a function of
the file’s length and is potentially
quite large. Therefore, it is not
feasible to include the entire
mapping table as part of the file
descriptor. One of the most power-
ful file organization strategies uti-
lizes' index tables, Figure 8 illu-
strates such an arrangement.
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In this example it is assumed that
each file is divided into 1000 byte
physical records. A file can be in
one of several index arrangements
depending upon its current length.
If the file’s length is in the range
1 to 999 bytes, the file descriptor
contains the address of the corres-
ponding physical record. If the file
is between 1000 and 499,999 bytes
long, the file descriptor specifies
the address of an index table loca~
ted on secondary storage. Each
entry of the index table (assumed
to require 2 bytes) desighates the
physical address of a block of the
file (blocks are ordered by virtual
file addresses: 0-999, 1000-1999,
2000-2999, etc.). Furthermore, for
files greater than 500,000 bytes,
but less than 250,000,000 bytes,
there are 2 levels of index tables
as illustrated.

This strategy has several advan-
tages. Under the worst conditions
of random access file processing
only from one to three I/O opera-
tions need to be performed. By
utilizing several hidden buffers for
blocks of the file as well as index
tables, the number of I/O opera-
tions required for file accesses can
be drastically reduced.

Device Strategy Modules
The Device Strategy Modules con-

vert “logical I/O requests” from
the File Organization Strategy Mo-

Example of File Organizdtion Strategy
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dules into actual computer I1/0
command sequences that are for-
warded to the Input/Output Con-
trol System for execution. The De-
vice Strategy Modules handle two
rather different types of requests:
(1) read or write blocks, and (2)
allocate or deallocate blocks.

When a request to transfer a large
portion of a file (10,000 bytes for
example) is issued, it is unlikely
that a significant amount of the
needed blocks are in hidden bui-
fers. It will, therefore, be neces-
sary to request I/O transfer for
several blocks (e.g. about 10 blocks
if each block 1000 bytes long). The
FOSM will generate logical 1/O re-
quests of the form: ”read block 227
into location 12930, read block 211
into location 13930, ete.” The DSM
must consider the physical charac-
teristics of the device such as ro-
tational delay and “seek” position
for movable heads. It then decides
upon an optimal sequence to read
the blocks and generate the ne-
cessary physical I/O command se-
quence including positioning com-
mands. The Input/Output Control
System actually issues the physi-
cal I/O request, error retry, and
other housekeeping as discussed

earlier. The detailed strategy for:

choosing the optimal I/O sequence
is, of course, very device de-
pendent and will not be elaborated
here.

The function of automatic block
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allocation is somewhat more com-
plex since it involves several se-
parate factors. Before describing
the implementation of the mecha-
nisms, it is wise to review the
desired characteristics:

1. A file is allowed to grow in
size, the FOSM will request
additional blocks for the data
portions of a file or its index
tables, as needed.

2. Common direct access devices
contain from 8000 to 32000 se-
parately allocatable blocks,
thus it is not feasible to store
all allocation information in
main storage.

3. Since two independent proces-
sors may be writing new files
on the same volume at the
same time, it is necessary to
provide interlocks such that
they do not accidentally allo-
cate the same block {o more
than one file, yet not require
one processor to wait until the
other processor finishes.

These problems can be solved by
use of a special Volume Allocation
Table (VAT) on each volume. In
this scheme, a volume must be
subdivided into arbitrary conti-
guous areas. For direct access de-
vices with movable read/write
heads, each discrete position
(known as a ”cylinder”) covers an

area of about 40 to 160 blocks. A
cylinder is a reasonable unit of
subdivision. For each cylinder on
the volume, there is a correspond-
ing entry in the VAT. Each entry
contains a "bit map” that indicates
which blocks on that cylinder have
not been allocated. For example,
if a cylinder consists of 40 blocks,
the bit map in the corresponding
VAT entry would be 40 bits long.
If the first bit is a 70", the first
block has not been allocated; if
the bit is a ”1”, the block has al-
ready been allocated. Likewise for
the second, third, and remaining
bits.

When the FOSM first requests al-
location of a block on a volume,
the DSM selects a cylinder and
reads the corresponding VAT en-
try into main storage. An availa-
ble block, indicated by a 70" bit,
is located and then marked as al-
located. As long as the volume
remains in use, the VAT entry
will be kept in main storage and
blocks will be allocated on that
cylinder. When all the: blocks on
that cylinder have been allocated,
the updated VAT entry is written
out and a new cylinder selected.
With -this technique the amount
of main storage required for allo-
cation information is kept to a
minimum (about 40 to 160 bits per
volume), -at the same time the
number of extra I/O operations is

IAG Quarterly Journal Vol. No. 3

minimized (about one: per 40 to
160 blocks of allocation).

The problem of interlocking the
independent processors still re-
mains. As long as the processors
are allocating blocks on different
cylinders using separate VAT en-
tries, they may both proeceed un-
interrupted. This condition can be
accomplished by utilizing a hard-
ware feature known as “keyed
records” available on several com-
puters including the IBM System/
360. Each of the VAT entries is a
separate record consisting of a
physical key area and a data area.

The data area contains the allo-
cation  information  described
above. The key area is divided into
two parts: the identification num-
ber of the processor currently al-
locating blocks on that cylinder
and an indication if all blocks on
that cylinder have been allocated.
A VAT entry with a key of all
zeroes would identify a cylinder
that was net currently in use and
had: blocks available for alloca-
tion.

There are I/O instructions that
will automatically search for a re-
cord with a specified key, such as
zero. Since the device controller
will ‘not switch processors in the
midst of a continuous stream of
I/O operations from a processor
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(i.e. ”chained I/O commands”), it
is possible to generate an uninter-
ruptable sequence of I/O commands
that will (1) find an available -cy-
linder by searching.the VAT for an
entry with-a key of zero and (2}
.change the key to indicate the cy-
linder 'is in-use. This thus-solves
the multi-processor allocation -in-
terlock problem.

Concluding .comments

To a large extent file systems are
currently developed and imple-
mented in much the same manner
as:-early “horse-less carriages”,
that is, ‘each totally unique and
“hand-made” rather than “mass
produced”. Compilers, such as
FORTRAN, were once developed
in this primitive manner; but due
to careful analysis of operation
(e.g., lexical, syntax, and semantic
analysis, etc.), compilers are suf-
ficiently well understood that cer-
tain software companies actually
offer do-it-yourself FORTRAN
kits”. Since modern file systems
often outweigh all other operating
system components such as com-
pilers, loaders, and supervisors, in
terms of programmer effort and
number of instructions, it is im-
portant -that a - generally -appli-
cable ‘methodology be found for
file system development. -
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This paper presents a modular ap-
proach to the design of géneral
purpose file systems. Its scope is
broad enough to encompass most
present file systems of advariced
design and file systems presently
planned, yet basic enough to be
applicable to more modest file
m%mﬁmim. : :

The file system strategy presented
is intended to serve two purposes:

(1) to assist in the design of new
file systems and (2) to provide a
structure by which existing file
systems - may be analyzed and
compared.
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