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1. Introduction. We consider the following classic scheduling problem. We have a set of jobs N =
!1" # # # "n$ that needs to be scheduled nonpreemptively on a single machine that can process, at most, one
job at a time. Each job i ∈ N has a processing time pi ∈ !≥0 and weight wi ∈ !≥0. Precedence constraints
are represented by an acyclic, transitively closed directed graph G= %N "A&: if %i" j& ∈ A, then job i must be
processed before job j . The objective is to schedule these jobs in a way that respects the precedence constraints
and minimizes the sum of weighted completion times. In the notation of Graham et al. [10], this problem is
denoted as 1 !prec ! ∑wjCj .

The scheduling problem 1 !prec ! ∑wjCj is strongly NP-hard (Lawler [14], Lenstra and Rinnooy Kan [15]).
Currently, the best approximation algorithms all have a performance guarantee of 2 (Hall et al. [11], Chudak
and Hochbaum [4], Chekuri and Motwani [3], Margot et al. [16]). On the inapproximability front, Ambühl
et al. [1] showed that a PTAS is not possible, assuming NP-complete problems cannot be solved in randomized
subexponential time. Bansal and Khot [2] showed that it is NP-hard to compute a %2−'&-approximate schedule
for any '> 0, assuming a stronger version of the Unique Games Conjecture (Khot [13]) holds.
In this work, we focus on 0-1 bipartite instances. In a 0-1 bipartite instance %N1"N2"A&, the set of jobs is

partitioned into N =N1∪̇N2, and precedence constraints take the form of a directed bipartite graph %N1∪̇N2"A&,
in which %i" j& ∈A implies i ∈N1 and j ∈N2. The jobs in N1 have unit processing time and zero weight, and the
jobs in N2 have zero processing time and unit weight. This scheduling problem on 0-1 bipartite instances can
equivalently be viewed as a linear ordering problem on a mixed bipartite graph, in which there is an undirected
edge between every pair of nodes i ∈N1, j ∈N2, for which %i" j& &∈A. The goal is to find an orientation B of the
undirected edges, such that the resulting directed graph %N1 ∪N2"A∪B& is acyclic and has as few arcs that are
directed from N1 to N2 as possible.
These 0-1 bipartite instances have further appeal than their simple combinatorial structure: it turns out that

these simple instances effectively capture the inherent difficulty of 1 !prec ! ∑wjCj . Chekuri and Motwani [3]
used a class of 0-1 bipartite instances to show that the linear programming relaxation in linear ordering variables
attributable to Potts [19] has an integrality gap of 2. Moreover, Woeginger [23] showed that a (-approximation
algorithm for 0-1 bipartite instances of 1 !prec ! ∑wjCj implies a %(+ '&-approximation algorithm for arbi-
trary instances of 1 !prec ! ∑wjCj ; that is, the approximability behavior of 0-1 bipartite instances and arbitrary
instances is virtually identical. In fact, the previously mentioned inapproximability result attributable to Bansal
and Khot [2] was proved using 0-1 bipartite instances.
We study 0-1 bipartite instances of 1 !prec ! ∑wjCj with a probabilistic lens. One appealing feature of 0-1

bipartite instances is that they are completely defined by their precedence constraints. Because precedence
relations in bipartite partial orders are independent, we can apply the model of Erdös and Rényi [7] often used
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in random graph theory to define classes of random 0-1 bipartite instances. Our analysis of these random 0-1
bipartite instances yields several “almost all”-type results:
• We show that almost all 0-1 bipartite instances are non-Sidney-decomposable. The decomposition technique

of Sidney [21] splits an instance of 1 !prec ! ∑wjCj into smaller instances so that the concatenation of optimal
schedules for the smaller parts yields an optimal schedule for the entire instance. Together with the work of
Chekuri and Motwani [3], Margot et al. [16], and Goemans and Williamson [9], our result also implies that for
almost all 0-1 bipartite instances, any feasible schedule is a 2-approximation.
• Using two-dimensional Gantt charts, we show that for almost all 0-1 bipartite instances, all feasible sched-

ules are actually arbitrarily close to optimal. In particular, we show that for any given ' > 0, any feasible
schedule is a %1+ '&-approximation with high probability, when the number of jobs is sufficiently large.

• We give a lower bound on the integrality gap of various linear programming relaxations of 1 !prec ! ∑wjCj

for almost all 0-1 bipartite instances. For the random models of 0-1 bipartite instances that we study, this lower
bound approaches 2 as the precedence constraints become sparser in expectation. This result generalizes a result
of Chekuri and Motwani [3].

2. Models for random 0-1 bipartite instances. We form a model for random 0-1 bipartite instances as
follows. Let n ∈ ">0 and q ∈ %0"1&. In addition, let ) ∈ !n+1

≥0 be a probability vector; that is,
∑n

s=0)s = 1.
We define #%n")"q& as the probability space of 0-1 bipartite instances %N1"N2"A& with n jobs such that
$%!N1!= s" !N2!= n− s&= )s for s = 0" # # # "n and each arc %i" j& ∈ N1 ×N2 appears in A independently with
probability q.
In this work, we consider random models of “balanced” 0-1 bipartite instances %N1"N2"A&, in the sense that

the ratio between the size of N1 and the size of N2 is not too far from *%1& with high probability. In particular,
we look at models #%n")"q& with probability vector ) ∈!n+1

≥0 that satisfy

+%n&−1
∑

s=0

)s ≤ c1n
c2+%n&2−n and

n
∑

s=n−+%n&+1

)s ≤ c3n
c4+%n&2−n (1)

for some function +, ">0 → ">0 such that +%n& ∈ *%log- n& for some fixed - ≥ 1 and for some constants
c1" c2" c3" c4 ∈!>0, when n is sufficiently large.
These conditions on the probability vector ) are satisfied for two natural models of random 0-1 bipartite

instances in particular. First, consider #%n" *)"q&, in which *)s =
(

n
s

)

%1/2&n for s = 0" # # # "n: jobs are assigned
to N1 and N2 with equal probability. Note that #%n" *)"1/2& is the uniform distribution over all 0-1 bipartite
instances. There exist constants c1" c2" c3" c4 ∈!>0 so that the probability vector *) satisfies (1) for any +%n& ∈
*%log- n& with -≥ 1, because

+%n&−1
∑

s=0

*)s =
+%n&−1
∑

s=0

(

n

s

)

2−n ≤ +%n&n+%n&2−n"

n
∑

s=n−+%n&+1

*)s =
n
∑

s=n−+%n&+1

(

n

s

)

2−n ≤ +%n&n+%n&2−n.

Second, consider #%n" +)"q&, in which +)s = 1 if s = /n, and +)s = 0 otherwise, for some fixed / ∈ %0"1& such
that /n ∈ ">0 and %1− /&n ∈ ">0. For any instance %N1"N2"A& from #%n" +)"q&, the proportion between the
number of jobs in N1 and the number of jobs in N2 is always fixed. Clearly, there exist constants c1" c2" c3" c4 ∈
!>0 so that the probability vector +) satisfies (1) for any +%n& ∈ *%log- n& with - ≥ 1, when n is sufficiently
large.

3. Sidney-decomposability and 0-1 bipartite instances. Sidney [21] introduced a very useful characteri-
zation of optimal schedules to 1 !prec ! ∑wjCj . We define

(%S& ,=











∑

j∈S
wj/

∑

j∈S
pj for any subset of jobs S ⊆N such that

∑

j∈S
pj > 0,

+- otherwise.

A set of jobs I ⊆N is called initial if j ∈ I and %i" j& ∈A imply i ∈ I . An initial set I∗ is said to be (-maximal
if I∗ ∈ argmax!(%I&, I is a nonempty initial set$. Sidney showed that there exists an optimal schedule in which
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all jobs in a (-maximal initial set S∗ are scheduled before those in N\S∗. By recursively applying this result,
we naturally obtain a partition of jobs %S1" # # # "Sk& with (%S1&≥ · · ·≥ (%Sk&. Such a partition is called a Sidney
decomposition. Sidney’s decomposition theory can be seen as a generalization of Smith’s rule [22] for the
problem without precedence constraints. An instance of 1 !prec ! ∑wjCj is non-Sidney-decomposable if the only
(-maximal initial set is N ; otherwise the instance is called Sidney-decomposable. An instance is called stiff if
(%N & ≥ (%I& for all nonempty initial sets I ; note that stiffness is a necessary condition for an instance to be
non-Sidney-decomposable.
A Sidney decomposition can be computed in polynomial time (Lawler [14], Picard and Queyranne [18], Gallo

et al. [8], Margot et al. [16]). Independently, Chekuri and Motwani [3] and Margot et al. [16] showed that
for stiff instances, every feasible schedule is already a 2-approximation. A geometric proof of this result was
subsequently given by Goemans and Williamson [9].
In this section, we show that almost all 0-1 bipartite instances are non-Sidney-decomposable. We begin by giv-

ing the following characterization of Sidney-decomposability for 0-1 bipartite instances. For any directed graph
%N "A& and any subset of vertices X ⊆N , we define 0%X& ,= !i ∈N\X, %i" j& ∈A or %j" i& ∈A for some j ∈X$;
in words, 0%X& is the set of neighbors of X.

Lemma 3.1. A 0-1 bipartite instance %N1"N2"A& of 1 !prec ! ∑wjCj with !N1! = n1, !N2! = n2, and
n1 + n2 ≥ 2 is Sidney-decomposable if and only if one of the following three conditions holds: (SD1) n1 = 0;
(SD2) n2 = 0; (SD3) (i) there exists a subset Y ⊆N2 such that Y &=/, N2, and n2!0%Y &! ≤ n1!Y !, or (ii) !0%N2&! ≤
n1 − 1.

Proof. First, note that a 0-1 bipartite instance with n1 + n2 ≥ 2 is Sidney-decomposable when n1 = 0 or
n2 = 0, because any nonempty subset of jobs I is initial and satisfies (%I&= (%N &.
Now suppose a 0-1 bipartite instance with n1 > 0 and n2 > 0 is Sidney-decomposable. By definition, this

occurs if and only if

there exists a (-maximal initial set I &=N such that (%I&≥ n2/n1. (2)

Recall that by definition, a (-maximal initial set is nonempty. Suppose (2) is satisfied with an initial set I
such that I ⊆ N1 ∪N2, but I &⊆ N1. Because I is (-maximal, I = 0%Y &∪ Y for some Y ⊆ N2 such that Y &=/.
We consider the following cases:
• If Y &=N2, then (2) holds if and only if !Y !/!0%Y &! ≥ n2/n1.
• Otherwise, we have Y =N2. In this case, (2) holds if and only if !0%N2&! ≤ n1 − 1.

Note that (2) cannot be satisfied if I ⊆N1, because in this case, (%I&= 0<n2/n1 = (%N &. !

Note that (SD3) implies that a 0-1 bipartite instance %N1"N2"A& with !N1! = !N2! ≥ 1 is non-Sidney-
decomposable if and only if !0%N2&!= !N1!= !N2! and !0%Y &!> !Y ! for all Y ⊆ N2 such that Y &=/"N2. This
is very similar to Hall’s marriage theorem [12], which says that an undirected bipartite graph %N1∪̇N2"A& with
!N1!= !N2! has a perfect matching if and only if !0%Y &! ≥ !Y ! for all Y ⊆N2.
We now give an analogous characterization of Sidney-decomposable 0-1 bipartite instances that considers

subsets of N1 instead.

Lemma 3.2. The condition (SD3) in Lemma 3.1 holds if and only if the following condition holds: (SD3′)
(i) There exists a subset X ⊆N1 such that X &=/, N1, and n1!0%X&! ≤ n2!X!, or (ii) !0%N1&! ≤ n2 − 1.

Proof. We show that (SD3) implies (SD3′). Suppose that (SD3) holds because there exists a subset Y ⊆N2

such that Y &=/, N2 and n2!0%Y &! ≤ n1!Y !. Let X =N1\0%Y &. We consider the following cases:
• 0%Y &=/. In this case, X =N1. Because Y &=/, this implies that !0%N1&!= !0%X&! ≤ n2 − 1.
• 0%Y & &=/"N1. In this case, X &=/"N1. In addition, we have that !X!= n1 − !0%Y &! and !0%X&! ≤ n2 − !Y !.

These two observations, in addition to the assumption that n2!0%Y &! ≤ n1!Y !, imply that n1!0%X&! ≤ n2!X!.
• 0%Y &=N1. In this case, because n2!0%Y &! ≤ n1!Y !, we have that !Y ! ≥ n2, which is a contradiction, because

Y &=N2.
Now suppose that (SD3) holds because !0%N2&! ≤ n1 − 1. Let X = N1\0%N2&. Note that because !0%N2&! ≤

n1 − 1, we have that X &= /. In addition, because X ∩ 0%N2& = /, we have that 0%X& = /. We consider the
following cases:
• 0%N2& &=/. Then X &=/"N1 and n1!0%X&!= 0≤ n2!X!.
• 0%N2&=/. Then X =N1 and !0%N1&!= !0%X&!= 0≤ n2 − 1.
Showing the reverse direction works in a similar manner. !

Before we proceed, we need the following lemma.
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Lemma 3.3. For any a ∈ %0"11 such that as ∈">0 and k= 1" # # # " s,
(

as
2ak3

)

≤
(

s
k

)

.

Proof. The claim follows directly from the fact that
(

n
x

)

≥
(

n−1
x−1

)

and
(

n
x

)

≥
(

n−1
x

)

for any x= 1" # # # "n. !

Using the characterization of Sidney-decomposability in Lemmas 3.1 and 3.2, we can show that almost all
0-1 bipartite instances are non-Sidney-decomposable.

Theorem 3.1. Fix q ∈ %0"1&, -> 1, and +%n& ∈*%log- n&. Let ) ∈!n+1
≥0 be a probability vector that satis-

fies (1) for +%n& and some constants c1" c2" c3" c4 ∈!>0, when n is sufficiently large. Then,

lim
n→-

$%B ∈#%n")"q& is non-Sidney-decomposable&= 1.

Proof. Let B = %N1"N2"A& be a random 0-1 bipartite instance from #%n")"q& with probability vector )
that satisfies (1) for +%n& and for some constants c1" c2" c3" c4 ∈!>0, when n is sufficiently large. We show that
the probability that B satisfies any of the conditions (SD1)–(SD3) goes to zero as n approaches infinity. For the
remainder of this proof, we consider n sufficiently large so that n≥ 2 and +%n&≤ 2n/23.
First, we consider (SD1). We have that

$%B ∈#%n")"q& satisfies (SD1)&= $%B ∈#%n")"q& has n1 = 0&=)0 ≤ c1n
c2+%n&2−n"

and so limn→- $%B ∈#%n")"q& satisfies (SD1)&= 0. Similarly, for (SD2), we have that

$%B ∈#%n")"q& satisfies (SD2)&= $%B ∈#%n")"q& has n2 = 0&=)n ≤ c3n
c4+%n&2−n"

and therefore limn→- $%B ∈#%n")"q& satisfies (SD2)&= 0.
Now we consider (SD3). Observe that any bipartite graph %N1 ∪N2"A& with !N1!= s and !N2!= n− s with a

subset Y of N2 of size k such that !0%Y &! ≤ %s/%n− s&&k can be constructed as follows. Choose a subset Y of N2

of size k and a subset X of N1 of size 2%s/%n− s&&k3, and forbid all edges between Y and N1\X. Any bipartite
graph %N1∪N2"A& with !N1!= s and !N2!= n−s with a subset X of N1 of size k such that !0%X&! ≤ %%n− s&/s&k
can be constructed similarly. Therefore, by conditioning on the size of N1 and N2 and using a union bound,
we have

$%B∈#%n")"q& satisfies (SD3&&

=
n−1
∑

s=1

)s ·$%B∈#%n")"q& satisfies (SD3) , !N1!=s" !N2!=n−s&

≤
2n/23
∑

s=1

)s ·$%B∈#%n")"q& satisfies (SD3) , !N1!=s"!N2!=n−s&

+
n−1
∑

s=4n/25
)s ·$%B∈#%n")"q& satisfies (SD3′) , !N1!=s"!N2!=n−s&

≤
2n/23
∑

s=1

)s ·
(

n−s−1
∑

k=1

(

n−s

k

)(

s
2%s/%n−s&&k3

)

%1−q&k%s−2%s/%n−s&&k3&+s%1−q&n−s

)

+
n−1
∑

s=4n/25
)s ·

(

s−1
∑

k=1

(

s

k

)(

n−s
2%%n−s&/s&k3

)

%1−q&k%n−s−2%%n−s&/s&k3&+%n−s&%1−q&s
)

.

We define

Ds ,= )s ·
n−s−1
∑

k=1

(

n− s

k

)(

s
2%s/%n− s&&k3

)

%1− q&k%s−2%s/%n−s&&k3& for s = 1" # # # " 2n/23"

Es ,= )s · s%1− q&n−s for s = 1" # # # " 2n/23"

Fs ,= )s ·
s−1
∑

k=1

(

s

k

)(

n− s
2%%n− s&/s&k3

)

%1− q&k%n−s−2%%n−s&/s&k3& for s = 4n/25" # # # "n− 1"

Gs ,= )s · %n− s&%1− q&s for s = 4n/25" # # # "n− 1"
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so that

$%B ∈#%n")"q& satisfies (SD3&&≤
2n/23
∑

s=1

Ds +
2n/23
∑

s=1

Es +
n−1
∑

s=4n/25
Fs +

n−1
∑

s=4n/25
Gs.

For the remainder of this proof, let r = %1− q&−1. Note that r > 1. First, we consider the expression Fs in the
regime s = 4n/25" # # # "n− +%n&. By Lemma 3.3 (letting a = %n− s&/s), for all s = 4n/25" # # # "n− +%n&, we
have that

Fs ≤)s ·
s−1
∑

k=1

(

s

k

)2

%1− q&k%n−s−2%%n−s&/s&k3& ≤)s ·
s−1
∑

k=1

(

s

k

)2

%1− q&%%n−s&/s&k%s−k&.

For all s = 4n/25" # # # "n− +%n& and k= 1" # # # " s− 1, define

Hs"k ,=
(

s

k

)2

%1− q&%%n−s&/s&k%s−k&"

and note that Hs"k = Hs" s−k. We would like to show that Hs"k ≥ Hs"k+1 for all s = 4n/25" # # # "n− +%n& and
k= 1" # # # " 2s/23− 1, or equivalently,

2 logr
s− k

k+ 1
≤ n− s

s
%s− 2k− 1& for k= 1" # # # " 2s/23− 1 and s = 4n/25" # # # "n− +%n&. (3)

Define
2%x& ,= n− s

s
%s− 2x− 1&− 2 logr%s− x&+ 2 logr%x+ 1&.

Taking derivatives, we obtain

32

3x
=−2%n− s&

s
+ 2

log r

(

1
s− x

+ 1
x+ 1

)

"
322

3x2
= 2

log r

(

1
%s− x&2

− 1
%x+ 1&2

)

.

Note that for x ∈ 40" %s− 1&/21, we have that 322/3x2 ≤ 0, so 2%x& is concave on 40" %s− 1&/21. We have that
2%0&≥ 0 for all s = 4n/25" # # # "n− +%n&, because

2%0& = n− s

s
%s− 1&− 2 logr s+ 2 logr 1

= n− s− n− s

s
− 2 logr s

≥ n− s− 1− 2 logr n (because s ≥ n− s and s ≤ n)

≥ +%n&− 1− 2 logr n (because s ≤ n− +%n&)

≥ 0 (because +%n& ∈*%log- n& and -> 1).

In addition, we have that 2%%s − 1&/2& = 0. Because 2%x& is concave on 40" %s − 1&/21, it follows that when
s = 4n/25" # # # "n− +%n&, 2%x& ≥ 0 for all x ∈ 40" %s − 1&/21, which establishes (3). Therefore, Hs"k ≥ Hs"k+1
for s = 4n/25" # # # "n− +%n& and k = 1" # # # " 2s/23 − 1. Because Hs"k = Hs" s−k, it follows that Hs"1 ≥ Hs"k for
s = 4n/25" # # # "n− +%n& and k= 1" # # # " s− 1.
So, for s = 4n/25" # # # "n− +%n&, we have that

Fs ≤ )s ·
s−1
∑

k=1

(

s

k

)2

%1− q&%%n−s&/s&k%s−k&

≤ )s · s3%1− q&%%n−s&/s&%s−1&

≤ )s · s3%1− q&%n−s&/2

(

because
s− 1
s

≥ 1
2
for s ≥ 2

)

.

Therefore,
n−+%n&
∑

s=4n/25
Fs ≤

n−+%n&
∑

s=4n/25
)s · s3%1− q&%n−s&/2 ≤ n4%1− q&+%n&/2.

Now we consider Fs in the regime s = n− +%n&+ 1" # # # "n− 1. Note that

Fs =)s ·
s−1
∑

k=1

(

s

k

)

(

n− s

2%%n− s&/s&k3

)

%1− q&k%n−s−2%%n−s&/s&k3& ≤)s · 2n−s
s−1
∑

k=1

(

s

k

)

%1− q&k ≤)s · 2+%n&%2− q&s.
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It follows that

n−1
∑

s=n−+%n&+1

Fs ≤
n−1
∑

s=n−+%n&+1

)s · 2+%n&%2− q&s ≤
n−1
∑

s=n−+%n&+1

)s · 2+%n&%2− q&n ≤ c3%2n
c4&+%n&

(

1− q

2

)n

.

We also have that
n−1
∑

s=4n/25
Gs =

n−1
∑

s=4n/25
)s · %n− s&%1− q&s ≤ n2

2
%1− q&n/2.

Using similar techniques to above, we can also show that

+%n&−1
∑

s=1

Ds ≤ c1%2n
c2&+%n&

(

1− q

2

)n

"
2n/23
∑

s=+%n&

Ds ≤ n4%1− q&+%n&/2"
2n/23
∑

s=1

Es ≤
n2

2
%1− q&n/2.

Therefore,

$%B ∈#%n")"q& satisfies (SD3&& ≤
2n/23
∑

s=1

Ds +
2n/23
∑

s=1

Es +
n−1
∑

s=4n/25
Fs +

n−1
∑

s=4n/25
Gs

≤ c1%2n
c2&+%n&

(

1− q

2

)n

+ c3%2n
c4&+%n&

(

1− q

2

)n

+ 2n4%1− q&+%n&/2 + n2%1− q&n/2.

Because +%n& ∈*%log- n& for some fixed -> 1, it follows that

lim
n→-

$%B ∈#%n")"q& satisfies (SD3)&= 0.

Finally, we put all of the pieces together:

lim
n→-

$%B ∈#%n")"q& is Sidney-decomposable& = lim
n→-

$%B ∈#%n")"q& satisfies (SD1&&

+ lim
n→-

$%B ∈#%n")"q& satisfies (SD2&&

+ lim
n→-

$%B ∈#%n")"q& satisfies (SD3&&= 0. !

In random models of “balanced” 0-1 bipartite instances, the number of jobs in N1 and the number of jobs in N2
grow together as the total number of jobs grows. This phenomenon is important for the validity of Theorem 3.1.
For example, consider #%n" 6)"q& with 6)s = 1 if s = 1 and 6)s = 0 otherwise: the class of instances in which
N1 consists of one job, and N2 consists of n− 1 jobs. In this case, an instance B ∈#%n" 6)"q& is non-Sidney-
decomposable if and only if the job in N1 must precede all jobs in N2. This occurs with probability qn−1, which
goes to zero as the total number n of jobs grows.
Finally, we note that Theorem 3.1 still holds for sparser precedence constraints. It is straightforward to show

that if the probability q%n& of a precedence constraint appearing is a function of the number n of jobs so that
q%n& ∈5%1/ log-−1 n&, then the analysis in the proof of Theorem 3.1 holds.

4. Two-dimensional Gantt charts and 0-1 bipartite instances. Two-dimensional (2D) Gantt charts
(Eastman et al. [6]) provide an elegant, geometric way of understanding single-machine completion-time-
objective scheduling problems. In a traditional Gantt chart, the horizontal axis corresponds to processing time.
In a 2D Gantt chart, the horizontal axis corresponds to processing time, and the vertical axis corresponds to
weight. Suppose we have an instance %N "A" %pi&i∈N " %wi&i∈N & of 1 !prec ! ∑wjCj . The 2D Gantt chart is con-
structed for a permutation schedule %1" # # # "n& as follows. Each job j ∈N is represented by a rectangle of width
pj and height wj , whose position in the chart is defined by a startpoint and an endpoint. The startpoint of the
first job (job 1) in the schedule is %0"

∑

j∈N wj&, and its endpoint is %p1"
∑

j∈N wj −w1&. For all subsequent jobs
in the schedule, the startpoint %t"w& of job j is the endpoint of the previous job j − 1, and its endpoint is
%t+pj"w−wj&. The completion time of a job in this schedule is the time component of its endpoint. The work
curve W %t& formed by the upper side of each rectangle is the total weight of jobs that have not been completed
by time t. The area under the work curve is equal to the sum of weighted completion times for the schedule
represented by the 2D Gantt chart.
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Figure 1. An example of a 2D Gantt chart for a 0-1 bipartite instance.

It turns out that the area under the optimal work curve for almost all 0-1 bipartite instances is “large.” We
formalize this notion now. Consider the 2D Gantt chart for an optimal schedule of a 0-1 bipartite instance
B= %N1"N2"A& with !N1!= n1 and !N2!= n2. Note that any 2D Gantt chart for such an instance starts at %0"n2&
and ends at %n1"0&. Also, observe that all jobs in N1 are represented by a horizontal line segment of length 1,
and that all jobs in N2 are represented by a vertical line segment of length 1. We define RB to be the region
between the optimal work curve and the frontier formed by the lines !%t"w&, t = n1$ and !%t"w&, w= n2$ (see
Figure 1 for an example).
We define the following parametrized condition on a 0-1 bipartite instance B, for any / ∈ %0"1&:

(R-/) A rectangle of width /n1 and height /n2 cannot fit in RB.

We now show that for any fixed / ∈ %0"1&, the condition (R-/) is satisfied for almost all 0-1 bipartite instances.

Theorem 4.1. Fix q ∈ %0"1&, / ∈ %0"1&, -≥ 1, and +%n& ∈*%log- n&. Let ) ∈!n+1
≥0 be a probability vector

that satisfies (1) for +%n& and some constants c1" c2" c3" c4 ∈!>0, when n is sufficiently large. Then,

lim
n→-

$%B ∈#%n")"q& satisfies (R-/)&= 1.

Proof. Fix a 0-1 bipartite instance B= %N1"N2"A& with !N1!= n1 and !N2!= n2. If B does not satisfy (R-/),
that is, a rectangle of width /n1 and height /n2 can fit in RB, then there exists a set of 4/n25 jobs from N2
that has at most n1 −4/n15 predecessors in N1. In other words, if a rectangle of width /n1 and height /n2 can
fit in RB, then there exists a set of 4/n25 jobs from N2 and a set of 4/n15 jobs from N1 with no precedence
constraints between them.
Therefore, we have that

$%B ∈#%n")"q& does not satisfy (R-/) ! !N1!= s" !N2!= n− s&

≤ $



 ∃X ⊆N1"Y ⊆N2 ,
!X!= 4/s5" !Y != 4/%n− s&5"

no precedence constraints
between X and Y

∣

∣

∣

∣

∣

∣

!N1!= s" !N2!= n− s





≤
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&4/s54/%n−s&5 ≤
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&/
2s%n−s&.

So, by conditioning on the size of N1 and N2,

$%B ∈#%n")"q& does not satisfy (R-/)& =
n−1
∑

s=1

)s ·$
(

B ∈#%n")"q&
does not satisfy (R-/)

∣

∣

∣

∣

!N1!= s"
!N2!= n− s

)

≤
n−1
∑

s=1

)s ·
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&/
2s%n−s&.
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Let

Ds =)s ·
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&/
2s%n−s& for s = 1" # # # "n− 1

so that

$%B ∈#%n")"q& does not satisfy (R-/)&≤
n−1
∑

s=1

Ds.

First, for the regime s = 1" # # # " +%n&− 1, we have that

+%n&−1
∑

s=1

Ds =
+%n&−1
∑

s=1

)s ·
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&/
2s%n−s&

≤
+%n&−1
∑

s=1

)s · 2n%1− q&/
2%n−1& ≤ c1n

c2+%n&%1− q&/
2%n−1&.

Similarly, we can show that
n−1
∑

s=n−+%n&+1

Ds ≤ c3n
c4+%n&%1− q&/

2%n−1&.

For the regime s = +%n&" # # # "n− +%n&, we have that

n−+%n&
∑

s=+%n&

Ds =
n−+%n&
∑

s=+%n&

)s ·
(

s

4/s5

)(

n− s

4/%n− s&5

)

%1− q&/
2s%n−s& ≤ n2n%1− q&/

2+%n&%n−+%n&&.

Therefore,

$%B ∈#%n")"q& does not satisfy (R-/)&

≤
n−1
∑

s=1

Ds ≤ c1n
c2+%n&%1− q&/

2%n−1& + c3n
c4+%n&%1− q&/

2%n−1& + n2n%1− q&/
2+%n&%n−+%n&&.

Because +%n& ∈*%log- n& for a fixed -≥ 1, it follows that

lim
n→-

$%B ∈#%n")"q& does not satisfy (R-/))= 0. !

Before we proceed, we need the following version of the Chernoff bound.

Lemma 4.1 (Chernoff Bounds; see Mitzenmacher and Upfal [17]). Let X1" # # # "Xm be independent
random variables such that for i = 1" # # # "m, $%Xi = 1&= q, and $%Xi = 0&= 1− q with q ∈ %0"1&. Then for
S =∑m

i=1Xi, 6 = Ɛ%S& = qm, and any 7 ∈ %0"1&, (a) $%S ≥ %1+ 7&6& ≤ e−672/3 and (b) $%S ≤ %1− 7&6& ≤
e−672/2.

As with the non-Sidney-decomposability result in §3, the “balancedness” of the random 0-1 bipartite instances
we consider plays a key role in the validity of Theorem 4.1. To illustrate this, as before, fix q ∈ %0"1& and
consider #%n" 6)"q& with 6)s = 1 if s = 1 and 6)s = 0 otherwise: the class of instances in which N1 consists of
one job, and N2 consists of n− 1 jobs. Take / to be arbitrarily small: in particular, / < 1− q. In this case,
an instance B ∈#%n" 6)"q& does not satisfy (R-/) if and only if there exist at least 4/%n− 1&5 jobs in N2 that
do not have any predecessors in N1. Let Z be a binomial random variable with n− 1 trials and probability of
success 1− q. Then, by the lower tail Chernoff bound in Lemma 4.1(b),

$%B ∈#%n" 6)"q& does not satisfy (R-/)& = $%Z ≥ 4/%n− 1&5&≥ 1−$%Z ≤ /%n− 1&&

≥ 1− exp
(

−1
2

(

1− /

1− q

)2

%1− q&%n− 1&
)

.

Therefore, $%B ∈#%n" 6)"q& satisfies (R-/)& goes to zero as the total number n of jobs grows.
With Theorem 4.1 in hand, we can show that for almost all 0-1 bipartite instances, all feasible schedules are

arbitrarily close to optimal. Let opt%B& denote the optimal value of instance B, and let val%B"S& denote the
objective value of (feasible) schedule S for instance B.
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Theorem 4.2. Fix q ∈ %0"1&, / ∈ %0"1&, -≥ 1, and +%n& ∈*%log- n&. Let ) ∈!n+1
≥0 be a probability vector

that satisfies (1) for +%n& and some constants c1" c2" c3" c4 ∈!>0, when n is sufficiently large. Then,

lim
n→-

$
(

B ∈#%n")"q& satisfies
val%B"S&
opt%B&

≤ %1−/&−2 for all feasible schedules S
)

= 1.

Proof. Consider some 0-1 bipartite instance B with !N1!= n1 and !N2!= n2. If (R-/) is satisfied—that is, if
a rectangle of width /n1 and height /n2 cannot fit in the region RB—then opt%B&>n1n2%1−/&2. Because the
objective value of any feasible schedule of an instance B is at most n1n2, this implies that if (R-/) is satisfied,
val%B"S&/opt%B&≤ n1n2/%n1n2%1−/&2&= %1−/&−2, which implies the claim. !

In addition, Theorem 4.1 also implies a nontrivial lower bound on the integrality gap of various linear
programming relaxations of 1 !prec ! ∑wjCj , for almost all 0-1 bipartite instances. Potts [19] proposed the
following integer programming formulation. Define the decision variables %7ij&i" j∈N , i &=j as follows: for all i" j ∈N
such that i &= j , 7ij is equal to 1 if job i is processed before job j , and 0 otherwise. Then 1 !prec ! ∑wjCj can
be formulated as

[P] minimize
∑

j∈N
pjwj +

∑

i" j∈N , i &=j

piwj7ij" (4a)

subject to 7ij + 7ji = 1 for all i" j ∈N , i &= j" (4b)

7ij + 7jk + 7ki ≤ 2 for all i" j"k ∈N , i &= j &= k &= i" (4c)

7ij = 1 for all %i" j& ∈A" (4d)

7ij ∈ !0"1$ for all i" j ∈N , i &= j. (4e)

It is straightforward to check that [P] is a correct formulation of 1 !prec ! ∑wjCj . We denote the LP relaxation
of [P] obtained by replacing the binary constraints (4e) with nonnegativity constraints 7ij ≥ 0 for all i" j ∈N as
[P-LP]. Let lp%B& denote the optimal value of [P-LP].

Theorem 4.3. Fix q ∈ %0"1&, / ∈ %0"1&, 7 ∈ %0"1&, -≥ 1, and +%n& ∈*%log- n&. Let ) ∈!n+1
≥0 be a proba-

bility vector that satisfies (1) for +%n& and some constants c1" c2" c3" c4 ∈!>0, when n is sufficiently large. Then,

lim
n→-

$
(

B ∈#%n")"q& satisfies
opt%B&
lp%B&

>
2%1−/&2

1+ %1+ 7&q

)

= 1.

Proof. Consider a 0-1 bipartite instance B= %N1"N2"A& with !N1!= n1 and !N2!= n2. It is straightforward to
show that setting 7ij = 1 if %i" j& ∈A, and 7ij = 1

2 otherwise, is a feasible solution to [P-LP] and that this solution
has objective value 1

2 %n1n2 + !A!&. Therefore, lp%B&≤ 1
2 %n1n2 + !A!&. In the proof of Theorem 4.2, we showed

that if B satisfies (R-/), then opt%B&>n1n2%1−/&2. Therefore, if B satisfies (R-/) and !A!< %1+7&qn1n2, then

opt%B&
lp%B&

>
n1n2%1−/&2

1
2 %n1n2 + !A!& >

n1n2%1−/&2

1
2 %n1n2 + %1+ 7&qn1n2&

= 2%1−/&2

1+ %1+ 7&q
"

and so

$
(

B ∈#%n")"q& satisfies
opt%B&
lp%B&

≤ 2%1−/&2

1+ %1+ 7&q

)

≤ $%B ∈#%n")"q& does not satisfy (R-/)&

+$%B ∈#%n")"q& satisfies !A! ≥ %1+ 7&qn1n2&.

By conditioning on the size of N1 and N2, and using the upper tail Chernoff bound from Lemma 4.1(a), we
obtain

$%B ∈#%n")"q& satisfies !A! ≥ %1+ 7&qn1n2& =
n−1
∑

s=1

)s ·$
(

B ∈#%n")"q& satisfies
!A! ≥ %1+ 7&qn1n2

∣

∣

∣

∣

n1 = s" n2 = n− s

)

≤
n−1
∑

s=1

)s · e−qs%n−s&72/3 ≤ ne−q%n−1&72/3.

Therefore, limn→- $%B ∈ #%n")"q& satisfies !A! ≥ %1 + 7&qn1n2& = 0. By Theorem 4.1, we have that
limn→- $%B ∈#%n")"q& does not satisfy (R-/)&= 0. It follows that

lim
n→-

$
(

B ∈#%n")"q& satisfies
opt%B&
lp%B&

≤ 2%1−/&2

1+ %1+ 7&q

)

= 0. !
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We note that the above result also applies to other formulations of 1 !prec ! ∑wjCj , including the further
relaxations of [P] attributable to Chudak and Hochbaum [4] and Correa and Schulz [5], and the LP relaxation
of 1 !prec ! ∑wjCj based on completion-time variables attributable to Queyranne and Wang [20], because all of
these relaxations are no stronger than [P-LP].
Finally, we note that Theorems 4.2 and 4.3 remain valid as long as the probability q%n& of a precedence

constraint appearing is a function of the number n of jobs so that q%n& ∈5%1/ log- n&.
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