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THE COMPLEXITY OF GENERIC PRIMAL ALGORITHMS
FOR SOLVING GENERAL INTEGER PROGRAMS

ANDREAS S. SCHULZ and ROBERT WEISMANTEL

Primal methods constitute a common approach to solving (combinatorial) optimization prob-
lems. Starting from a given feasible solution, they successively produce new feasible solutions with
increasingly better objective function value until an optimal solution is reached. From an abstract
point of view, an augmentation problem is solved in each iteration. That is, given a feasible point,
these methods find an augmenting vector, if one exists. Usually, augmenting vectors with certain
properties are sought to guarantee the polynomial running time of the overall algorithm.

In this paper, we show that one can solve every integer programming problem in polynomial time
provided one can efficiently solve the directed augmentation problem. The directed augmentation
problem arises from the ordinary augmentation problem by splitting each direction into its positive
and its negative part and by considering linear objectives on these parts. Our main result states that
in order to get a polynomial-time algorithm for optimization it is sufficient to efficiently find, for
any linear objective function in the positive and negative part, an arbitrary augmenting vector.

This result also provides a general framework for the design of polynomial-time algorithms
for specific combinatorial optimization problems. We demonstrate its applicability by considering
the min-cost flow problem, by giving a novel algorithm for linear programming over unimodular
spaces, and by providing a different proof that for 0/1-integer programming an efficient algorithm
solving the ordinary augmentation problem suffices for efficient optimization. Our main result also
implies that directed augmentation is at least as hard as optimization. In other words, for an NP-hard
problem already the task of finding a directed augmenting vector in polynomial time is hopeless,
unless P= NP. We illustrate this kind of consequence with the help of the knapsack problem.

1. Introduction. During the last ten years, there has been a strong, renewed interest in
so-called test sets for integer programming problems; see, e.g., Conti and Traverso (1991),
Cornuéjols et al. (1997), Hosten and Sturmfels (1995), Sturmfels and Thomas (1997),
Sturmfels et al. (1995), Thomas (1995), Thomas and Weismantel (1996), and Urbaniak et al.
(1997). This research has not only led to stimulating new insights, but also it has raised
new questions. Prompted by the more abstract point of view, these questions often involve
natural generalizations of concepts used in the design of primal algorithms for specific com-
binatorial optimization problems. The questions we address in this paper are of this type.
They basically have their origin in the following algorithmic problem. Given a test set for
an integer program, i.e., given a set � of vectors with the property that any feasible solu-
tion x to the integer program is optimal if and only if there is no z ∈ � such that x+ z
gives a better feasible solution, what is the complexity of determining an optimal solution
to the integer program? We do not require the test set to be explicitly given but only assume
to have implicit access by some kind of augmentation oracle. Essentially, given a feasible
point to the integer program and an objective function, such an oracle asserts either that
the point is optimal with respect to the objective function, or if not, it provides a better
feasible point. We show that having a directed augmentation oracle at our disposal enables
us to solve the corresponding integer programming problem in (oracle-) polynomial time.
In the course of the proof, we utilize the fact that a certain maximum-ratio augmentation
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problem can be solved in oracle-polynomial time as well. The fact that the solvability of
a maximum-ratio augmentation problem—the ability to efficiently find an improving direc-
tion that is maximal in some average sense—implies the polynomial-time solvability of the
original maximization problem is interesting on its own. Therefore, we also elaborate on
the power of different maximum mean augmentation oracles.
Throughout the paper, we consider integer programming problems of the following form.

We are given an integral m×d-matrix A and integral vectors w, b, and u of compatible
dimension, and the goal is to find an optimal solution to

max
wx� Ax = b�0 ≤ x ≤ u�x ∈ �d�(1)

This class of problems hosts, as special cases, virtually every combinatorial optimization
problem. Several known polynomial-time algorithms for solving specific problems are of
primal nature. That is, given a feasible solution x0, they successively produce new feasi-
ble solutions x1� x2� � � � with wx0 < wx1 < wx2 < · · · until an optimal solution is reached.
Most primal algorithms, however, need to make a special choice of the augmenting vector
xi+1 − xi in each iteration in order to result in a polynomial number of overall iterations.
We give two examples. In augmenting-path algorithms for the max flow problem, a short-
est augmenting path or one with largest residual capacity helps to obtain a polynomial-time
algorithm (Edmonds and Karp 1972). In cycle-canceling algorithms for the min-cost flow
problem, in each iteration, flow is to be augmented along a negative cycle with, e.g., mini-
mum (mean) cost (Goldberg and Tarjan 1989).

Main result. We present two primal algorithms for solving the integer programming
problem (1). Both algorithms assume that at any feasible point x we can find a feasible
direction z = z+ − z− with z+� z− ≥ 0 such that w′z+ +w′′z− > 0, for any pair of vectors
w′�w′′ ∈�d, if such a direction exists. If we have an oracle that solves this so-called directed
augmentation problem, both algorithms have oracle-polynomial running time. We refer the
reader to Grötschel, Lovász, and Schrijver (1988) for a thorough discussion of oracle-
polynomial algorithms. Whenever we say that an algorithm performs L calls to an oracle,
it implicitly also holds that the number of additional elementary operations is bounded by
L as well. Consequently, if one has a polynomial-time algorithm that simulates the oracle,
the overall algorithm runs in polynomial time.
Both algorithms provide a general design tool to reduce the solution of a combinatorial

optimization problem to a sequence of directed augmentation problems. We will show
that the directed augmentation problem often admits a natural interpretation as another
combinatorial problem that is—in some sense—easier than the original one. This framework
therefore leads to potentially novel algorithms for every polynomial-time solvable problem.
Despite its universality, the running time of the faster of the two algorithms is relatively
small. If we define W �=maxj 
wj 
 and U �=maxj uj , it performs O�d log�dWU�� calls to
the directed augmentation oracle.

Related work. The results presented here were originally motivated by questions about
the complexity of the standard test set algorithm or the generic local search algorithm
and our work on 0/1-integer programs (Schulz et al. 1995). Therein we show that for
problems of type (1) with U = 1, augmentation and optimization are strongly polynomial-
time equivalent. The same result was independently obtained by Grötschel and Lovász
(1995). It is special to 0/1-integer programs, however, that the diameter of the skeleton of
the convex hull of all feasible solutions is bounded by the dimension d (Naddef 1989). No
similar result is known for general integer programs or polytopes in general. In fact, this is
one of the major open problems in discrete geometry and is closely related to the equally
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unknown existence of a pivot rule that turns the simplex algorithm into a polynomial-
time algorithm for linear programming. The results in this paper are based on significantly
different techniques that identify a sufficiently short augmenting path through the interior
of the convex hull of feasible solutions, instead of along its edges.
On the other hand, our work is an extension of Wallacher’s work on interior-point-like

algorithms to solve the min-cost flow problem (Wallacher 1992, Wallacher and Zimmermann
1992). In fact, in the actual context of the min-cost flow problem the two above-mentioned
algorithms are attributable to Wallacher. Later, McCormick and Shioura (1996) extended one
of Wallacher’s algorithms to linear programming over unimodular spaces. Our algorithms
and analyses generalize both the work of Wallacher and that of McCormick and Shioura.
Subsequently, Wayne (1999) succeeded in extending Wallacher’s techniques to derive the
first combinatorial algorithm for the generalized min-cost flow problem. In turn, McCormick
and Shioura (2000) extended Wayne’s result to an oracle-polynomial time algorithm for
linear programming.

2. From AUG± to OPT. In this section, we show that for every family of integer
programs given by a directed augmentation oracle optimization is easy. Section 2.1 contains
the precise statement of our main result. In §§2.2 and 2.3 we give two different proofs in
the form of two polynomial-time algorithms for optimization, each of which only relies
on the directed augmentation oracle. Whereas the first algorithm is conceptually easier, the
second one achieves a better running time. Applications to a variety of specific combinatorial
optimization problems are given in §2.4.

2.1. The main result. Given an instance defined by an integer matrix A, by integer
right-hand side and upper bound vectors b and u, and by the feasible region � �= 
x ∈
�d� Ax = b�0 ≤ x ≤ u, we want to solve the following integer programming problem.

Optimization (OPT).
Given a vector w ∈ �d and a point x0 ∈ � ,
find a point x∗ ∈ � that maximizes wx on � .

Notice that we always assume to know an initial feasible point x0 ∈ � . Of course, finding
such a point is NP-hard in general, yet easy for many problems. The only information we
are given besides u, w, and x0 is an oracle that we can call to solve a directed augmentation
problem.

Directed Augmentation (AUG±).
Given w′�w′′ ∈�d and x ∈ � , find z+� z− ∈
�d such that
w′z++w′′z− > 0� 0 ≤ z+ ≤ u−x,
A�z+− z−�= 0� 0 ≤ z− ≤ x,

or assert that no such vectors exists.

One could actually distinguish between two versions of the directed augmentation problem.
In the first one, z+ and z− are restricted to be the positive part and the negative part of
z = z+ − z−, respectively; i.e., z+z− = 0. In the second one, they are not. It turns out that
our algorithms and analyses work in either case. In the former one, we may interpret the
“objective function” of the directed augmentation problem as the simple nonlinear function∑d

j=1�w
′
jmax
0� zj+w′′

j max
0�−zj�. For ease of presentation, our exposition will stick
to this version; i.e., throughout the paper we assume that z+z− = 0.
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Apparently, starting out from an (AUG±) oracle is a stronger assumption than requiring an
augmenting direction with respect to a linear objective function in the original z-variables.
Nevertheless, it is still a reasonable assumption that is often fulfilled, as, e.g., the min-cost
flow problem shows. For the min-cost flow problem, the matrix A corresponds to the node-
arc incidence matrix of the given network; uj is the capacity of arc j. The augmentation
problem in the original variables would ask for a negative-cost circulation in the original
graph in which some arcs would have negative lower capacities. Splitting z into z+ and z−

simply corresponds to introducing for every arc its reverse arc and placing lower bounds
0 on every arc. In other words, the directed augmentation problem is the same kind of
problem, but in the residual graph (or augmenting or auxiliary graph as it is sometimes
called). In this model, it does not matter, of course, that different costs may be assigned to
an arc and its reverse. It is this interpretation of the min-cost flow (AUG±) problem that
induced us to call it the directed augmentation problem in general.
We show next that for arbitrary integer programs it is sufficient to find, for linear objective

functions in �z+� z−�, an arbitrary augmenting vector in order to design an efficient algorithm
for optimization; we do not need a “best” one in any respect. In particular, for the min-cost
flow problem any negative-cost dicycle in the residual graph suffices.
The following is our main result.

Theorem 2.1. Let � be given by a feasible point x0 ∈ � , by the upper bound vector u,
and by an oracle to solve the directed augmentation problem (AUG±). Then, the corre-
sponding optimization problem (OPT) can be solved in oracle-polynomial time.

We prove Theorem 2.1 by presenting two explicit algorithms. The first algorithm utilizes
the directed augmentation oracle to solve a maximum-ratio augmentation problem, which
is, in turn, used to solve the original optimization problem. The second algorithm does
not attempt to exactly solve a maximum-ratio problem in every iteration. By computing
sufficiently close approximations to a maximum-ratio direction, it essentially maintains the
total number of iterations, but a single iteration is significantly less expensive.

2.2. Algorithm I—Maximum-ratio augmentation. In this section, we present a first
algorithm in support of Theorem 2.1. It consists of two separate steps. First, we show
that the access to an oracle that returns an augmenting vector that maximizes the ratio of
improvement (with respect to the original objective function) to the cost of this augmenting
direction (measured in terms of the proximity of the new feasible point to the boundary
of the feasible region) enables us to solve the optimization problem efficiently. Then we
prove that the directed augmentation oracle can emulate the maximum-ratio augmentation
oracle, thus proving Theorem 2.1. We pay for the distinction of the two steps with a higher
overall running time, but we are rewarded with insight. This insight will guide the design
and analysis of Algorithm II. The intermediate problem that we utilize is the following:

Maximum-Ratio Augmentation (MRA).
Given w ∈ �d and x ∈ � , find a feasible di-
rection z= z+− z− ∈ �d such that wz > 0
and z maximizes

wz

p�x�z++n�x�z− �
or assert that no such z exists.

Here, the vectors p�x��n�x� ∈�d are defined as follows, for every x ∈ � :

pj�x�=




1
uj−xj

� if xj < uj�

� if xj = uj�
and nj�x�=





1
xj
� if xj > 0�

� if xj = 0�
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In other words, every component of �z+� z−� is weighted with the reciprocal of the
corresponding “residual capacity.” In particular, unlike other well-known maximum-ratio
problems (see §3 below) the denominator directly depends on the current solution x. The
intuition underlying this definition is to guarantee sufficiently long steps in each iteration.
The closer xj is to one of its limits, the more expensive it is to go further in this direction.
It is this kind of interior point philosophy that makes the algorithm work and which, in fact,
led Wallacher (1992) to introduce this ratio in the context of min-cost flow problems.
We call an augmenting vector z at a feasible point x exhaustive if x+2z is not feasible.

Notice that if one is given a direction maximizing the ratio as well as the vector u of
upper bounds, an exhaustive direction that also maximizes the ratio can be computed in
O�d+ logU� time.

ALGORITHM I

(1) Let x be a feasible solution.
(2) Call the (MRA) oracle with input x and w.
(3) IF the oracle outputs “there is no feasible

augmenting direction,”
(4) THEN STOP. The current x is optimal.
(5) ELSE let z be a feasible augmenting direction

that maximizes wz/�p�x�z++n�x�z−� and which
is exhaustive. Set x �= x+ z. GOTO (2).

Theorem 2.2. Let � be given by a feasible point x0 ∈ � , by the upper bound vec-
tor u, and by an oracle to solve the maximum-ratio augmentation problem (MRA). Then,
for any w ∈ �d, Algorithm I solves the corresponding optimization problem (OPT) with
O�d log�dWU�� calls to the (MRA) oracle.

Proof. Let x be the feasible point at the current iteration and let z be the (exhaustive)
direction returned by the (MRA) oracle. Furthermore, let z∗ = x∗ −x be the direction to an
optimal solution x∗ with respect to w.
By the choice of p�x� and n�x�, p�x��z∗�++n�x��z∗�− ≤ d. Since z is exhaustive, there

exists a coordinate j such that either xj +2zj > uj , i.e., z
+
j > �uj −xj�/2, or xj +2zj < 0,

i.e., z−j > xj/2. These two observations together with the property that z is a solution to
(MRA) implies

wz≥ wz∗ p�x�z++n�x�z−
p�x��z∗�++n�x��z∗�− ≥ wz∗

2d
�

Consequently, the improvement in every step is at least a �1/2d�-fraction of the best possible
improvement. Since the gap in the objective function value between the optimal solution x∗

and the initial solution x0 is O�dWU�, Algorithm I terminates with an optimal solution
after O�d log�dWU�� calls to the (MRA) oracle. �

To complete the first proof of Theorem 2.1, it remains to show that the maximum-ratio
augmentation problem can be solved by means of the given directed augmentation oracle.

Lemma 2.3. Let � be given by an oracle that solves the directed augmentation problem
(AUG±). Then, given any feasible point x ∈ � and any objective function vector w ∈ �d,
one can determine with O�d log�dWU�� calls to the (AUG±) oracle a feasible augmenting
direction z that maximizes the ratio wz/�p�x�z+ +n�x�z−�, if one exists. Otherwise, one
call to the (AUG±) oracle suffices to assert that x is optimal with respect to w. That is, the
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maximum-ratio augmentation problem (MRA) can be solved with O�d log�dWU�� calls to
the (AUG±) oracle.

Proof. We first use the (AUG±) oracle to check whether the given point x is optimal.
If it is not, we solve the maximum-ratio problem

max
z

wz

p�x�z++n�x� z−
by repeated applications of the (AUG±) oracle, following the standard fractional program-
ming approach. For a given estimate � of the maximum-ratio value, the objective function
input into the directed augmentation oracle is

wz−��p�x�z++n�x�z−��(2)

Depending on the output, � is either a lower bound for the maximum ratio (“augmenting
direction w.r.t. (2) found”) or an upper bound (“there is no augmenting direction w.r.t. (2)”).
We use binary search to find the maximum ratio �∗ and a corresponding direction. For the
running time, note that WU is an upper bound on �∗ and also that the minimum difference
between two distinct ratios is ��1/�d2U 2d��. �

Together, Theorem 2.2 and Lemma 2.3 imply the following result if we assume that the
(MRA) oracle is simulated by the (AUG±) oracle in Algorithm I.

Corollary 2.4. Let � be given by a feasible point x0 ∈ � , by the upper bound vec-
tor u, and by an oracle that solves the directed augmentation problem (AUG±). Then, for
any objective function w ∈ �d, Algorithm I solves the corresponding optimization problem
(OPT) with O�d2 log2�dWU�� calls to the (AUG±) oracle.

2.3. Algorithm II—Scaling. The second algorithm to prove Theorem 2.1 does not aim
at repeatedly determining a maximum-ratio direction (which is costly) but only at determin-
ing an augmenting direction (for a properly chosen objective) while keeping essentially the
same number of iterations. It is inspired by a similar variant of Wallacher’s (1992) min-cost
flow algorithm.

ALGORITHM II

(1) Let x be a feasible solution.
(2) � �= 2WU .
(3) Call the �AUG±� oracle with input x and ��z� �=

wz−��p�x� z++n�x� z−�.
(4) IF the oracle outputs “there is no feasible direction z

with ��z� > 0”, THEN
(a) IF � < 1/d, THEN STOP. The current x is optimal.
(b) ELSE (i.e., �≥ 1/d), � �= �/2. GOTO (3).

(5) ELSE let z be a feasible and exhaustive direction with
��z� > 0. Set x �= x+ z. GOTO (3).

Notice first that Algorithm II outputs a correct answer when it terminates. Since �p�x�z++
n�x�z−� ≤ d for every direction z returned by the (AUG±) oracle, it follows from the
integrality of data that ��z� ≤ 0 implies wz ≤ 0 if � < 1/d (Case 4a). As for the running
time, observe that the initial value of the scaling parameter � is an upper bound for the ratio
of the (MRA) problem at any feasible point x. We halve � only when it is an overestimate
of the maximum ratio at the current point. Consequently, when we determine a direction z
with ��z� > 0 for the current �, it has a ratio at most a factor of 2 smaller than the maximal
one. The last observation is crucial in order to recycle the analysis given in the proof of
Theorem 2.2.
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Theorem 2.5. Let � be given by a feasible point x0 ∈ � , by the upper bound vector u,
and by an oracle that solves the directed augmentation problem (AUG±). Then, for any
objective function w ∈ �d, Algorithm II solves the corresponding optimization problem
(OPT) with O�d log�dWU�� calls to the (AUG±) oracle.

Proof. We observe first that � is halved at most O�log�dWU�� times. That is, there
are at most O�log�dWU�� scaling phases. A scaling phase consists of all iterations of
Steps (3) and (4) in which the parameter value � remains unchanged. We aim to show that
the number of calls to the (AUG±) oracle within a scaling phase does not exceed 4d.
Consider for each scaling phase with parameter value � the corresponding sequence

of iterates, say x0��� x1��� � � � . That is, x0�� is the current solution after we had invoked
Case 4b in the previous iteration of the algorithm. Therefore, we know that

w�x∗ −x0���
p�x0����x∗ −x0���++n�x0����x∗ −x0���− ≤ 2��(3)

where x∗ denotes an optimal solution. On the other hand, if we consider the transition
from xi�� to xi+1��, it follows from ��xi+1��−xi��� > 0, from the fact that xi+1��−xi�� is
exhaustive, and from Equation (3) that

w�xi+1��−xi��� ≥ ��p�xi����xi+1��−xi���++n�xi����xi+1��−xi���−�
≥ �

2

≥ 1
4

w�x∗ −x0���
p�x0����x∗ −x0���++n�x0����x∗ −x0���−

≥ 1
4d
w�x∗ −x0����

Hence, there can be at most 4d iterations per scaling phase. Therefore, Algorithm II
terminates with an optimal solution after at most O�d log�dWU�� calls to the (AUG±)
oracle. �

Note that Theorem 2.2 and Theorem 2.5 only imply that both Algorithm I and Algo-
rithm II have weakly polynomial running time, respectively. In fact, McCormick and Shioura
(1996, 2000) proved that Algorithm I is not a strongly polynomial-time algorithm, even for
the min-cost flow problem.

2.4. Examples. In this section, we aim to briefly illustrate the potential of the algo-
rithmic framework provided by Theorem 2.1 (and especially by Algorithm II) with a few
selected examples. We show that the directed augmentation problem often has a natural
combinatorial interpretation and that this holds even when the formulation contains slack
or surplus variables.

The min-cost flow problem. Our discussion of the min-cost flow problem was
already started in §2.1. Recall that solving the directed augmentation problem simply
amounts to finding a negative-cost dicycle in a given arc-weighted digraph. Since one
can detect a negative dicycle in O�min
nm�

√
nm log�nW�� time (Karp 1978, Orlin and

Ahuja 1992), Algorithm II solves the min-cost flow problem with integral data in time
O�m log�nUW�min
nm�

√
nm log�nW��. Here, n and m denote the number of nodes and

arcs of the given network, respectively. Interestingly, among cycle-canceling algorithms
the running time of the generic Algorithm II is only beaten by Goldberg and Tarjan’s
(1989) cancel-and-tighten algorithm, which has running time O�mn logn log�nW��, and by
the O�m�m+ n logn� log�nU�� capacity-scaling algorithm of Sokkalingam et al. (2000).
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Goldberg and Tarjan’s bound is within log factors of the fastest running time of any known
min-cost flow algorithm. We refer the reader to Shigeno et al. (2000) and Sokkalingam et al.
(2000) for surveys of cycle-canceling algorithms and to Ahuja et al. (1993) for min-cost
flow algorithms in general.
Both Algorithms I and II are known in the min-cost flow context; see Wallacher (1992).

Linear programming in unimodular spaces. McCormick and Shioura (1996)
extended Wallacher’s min-cost flow algorithm (version I) to the problem of max
wx� Ax =
b�0≤ x ≤ u where A is totally unimodular. For their algorithm, they obtain the same run-
ning time as stated in Theorem 2.2. However, they solve every (MRA) problem occurring
within Algorithm I by solving a sequence of O��min
 �!� linear programs where � is
the rank of A,  is the maximal number of nonzero components of nonnegative circuits of
A, and ! is the number of these circuits.
One may use Algorithm II instead. Then, Theorem 2.5 together with the observation that

(AUG±) amounts to solving one simple linear program gives a different algorithm for lin-
ear programming in unimodular spaces. It solves O�d log�dUW�� simple linear programs
in total. Depending on the size of U and W , this algorithm can be faster than the algo-
rithm proposed in McCormick and Shioura (1996). In a subsequent paper, McCormick and
Shioura (2000) also propose the use of Algorithm II.

The knapsack problem. So far, we have discussed problems that are naturally for-
mulated as integer programs with equality constraints, i.e., as programs of the form (1).
Although it is well known that any integer program can be brought into this form by the
introduction of auxiliary variables, we want to exemplify with the help of the NP-hard knap-
sack problem that the directed augmentation problem may still have a nice combinatorial
interpretation. While the standard knapsack problem is max
wx� ax≤ b�0≤ x≤ u�x ∈�d,
the version that fits our framework is max
wx� ax+ s = b�0≤ x ≤ u�0≤ s ≤ b�x ∈�d� s ∈
�. As for the directed augmentation problem, s is regarded as an additional item, and we
have a “+” and a “−” copy of every item. The “+” copy and the “−” copy of an item j
usually have a different value but the same weight aj . The problem is to select “+” and
“−” items of positive total value such that the weight of items chosen from each side is
equal. Multiple selection of the same item j is permitted as long as its supply (uj−xj for a
“+” copy, xj for a “−” copy) is not exceeded. Notice that in this case Theorem 2.1 implies
that this problem is NP-hard.

0/1-integer programming. It is obvious that for 0/1-integer programming, i.e., � ⊆

0�1d, directed augmentation and ordinary augmentation in the original variables are equiv-
alent. Consequently, Algorithms I and II constitute new proofs of the equivalence of opti-
mization and augmentation. The previous algorithm was based on bit scaling and needed
O�d logW� calls to the augmentation oracle (Grötschel and Lovász 1995, Schulz et al.
1995).

3. Maximum mean augmentation. The driving force behind Theorem 2.1 is the ability
to (approximately) solve the maximum-ratio problem (MRA) in polynomial time. Different
ratios have been considered in the literature; see, e.g., Shigeno et al. (2000) and Sokkalingam
et al. (2000) for an overview of corresponding algorithms for the min-cost flow problem.
In this section we discuss the power of two (other) maximum mean augmentation oracles
for general integer programming. The first maximizes the improvement per element in the
support of the augmenting vector, the second averages over its l1-norm. Notice that in the
case of 0/1-integer programming problems, all three maximum ratio augmentation problems
coincide.
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The support supp�z� of a vector z ∈�d is defined as supp�z� �= 
j ∈ 
1� � � � � d� zj �= 0.
If the denominator of the maximum-ratio oracle contains the cardinality of the support, it
is relatively easy to show that, given such a maximum mean augmentation oracle, one can
optimize in oracle-polynomial time. Even better, we do not even need to assume that the
integer program is given in equation form.

Theorem 3.1. Let � ⊆ 
x ∈ �d� 0≤ x ≤ u be given by a feasible point x0 ∈ � and by
an oracle that solves the following problem:

Given w ∈ �d and a point x ∈ � , find a
feasible direction z ∈ �d such that wz > 0
and z maximizes

wz


supp�z�
 ,
or assert that no such z exists.

Then, there exists an algorithm that solves max
wx� x ∈ �  with O�d log�dWU�� calls to
the oracle, for any objective function w ∈ �d.

Proof. The algorithm is the obvious one. We simply invoke the oracle iteratively with
the solution it produced in the previous step until we reach an optimum. We only have to
show that the number of iterations (and thus calls to the oracle) is sufficiently small.
Let w ∈ �d be an arbitrary objective function and let x∗ be an optimal solution to the

problem max
wx� x ∈ � . Consider an arbitrary iteration of the algorithm with current
(nonoptimal) solution x. Let z be the output of the oracle and z∗ = x∗−x. By the properties
of the oracle, we know that

wz


supp�z�
 ≥
wz∗


supp�z∗�
 �
Since the cardinality of the support of any augmenting vector is at least one, but at most d,
it follows that wz≥wz∗/d. Consequently, the algorithm terminates with an optimal solution
after O�d log�dWU�� iterations. �

The situation is less obvious if the denominator is formed by the l1-norm of the augment-
ing vector. Nevertheless, efficient optimization is still possible if we additionally assume
that the circuits of A are reasonably small. A vector z ∈ �d\
0 satisfying Az= 0 is a cir-
cuit of A if the components of z are relatively prime and the support of z is minimal with
respect to inclusion. The input size �A� of a matrix A is the sum of the encoding lengths of
its entries, in binary representation. An improving direction z at point x is called reducible
if there exist two other directions, say, z1 �= 0 and z2 �= 0 such that x+ z1 and x+ z2 are
also feasible, z= z1+z2, and z+1 ≤ z+ as well as z−1 ≤ z−. If z is not reducible, we say it is
irreducible.

Theorem 3.2. Let � = 
x ∈ �d� Ax = b�0≤ x ≤ u be given by a feasible point x0, by
the upper bound vector u, and by an oracle that solves the following problem:

Given w ∈ �d and x ∈ � , find a feasible
direction z ∈ �d such that wz > 0, z is
irreducible, and z maximizes

wz

�z�1
,

or assert that no such z exists.

If the l1-norm of the circuits of A is bounded from above by a polynomial in d and �A�,
then there exists an algorithm that solves the optimization problem max
wx� x ∈ �  in
oracle-polynomial time, for any objective function w ∈ �d.
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Before the proof of Theorem 3.2 we mention without proof that the maximum mean
augmentation oracle needed in Theorem 3.2 can be simulated by the directed augmentation
oracle (AUG±).
The proof of Theorem 3.2 requires some preparation. Again, the overall plan is to show

that the key measure of proximity to optimality, i.e., the considered ratio, cannot start
out too large, does not need to end up too small, and decreases at a geometric rate. Not
surprisingly, this outline reveals similarities, e.g., to proving that minimum mean cycle-
canceling is a polynomial-time procedure for min-cost flow problems (see Goldberg and
Tarjan 1989 or Ahuja et al. 1993, 376–380). Notice, however, that their proof uses explicit
dual information, which is not available in the general case. Dual information is also used
by McCormick et al. (1994) to extend the arguments of Goldberg and Tarjan in order to
obtain the analog to Theorem 3.2 for general linear programs.
Once again, the strategy is to repeatedly call the oracle starting from the initial feasible

solution x0. Let z1� z2� � � � be the directions returned by the oracle. It is easy to deter-
mine positive integer scalars %1�%2� � � � such that %1z

1�%2z
2� � � � are still feasible, but also

exhaustive. These are the directions we use. Observe that the ratio of improvement in the
original objective function to the l1-norm is the same for zi and %iz

i, for all i.

Lemma 3.3. Let x be a feasible point, let z be a feasible augmenting vector in x that
maximizes ��x� �= wz/�z�1, and let z′ be a feasible augmenting vector in x+ z that max-
imizes ��x+ z�. Assume that �z+ z′�1 ≤ �z�1+&�z′�1 for some scalar 0 < & ≤ 1. Then,
&��x�≥ ��x+ z�.
Proof. Since z+ z′ is a feasible augmenting vector in x, and z is one maximizing the

ratio, we obtain

wz

�z�1
≥ w�z+ z′�

�z+ z′�1
≥ wz+wz′

�z�1+&�z′�1
� so that &

wz

�z�1
≥ wz′

�z′�1
� �

In particular, Lemma 3.3 implies that the sequence ��x0�, ��x1�, ��x2�� � � � of maximum
ratios is nonincreasing. In addition, if two consecutive directions of improvement differ
in sign in at least one coordinate, then the ratio corresponding to the second direction is
significantly smaller than the ratio corresponding to the first direction. First, however, we
need the following observation and lemma.

Observation 3.4. Let z and z′ be two integral vectors such that there exists a coordinate
j with zj · z′j < 0. Then, �z+ z′�1 ≤ �z�1+�z′�1−2.

We next show that there cannot be too many consecutive improving vectors with no
coordinate pointing into opposite directions.

Lemma 3.5. Let %iz
i� %i+1z

i+1� � � � � %qz
q be a subsequence of exhaustive augmenting

vectors such that no two of them point into opposite directions with respect to some coor-
dinate. Then, the number q− i+1 of vectors in this sequence is O�d logU�.

Proof. Since the vectors %iz
i� %i+1z

i+1� � � � � %qz
q are exhaustive, in each step l there is

a coordinate, say j, such that either uj −xlj < �uj −xl−1
j �/2 or xlj < x

l−1
j /2. Here, xl is the

feasible point determined in iteration l. That is, xl = xl−1+%lzl. The claim follows. �

We are now ready to prove Theorem 3.2.
Proof of Theorem 3.2. Lemma 3.5 implies that after a subsequence of at most

O�d logU� iterations, say, from i to q, there is an augmenting vector zq+1 such that
zlj · zq+1

j < 0 for some coordinate j ∈ 
1�2� � � � � d and some iterate l ∈ 
i� i+1� � � � � q (if
we have not yet arrived at an optimal solution). We may assume that l is the last index
in this sequence with this property. Therefore, we may apply zq+1 at xl; i.e., xl+ zq+1 is
feasible. Since zq+1 is irreducible, zq+1 belongs to the Hilbert basis of the pointed poly-
hedral cone generated by the circuits of A that lie in the same orthant as zq+1. Thus, its
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l1-norm is polynomially bounded in d and the maximal l1-norm of a circuit of A. We there-
fore obtain �zq+1�1 ≤ p�d� �A�� for some polynomial p. Then, Observation 3.4 implies that
�zl+ zq+1�1 ≤ �zl�1+�1−1/p�d� �A����zq+1�1. Consequently, by Lemma 3.3 we have that
��xq�≤ �1−1/p�d� �A�����xl−1�.
Hence, we observe a significant improvement in the maximum mean ratio after every

sequence of at most O�d logU� consecutive iterations, in which the maximum mean ratio
does not increase. It therefore follows that, after at most O�p�d� �A��d logU� iterations,
we halve the maximum mean ratio. Since it is bounded from above by W and from below
by 1/p�d� �A��, it follows that the overall number of calls to the oracle is bounded by a
polynomial in the input size. �

4. Concluding remarks. The main purpose of this paper is to show that if one can
solve the directed augmentation problem in polynomial time, it immediately follows that
there is a polynomial-time algorithm for optimization. This result partially answers a ques-
tion raised in Schulz et al. (1995).
The generic algorithms and their analyses that underly this implication provide a general

framework for the design and analysis of algorithms for special integer programming and
combinatorial optimization problems. We have pointed out that Algorithms I and II gen-
eralize some known algorithms for special combinatorial problems, and are new ones for
some others.
On the other hand, we cannot expect to solve (AUG±) in polynomial time if the cor-

responding optimization problem is NP-hard, unless P = NP. We may hope, however, to
be able to solve (AUG±) efficiently if we restrict ourselves to special augmenting vectors.
Then, of course, by the algorithms described above we will not necessarily obtain an opti-
mal solution but maybe a good one.
It seems to be an interesting question to what extent the results of this paper can be

extended if one only has access to an augmentation oracle in the original variables; i.e.,
the directed version is not available. Either answer to this question is of importance. A
positive answer would imply that the diameter of the skeleton of the convex hull of 
x ∈
�d� Ax= b�0≤ x≤ u is polynomially bounded in ��A�b�� and logU , as we could assume
to walk along the edges. Still, no polynomial bound on the diameter of polytopes is known
in general.
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