
M. D. MclLROY, Edi tor

String Processing Techniques
STUART E. MADNICK
M.I.T.* and I.B.M. Corp.~ Cambridge, Mass.

aeters (8 bits each) can be contained in a machine word
(32 bits).

I t is assumed that the computer has capabilities to access
and manipulate individual characters within a word. The
ability to index an address is definitely desirable.

The internal organization of string processing systems is
discussed. Six techniques for data structures are presented and
evaluated on the basis of: (1) creation of strings; (2) examina-
tion of strings; and (3) alteration of strings. Speed of opera-
tion, storage requirements, effect on paging, and programmer
convenience are also considered. One of the techniques,
single-word linked blocks, is used in an example demonstrating
an implementation of a SNOBOL string processing language
on an IBM System/360.

1. I n t r o d u c t i o n

The title of this paper was also that of a discussion group
held at a 1966 ACM Symposium on Symbolic and Alge-
braic Manipulation. At that t ime it became obvious to the
author tha t many people are interested in developing
string processing languages or utilizing string processing
techniques in the solution of problems. Although there is a
reasonable amont of documentation describing the exter-
nM appearances of many existing string processing lan-
guages, there is a noticeable lack of information about their
internal organizations.

Six string processing techniques and an example of the
successful use of one of them are presented in this paper.
Of course many variations of the presented techniques are
possible. The IBM System/360 is used to illustrate the
formats for the techniques.

2. C o m p u t e r H a r d w a r e R e q u i r e m e n t s

Although this paper is basically concerned with data
structures tha t are machine-independent, several com-
puter hardware features are considered necessary to make
meaningful use of these structures.

I t is assumed that the computer main storage can be
processed as words. These words can be fixed size as on the
GE 635 and I B M 7094, or multiples of smaller elements as
on the IBM 1620 and IBM System/360. In this paper the
32-bit word size used on the IBM 360 will be considered.

The basic symbols (characters, letters, digits) are rep-
resented by an 8-bit code called the byte. Thus 4 char-

* MIT Electrical Engineering Department
IBM Cambridge Scientific Center

3. T h e P r o b l e m o f S t r i n g P r o c e s s i n g

The simplest way to store a string of characters would
be to put consecutive characters in successive bytes
throughout memory. However, any a t tempt to change the
length of the string results in considerable character-
moving.

Most symbol-manipulating languages solve this problem
by use of pointers. A pointer specifies the location of the
next character on the string, thus allowing the elements of
the string to be located in physically noncontiguous re-
gions of the computer 's memory and yet be logically
bound together.

A pointer on the System/360 must be 24-bits long to
connect string sections which are located arbitrarily in the
computer. There are several symbol-pointer arrange-
ments possible.

4. D a t a S t r u c t u r e s u n d e r C o n s i d e r a t i o n

Six basically different data structures with potential for
numerous variations have been devised. They are de-
scribed below and schematically presented in Figure 1.

u)~i/////////////////~ FJ//JJJJJJJJJJJJJJJJ
{2) ~ ~//////////////////~ F/////////////////~

(3) ~ /~/~////////////////////~ L

~4}1 A', B[C i D / V/////////////////////~L~
IE i F i O iVOIDV W//////////////////~

(5)
! A i B iC !D iE ~//Z//./ff////# i l

bd e V////////#/Yi s i T i U i i i~

V//#//////t~ ~ , u i v i I ~ ,

(6)
l i A i B i C l D i E i t .[P-[ST~-F~

TYPES

(l) Double-word Blocks
(2) Single-word Blocks
(3) Vorieble-length Blocks
(4) Pocked Double-word Blocks
(5) Linked Linear String
(6) Lineer String

FIG. 1. Data structures under consideration

420 Communications of the ACM Volume 10 / Number 7 / July, 1967

The first four methods are based primarily upon fixed
word length considerations, while the remaining two
methods make use of the variable word length features.

Method I (double-word blocks). The string is represented
internally by linked two-words blocks. The first word
contains a character, the second contains a pointer to the
next character.

Method 2 (single-word blocks). This method strongly
resembles the double-word block technique, but, rather
than using two words, the 8-bit character and 24-bit
pointer are packed into a single 32-bit word.

Method 3 (variable-length blocks). The characters are
stored one to a word consecutively in memory. When-
ever the sequence is to be broken, a pointer indicates the
location of the next block of characters. Characters and
pointer can be identified by information stored in the un-
used portion of the 32-bit word.

Method ~ (packed double-word blocks). The characters
are stored in fixed length-packed blocks (4 per word, 8 per
double word, etc.) followed by a pointer to the next block.
For the example presented in this paper, four characters
are stored in a word followed by a pointer to the next four
characters. A special character called the "void" character
fills the empty spaces in data blocks that are only partially
filled.

Method 5 (linked linear strings). Characters are stored
sequentially in memory, byte by byte. Whenever the
sequence is to be broken, a special character is used to de-
note a pointer. In other words, the pointer is made 32 bits
long where the leading 8 bits identify it as a pointer.

Method 6 (linear string). This method can be imple-
mented in at least two ways. The simplest (conceptually)
is always to maintain strings linearly throughout memory
without any pointers. An alternate scheme is to store
strings linearly within large blocks (4096-characters long
for example) with a pointer to the next block.

5. Storage Requirements

In discussing storage requirements the term "packing
density" is used. Packing density is the percentage of stor-
age containing character information.

Method I (double-word blocks). Since only one character
is stored for every pair of words used, the packing density
is only 12.5 percent. This means that at most only one out
of every eight bytes of storage is used to contain data.

Method 2 (single-word blocks). This technique provides
for a fixed packing density of 25 percent.

Method 3 (variable-length blocks). The packing density
of this method is a function of the data processed. Initially
there will be no pointers (density 25 percent), but as the
data is manipulated, it may begin to resemble method 1
(density 12.5 percent). If a "garbage collector" routine is
used to rearrange the data periodically into its linear struc-
ture, close to 25 percent packing density can be main-
tained.

Method ~ (packed double-word blocks). Because one to
four characters will be stored for every double word used,
the packing density will vary from 12.5 to 50 percent.

As in method 3, a garbage collector could be used to main-
tain storage density.

Method 5 (linked linear strings). Initially all the char-
acters will be stored linearly throughout memory. This
results in a packing density of 100 percent. Under worst
case conditions each character could be followed by a
pointer character and a pointer, thus reducing the density
to 20 percent. The use of a garbage collector to reorganize
the data periodically can keep the density as close to 100
percent as desired.

Method 6 (linear strings). The linear storage technique
results in a 100 percent packing density. Of course this
method requires continual storage reorganization.

6. Speed Limitations

The ease with which certain string manipulations can be
performed determines, to a large extent, the overall oper-
ating speed of a string processing application. The basic
string manipulating operations are: (i) a scan (ii) an add/
delete, and (iii) a storage manager or "garbage collector."

Method 1 (double-word blocks). Individual characters
can be moved or compared either by using the character-
processing capabilities, or by loading into a register and
performing fixed word length operations on them.

The next element of the string can be easily accessed
since the pointer is kept in the low order 24 bits of the
pointer word. In this case the pointer is immediately loaded
into an index register.

To delete a character or group of characters from the
string, it is necessary merely to change the pointer preced-
ing the portion to be deleted to point to the first character
after the section. To add a section to the string the reverse
process is used. (Before a group of characters can be in-
serted into the string, they must be linked together in the
same form as in the string.) The pointer located on the
string at the place where the insertion is to be made is
moved to the bot tom of the section to be inserted. I t is
replaced by a pointer to the first element of the new section.

There are two possible techniques that can be used to
maintain free storage from which new strings are formed.
One method uses a portion of available memory for stored
strings, and the remainder as a bulk quant i ty of unused
storage. A pointer keeps track of the beginning of the free
storage area. As new strings are produced, the free storage
is reduced. When no free storage remains, the garbage col-
lector must move and relink the strings to create free
storage from deleted elements.

Another method of maintaining free storage is to place
every word of available storage on a string. This special
string, called the "free string," links all unused words of
storage. When sections are to be added to a regular string,
the necessary number of elements is unlinked from the free
string. No garbage collection is necessary since all free stor-
age is linked together.

There is one more consideration: a multiprogramming
environment with automatic paging where program seg-
ments are swapped between main memory and secondary
storage. Effective use of paging requires that the data being

Vo lum e 10 / N u m b e r 7 / J u l y , 1967 C o m m u n i c a t i o n s o f t h e ACM 421

referenced be fairly localized. In general the elements of
the strings are located through memory. Since the double-
word blocks method provides a pointer for every character,
it is possible for each character to be located in a different
section of memory. Although variations of this method,
that tend to localize the string, have been developed, the
additional complexity involved usually outweighs the sim-
plicity of the basic method.

Method 2 (single-word blocks). This technique has the
the same basic characteristics as Method 1. Since we can
directly load the low-order 24 bits of the word into the
index register, it is not necessary to mask off the 8 high-
order bits containing the character. The only difference is
a slight additional manipulation involved in the insertion
of pointers without destroying the character, into the
single-word block.

Method 8 (variable-length blocks). The characters can be
manipulated by any of the methods described above. The
next element of a string can be obtained by incrementing
the index register, if a pointer is not present, or by loading
the pointer into the index register, if the end of a block has
reached. I t is necessary continually to check the data to
distinguish between characters and pointers.

Deletion of characters is simple. The first character to be
deleted is replaced by a pointer to the character following
the section to be deleted. Addition to the character string
is not quite as easy. The characters to be inserted are put
in consecutive words of a block obtained from free storage.
The character located at the spot where the addition is to
be made is moved to the top of the new block and replaced
by a pointer to its new location. The last element of the
new block is a pointer back to the element of the string
immediately following the point of insertion.

The presence of odd-size blocks and the need for a con-
tiguous free storage area make a garbage collector the only
practical means of maintaining the storage.

Since the strings are more localized than in method 1 and
2, the variable-length block method is more practical for a
computing system utilizing paging techniques.

Method 4 (packed double-word blocks). The characters
can be removed from the packed word, byte by byte, or
the entire word can be placed in a register and shifted, one
character at a time. The "void" character must be detected
and ignored. After all four characters have been processed,
the next block of characters is reached by loading the
pointer into the index register.

Deletion of characters requires several steps. Unless the
first character to be deleted is at the beginning of a four
letter block and the last letter to be deleted is at the end,
it is necessary to "void" a number of letters in the two end
blocks. Then the pointer can be adjusted to bypass the
remainder of the section to be removed. To insert a section,
the characters to be added are packed four to a word and
linked together in the form of a string. Unless the insertion
is to occur after a letter that terminates a block on the
main string, the block must be separated into two blocks
with the end part placed at the end of the insertion string.
Unused spaces are filled with "void" characters.

Free storage can be maintained either by the use of a
free storage string or a garbage collector. If the free string
is used, a localized garbage collector should be used to min-
imize the number of "void" characters on strings.

Method 5 (linked linear strings). The most reasonable
way to scan the linked linear string is to use the character-
handling instructions. The next character is accessed by
incrementing the index register or by loading a pointer in-
to the index register. The detection and handling of the
pointer must be considered.

The addition and deletion of characters is comphcated.
If there are four or more characters to be deleted, a pointer
is placed where the first characters were located. If there
are fewer than four characters to be removed, the remain-
ing characters are moved to a block obtained from free
storage, and replaced by a pointer to their new location. A
return pointer is then inserted after these new characters.
The insertion process is slightly more involved. The char-
acters to be added are strung out in a block obtained from
free storage. The four characters from the main string
following the point of insertion are moved to the end of the
new block and replaced by a pointer. Special care must be
taken to check the moved characters for the presence of
a pointer.

The use of a garbage collector is the only way that free
storage can be maintained. The efficiency of multiprogram-
ming is dependent upon the frequency and effectiveness
of the garbage collector.

Method 6 (linear string). The characters on this string
are trivially accessed by continually incrementing the
index register.

The insertion and deletion of characters is not difficult,
but it is slow.

The entire string can be recopied with the desired changes,
Alternatively, to delete a section of the string, all char-
acters to the right of the section to be deleted are moved
left a number of places corresponding to the number of
characters to be deleted. To add to the string, all the char-
acters following the point of insertion are moved right the
correct number of places and the new characters are in-
serted.

There is no need for any additional storage maintenance,
since characters are always stored at 100 percent efficiency.
This method is probably the most effective for operating
in a multiprogramming environment, since it maximizes
proximity of elements on a string.

7. S u m m a r y

No single method can be determined as "best" or
"worst ." Each has advantages and disadvantages; it is the
application that will usually determine the most desirable
method. Table I summarizes the characteristics of the six
methods proposed. The results are based upon tests run
on an IBM System/360.

8. Example of String Processing on the System/360
The author decided to produce for the System/360 a

string processing capability similar to tha t of COMIT and
SsrOBOL. In fact, the present system is SNoBOL-COmpatible.

422 Communications of the ACM Volume 10 / Number 7 / July, 1967

TABLE I. DATA STRUCTURE CHARACTERISTICS

(1) Double
word

(2) Single
word

(3) Variable
length

(4) Packed
double

(5) Linked
l inear

(6) Linear

Packing
density

12.5

25

12.5-2,

12.5-5,

25--100

100

ase of sea

easy

easy

moder-
ate

moder-
ate

moder-
ate

easy [

.Ease of
n s e r t delete

easy

easy

moder-
ate

difficult

difficult

moder-
ate

Localization
Speed of of strings

insert delete ~or paging)

fas t poor

fas t poor

moder- fa i r
ate

slow fair

very slow good

very slow excel-
lent

After considering the various data structures described
in this paper, Method 2 (single-word blocks), was chosen.
Although packing density and application for paging is
considered important, speed of operation and ease of im-
plementation was given highest priority.

Strings are defined by a three-word block called the
"string reference block." The first word specifies the loca-
tion of the first character on the string, the second, the
ength of the string, and the third, the location of the last
character on the string. Although the string contents are
changed continually and rearranged throughout memory,
the string reference blocks remain at fixed locations and
contain the information specifying the present string con-
tents. Figure 2 demonstrates this structure for the strings
containing "CAT" and "DOG."

A set of 30 basic string processing instructions is used.
They are of the form: COPY Y, A P P E N D Y, R E P L A C E
Y, I N S E R T Y, G O T 0 Y, etc. A program consists of a set

, o
c] \

I
;////////////////~P1 /
F///////////////A" /

I -~1 _ . . _ . _ ~ l G ,v#####// / / /#~r"
V// / / / / / / / I / / / / / / / /~"" ' - -

String Contents
String Reference Block

FIG. 2. Str ing reference block s t ruc tu re

/ .~/ / / / / / / / / / / / / / / / / /~, , , .

I V / / / / / / / / / / / / / / ~) I \ ~1 c V// / / / / / / / / / / / /#~ ~ \
? A? I f f / / / / / / / / / / /J / /~X, \ k~ i / / / / / / / / / / / / / / ~) I

I~.?777777///7~ \ ~D / / / / / / / / / / / / / / / y~)
\ /

pROGR M "/////////////////Z'f"
~ 7 ~ ~ f STRING CONTENTS

BLOCK
FIG. 3. Program buffer structure

of these instructions contained in the "program buffer."
The program buffer is a section of memory containing
consecutive 32-bit words: the first 8 bits of each word spe-
cify the instruction; the remaining 24 bits specify a
string reference block in the case of a string manipulation,
or the location of another instruction in the program buffer
in the case of a GOTO. Figure 3 illustrates this structure.

Strings that are to be variables are assigned external
names, as is the case in most programming languages. I t
was decided to include the ability to indirectly reference a
string. To indirectly reference, rather than access a string
by directly specifying its name (or reference block loca-
tion), we specify the name of another string whose contents
is the name of the string desired. Therefore, indirect string
referencing requires a means by which the external string
names (contained in a string) can be associated with the
corresponding reference block location during execution.
The problem of determining the reference block location of
a string from its string name is further complicated by the
fact that string names are of arbitrary length and may be
created dynamically during execution. Of course, it is im-
portant that indirect referencing be performed as efficiently
as possible. A two-step mechanism is used to solve this prob-
lem. First, the external string name is appended to the
bot tom of the string reference block. Second, a hash-coded
symbol table is set up. The symbol table contains the rel-
ative address of the string reference block and the number
of characters in the string name (see Figure 4).

Referring to Figure 4, if we want to indirectly reference
string DOG (by name) through ALPHA, the letters
"DOG" (the contents of ALPHA) are used as the argu-
ment of a hash function to determine the entry in the sym-
bol table which in turn gives the location of the string
reference block for DOG. Since hash functions do not neces-
sarily produce unique results, it is necessary to compare
the string name contained in the reference block indicated
by the table entry with the letters "DOG". If the string
names do not correspond, successive table entries are
tried. In general, with a sufficiently large hash table the
correct reference block is located in one or two probes.

I V// / / / / / /A
I v/////////A
I 3,7/////////~- f(string D-O-G}
I r//////////A H0shing Function
Hosh-Goded
Symbol Table

l ! i l,J
V/I/III///////I~T~) I
Vl#1111#111111#~) /
!", 7 / / / / / / / / / / / / / /J" /

~ I j , . I ~ 7111111111111111/P"
~ / / / / / / / / / / / J / / / / / / / / ~ ' ~ - String Contents

A i z i
String Reference Block

FIG. 4. Overall da t a s t ruc tu re

V o l u m e 10 / N u m b e r 7 / J u l y , 1967 C o m m u n i c a t i o n s o f t h e ACM 423

Although timing comparisons were not a major goal of
this project, several programs were run using the above
described system on an IBM 360 model 40 and compared
with the SNOBOL system on the IBM 7094 which uses a
linear string technique for string storage. In general, iden-
tical programs ran twice as fast on the 7094 as on the 360
model 40. Relating the speed of the two computers is dif-
ficult, but the 7094 is generally considered to be about five
times faster than the 360/40 for basic operations. These
results indicate the relative superiority of the single-word
blocks in this case.

Acknowledgments. Special thanks are extended to Roy
Harris, John Hershey, Larry-Stuart Deutsch, Payne
Freret, Margaret Barovich, and Frank DeRemer for
their assistance in preparing this paper. Robert Graham's
advice and guidance was especially helpful.

RECEIVED MAY, 1966; REVISED MARCH, 1967

REFERENCES

1. BORROW, DANIEL G., AND RAPHAEL, BERTRAM. A compari-
son of list-processing computer languages. Comm. ACM 7,
4 (April 1964), 231-240.

2 . - AND WEIZENBAUM, JOSEPH. List processing and ex-
tension of language facility by embedding. IEEE Trans.
EC-13 (Aug., 1964), 395--400.

3. FARriER, D. J., GRISWOLD, R. E., AND POLANSKY, I. 1 :~.
SNOBOL, a string manipulation language. J. ACM 11 (Jan.
1964), 21-30.

4. , AND - - . The SNOBOL programming language.
Bell Sys. Tech. J. XLV, (July-Aug. 1966).

5. McCARTHY, J. ET AL. LISP 1.5 Programmers Manual. MIT
Press, Cambridge, Mass., 1963.

6. MADNICK, STUART E. SPL/I: a string processing language.
MIT B.S.E.E. Thesis, June, 1966, Cambridge, Mass.

7. The MIT Computation Center. The Compatible Time-Sharing
Syslem, A Programmers Guide. MIT Press, 1963.

8. NEWELL, A. (ED.) In]ormalion Processing Language-V Man-
ual. Prentice-Hall, Englewood Cliffs, N. J., 1961.

9. WEIZENBAUM, J. Symmetric list processor. Comm. ACM 6,
9 (Sept. 1963), 524---544.

10. YNGVE, V. COMIT Programmers Reference Manual. MIT
Press, Cambridge, Mass., 1963.

Implementing Phrase-Structure
Productions in PL/I

LARRY IRWIN

Ohio University, Athens, Ohio

A method is described for implementing the productions of a
context-free phrase structure grammar in a PL/I procedure
whose structure and statements parallel the structure and nota-
tion of the grammar.

A simple technique is described here for implementing
productions in PL/I . Moreover the description becomes
the driving algorithm.

Consider the following set of productions which de-
scribes the context-free phrase-structure grammar of a
simplified assignment statement [1]:

(statement) ::= (variable) = (expression)
(expression) ::= <term)] (term) -4- (expression)
(term) ::= <factor) J <factor) * <term)
(factor) ::= (variable) [<(expression))
<variable) ::= A I B [C

The PL/ I IF-level) procedure shown in Figure 1 pro-
duces a list of 10 arbitrary, well-formed assignment state-
ments.

Thus, in general, each production becomes a function
procedure which returns a varying character string and
whose name is the nonterminal character on the left-hand
side of the production. The right-hand side becomes the
body of the procedure where each alternative in the pro-
duction becomes a separate, labeled RETURN statement

STMTGEN: PROCEDURE OPTIONS(MAIN);
DECLARE (STATEMENT,EXPRESSION,TERM,FACTDRI RETURNS(CHARACTER(IZO)

VARYING), VARIABLE RETURNSICHARACTER(1));
DECLARE CHOICE_OF /~AS THE*/ ENTRY I~NAME OF A FUNCTIDN WHICH ACCEPTS

N, A~/ (FIXED BINARY) /*INTEGER VALUE, ANDS/ RETURNS / * A * I
(FIXED BINARY) /*INTEGER PSEUDO-RANDOMLY CHOSEN FROM THE
SET (I , 2 , . . , , N) * / :

PUT PAGE LISTt'PRODUCED ASSIGNMENT STATEMENTS'I:
POT EDIT((STATEMENT DO I = I TO 10)) (SK IP (l) , A) :

STATEMENT: PROCEDURE CHARACTERIIZO) VARYING;
RETURN(VARIABLE I{ t=, I I EXPRESSION);
END STATEMENT:

EXPRESSION: PROCEDURE CHARACTER(1ZO) VARYING RECURSIVE;
DECLARE ALTERNATIVE(2) LABEL:
GO TO ALTERNATIVE(CHOICE_DF(Z));
ALTERNATIVE(1): RETURN(TERM);
ALTERNATIVE(Z): RETURN(TERM 11 ,÷t I I EXPRESSION):
END EXPRESSION;

TERM= PROCEDURE CHARACTER{I20) VARYING RECURSIVEI
DECLARE ALTERNATIVE(Z) LABEL:
GO TO ALTERNATIVE(CHOICE-OF(2))~
ALTERNATIVE(l): RETURNiFACTOR)I
ALTERNATIVE(Z): RETURN(FACTOR i { =*~] [TERM);
END TERM;

FACTOR: PROCEDURE CHARACTER(IZO) VARYING RECURSIVE;
DECLARE ALTERNATIVE(2) LABEL=
GO TO ALTERNATIVE(CHOICE_OF(2));
ALTERNATIVE(l): RETURN(VARIABLE);
ALTERNATIVE(2): RETURN('(' I { EXPRESSION l i ') t) I
END FACTOR:

VARIABLE: PROCEDURE CHARACTER(l);
DECLARE ALTERNATIVE(3) LABEL=
GO TO ALTERNATIVE(CHOICE_OF(3));
ALTERNATIVE(1): RETURN('A'):
ALTERNATIVE(2): RETURN('B');
ALTERNATIVE(3): RETURN('CI)=
END VARIABLE:

END STMTGEN=

FIG. 1

to be chosen at random. Characters are concatenated by
the operator, II, and immediate terminal characters are
character string constants.

RECEIVED FEBRUARY, 1967; REVISED MARCH, 1967

REFERENCE

1. HULL, T. E. Introduction to Computing. Prentice-Hall, Engle-
wood Cliffs, N.J., 1966.

424 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 10 / Number 7 / Ju ly , 1967

