
Discrete Optimization 10 (2013) 163–180

Contents lists available at SciVerse ScienceDirect

Discrete Optimization

journal homepage: www.elsevier.com/locate/disopt

Approximating the least core value and least core of
cooperative games with supermodular costs
Andreas S. Schulz a, Nelson A. Uhan b,∗

a Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, 100 Main Street, E62-569,
Cambridge, MA 02142, USA
b Mathematics Department, United States Naval Academy, 572C Holloway Road, Chauvenet Hall, Annapolis, MD 21402, USA

a r t i c l e i n f o

Article history:
Received 14 May 2011
Received in revised form 8 November 2012
Accepted 27 February 2013
Available online 23 March 2013

MSC:
91A12
90C27
90B35
68W25

Keywords:
Cooperative games
Least core
Approximation algorithms
Scheduling
Matroids

a b s t r a c t

We study the approximation of the least core value and the least core of supermodular
cost cooperative games. We provide a framework for approximation based on oracles
that approximately determine maximally violated constraints. This framework yields a
3-approximation algorithm for computing the least core value of supermodular cost
cooperative games, and a polynomial-time algorithm for computing a cost allocation in
the 2-approximate least core of these games. This approximation framework extends
naturally to submodular profit cooperative games. For scheduling games, a special class
of supermodular cost cooperative games, we give a fully polynomial-time approximation
scheme for computing the least core value. For matroid profit games, a special class
of submodular profit cooperative games, we give exact polynomial-time algorithms for
computing the least core value as well as a least core cost allocation.

Published by Elsevier B.V.

1. Introduction

Consider a situation in which a set of agents has the option of sharing the cost of their joint actions. For example, a
group of retailers, instead of individually managing each of their own storage facilities, may decide to jointly participate in
a centralized inventory management scheme with a common storage facility, and share the cost of optimally running this
facility. In these situations, the agents may or may not be motivated to cooperate, depending on the structure of their costs.
Cooperative game theory offers a mathematical framework to study the cooperative behavior between multiple agents. A
(transferable utility) cooperative game is a pair (N, v) where N = {1, . . . , n} represents a set of agents, and v : 2N

→ R is
a set function where for each S ⊆ N, v(S) represents the cost to agents in S if they cooperate. By convention, v(∅) = 0. A
subset S ⊆ N of agents is referred to as a coalition.

Cooperative game theory has been used to study cost sharing for amyriad of application areas of operations research. For
example, one increasingly popular stream of research has focused on the application of cooperative game theory to various
problems in inventory management (e.g. [1–5]). Another body of literature has used cooperative game theory to investigate
the cost sharing issues in various scheduling-related problems (e.g. [6–9]). Other applications of cooperative game theory to
OR-related areas include assignment games [10], linear production games [11], minimum-cost spanning tree games [12,13],
network flow games [14,15], traveling salesman games [16], and facility location games [17].
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1.1. The least core and the least core value

Cooperative game theory focuses onhow to distribute costs that are collectively incurred by a group of cooperating agents
in a ‘‘desirable’’ way. For example, onemightwant to allocate costs in away that is ‘‘fair’’ or ‘‘stable’’. Such cost allocation rules
are called solution concepts. Different notions of desirable cost allocation properties lead to different solution concepts. One
of the most prominent solution concepts in cooperative game theory is the core [18]. Suppose x ∈ RN is a cost allocation
vector: for all i ∈ N, xi represents the cost allocated to agent i. (For notational convenience, for any vector x we define
x(S) =


i∈S xi for any S ⊆ N .) The core of a cooperative game (N, v) is the set of all cost allocations x such that

x(N) = v(N), (1.1a)
x(S) ≤ v(S) for all S ⊆ N. (1.1b)

The condition (1.1a) requires that a cost allocation in the core is efficient: the total cost allocated to all agents, x(N), is equal
to the cost to all agents when they cooperate, v(N). The conditions (1.1b) guarantee that a cost allocation in the core is
‘‘subgroup rational’’ or stable: no subset of agents, or coalition, would be better off by abandoning the rest of the agents
and acting on its own. In other words, the core of a cooperative game is the set of all efficient and stable cost allocations.
The existence of an efficient and stable cost allocation – in other words, a non-empty core – can be seen as a rudimentary
indication that cooperation is attainable.

For many cooperative games, the core may be empty. Another solution concept, initially proposed by Shapley and
Shubik [19] and later named by Maschler et al. [20] is called the least core. The least core of a cooperative game (N, v)
is the set of cost allocations x that are optimal solutions to the linear program

z∗
= minimize z

subject to x(N) = v(N),
x(S) ≤ v(S) + z for all S ⊆ N, S ≠ ∅,N.

(LC)

The optimal value z∗ of (LC) is the least core value of the game (N, v). The linear program (LC) can be equivalently written as
z∗

= min
x:x(N)=v(N)

max
S⊆N

S≠∅,N

e(x, S),

where e(x, S) = x(S) − v(S) for all S ⊆ N . Note that the least core is always well-defined and non-empty, regardless of
whether the core is empty or non-empty.1

The least core and the least core value of a cooperative game have several interesting economic interpretations. The
quantity e(x, S) is the dissatisfaction2 of a coalition S under a cost allocation x: it is the extra cost that S pays when costs are
allocated according to x. A cost allocation in the least core thereforeminimizes themaximumdissatisfaction of any coalition.
In this sense, the least core contains those cost allocations that are ‘‘least objectionable’’. If the core of a cooperative game
is non-empty, the dissatisfaction of any coalition under a cost allocation in the core is nonpositive, and the absolute value
of a coalition’s dissatisfaction represents its gain under such a cost allocation. In this case, the least core is a refinement of
the core: the least core contains all efficient and stable cost allocations that maximize the minimum gain of any coalition. If
the core of a cooperative game is empty, the least core value z∗ can be viewed as the minimum penalty we need to charge
a coalition for acting independently that encourages cooperation by ensuring the existence of an efficient and stable cost
allocation. Alternatively, the least core value can be seen as the minimum cost of coalition formation for which exercising
the ‘‘subgroup rationality’’ implied by (1.1b) is considered not worth the trouble.

The least core is closely related to some other solution concepts from cooperative game theory. For example, Maschler
et al. [20] studied the relationship between the least core and the nucleolus [21]. Given a cost allocation x ∈ RN , the excess
vector θ(x) is defined as the 2n

− 2 dimensional vector whose components are e(x, S) for all S ⊆ N such that S ≠ ∅,N , in
nonincreasing order. The nucleolus is the cost allocation that lexicographically minimizes the excess vector θ(x). Maschler
et al. [20] showed that for a cooperative game (N, v), the nucleolus can be computed by solving |N| linear programs of the
form (LC). On a different note, Einy et al. [22] showed that the least core is always contained in the Mas-Colell bargaining
set [23]. The Mas-Colell bargaining set of a cooperative game, like the classical bargaining set [24], is the set of all cost
allocations that are stable with respect to a particular system of objections and counterobjections.

1.2. Supermodular cost cooperative games

Perhaps the most important and remarkable cooperative games are those with submodular costs.3 A set function v :

2N
→ R is submodular if

v(S ∪ {j}) − v(S) ≥ v(S ∪ {j, k}) − v(S ∪ {k})

1 The linear program (LC) is clearly feasible. Adding the inequalities xi ≤ v({i}) + z for all i ∈ N and using the equality x(N) = v(N), we have that
z∗

≥
1

|N|
(v(N) −


i∈N v({i})). So as long as costs are finite, the optimal value of (LC) is finite and the least core value is well-defined.

2 This quantity is sometimes referred to as the excess of a coalition in the cooperative game theory literature.
3 In the literature, the profit counterparts of these games – in which v is supermodular (see next paragraph) and represents the profit to coalitions – are

known as convex games.
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for all j, k ∈ N such that j ≠ k and all S ⊆ N \ {j, k}. In words, submodularity captures the notion of decreasing marginal
costs. Submodular cost cooperative games enjoy a wealth of interesting and desirable properties, including that the core
of these games is always non-empty [25]. Intuitively, cooperation amongst agents who face submodular costs is likely: as
the size of a coalition grows, the marginal cost associated with adding a particular agent decreases, increasing the appeal of
cooperation.

In this paper, we consider the opposite situation—when agents face supermodular, or increasing marginal costs. A set
function v : 2N

→ R is supermodular if

v(S ∪ {j}) − v(S) ≤ v(S ∪ {j, k}) − v(S ∪ {k}) (1.2)

for all j, k ∈ N such that j ≠ k and all S ⊆ N \ {j, k}. In other words, v is supermodular if −v is submodular. We study
supermodular cost cooperative games: cooperative games (N, v)where v is nonnegative and supermodular. Supermodularity
often naturally arises in situations in which the costs are closely tied to congestion effects. It has been shown that
several types of facility location, scheduling, and network design problems have supermodular costs [26,9]. Using the same
reasoning as before, our intuition tells us that cooperation amongst rational agents who face supermodular costs is unlikely:
now the marginal cost associated with adding a particular agent increases as the size of a coalition grows, diminishing the
appeal of cooperation. It is straightforward to see that for supermodular cost cooperative games, the core is empty (as long
as costs are not modular4).

Even though cooperation may not be desirable from the perspectives of the individual agents, as in supermodular cost
cooperative games, encouraging or enforcing cooperationmay still be desirable, especially to an external party. For instance,
this can occur when the failure to cooperate gives rise to negative externalities. Consider the following example. A set
of agents needs to process its jobs on a machine that generates an excessive amount of pollution. The agents have the
opportunity to share the cost of processing their jobs on an existing single machine, but the cost of processing their jobs
is such that it is cheaper for each agent to open their own machine, and as a result, generate more pollution. A governing
authority may be interested in reducing such negative externalities. One approach would be to incorporate the cost of the
pollution externalities directly into the processing costs; however, these externality costs may be hard to precisely define.
Instead, one might ask, ‘‘How much do we need to charge for opening an additional machine in order to encourage all the
agents to share a single machine?’’ For a cooperative game where cooperation is not desirable from the individual agents’
standpoints – such as a supermodular cost cooperative game, in which the cost to a coalition is typically more than the sum
of the individual agents’ costs due to congestion effects – the analogous question is, ‘‘How much do we need to penalize a
coalition for acting independently in order to encourage all the agents to cooperate?’’ As mentioned earlier, this notion is
captured in the least core value of a cooperative game.

1.3. Computational complexity of cooperative game solution concepts

Initiated by Meggido [27] and carried forward by Deng and Papadimitriou [28], computational complexity has been
proposed as one measure for evaluating cooperative game solution concepts. Examining the computational complexity of
various solution concepts allows us to determine whether they are reasonable within the context of bounded rationality
(see [29] for an extensive discussion)—the hypothesis that economic agents, in reality, have limited reasoning ability and
computational power for decision-making. A solution concept with high computational complexity – one that is NP-hard to
compute, for instance – may be considered unsatisfactory in a world with boundedly rational agents.

The computational complexity of computing a cost allocation in the least core has been studied previously in several
contexts. Faigle et al. [30] showed that computing a cost allocation in the least core of minimum-cost spanning tree games
is NP-hard. Kern and Paulusma [31] presented a polynomial description of the linear program (LC) for cardinality matching
games. Faigle et al. [32] showed that by using the ellipsoidmethod, a so-called pre-kernel element in the least core of a coop-
erative game can be computed in polynomial time if the maximum dissatisfaction can be computed in polynomial time for
any given efficient cost allocation. Deng [33] observed that polynomial-time algorithms for submodular functionminimiza-
tion can be used to compute the least core and least core value of submodular cost cooperative games in polynomial time.

Schulz and Uhan [9] studied the computational complexity of the least core value and least core of supermodular cost
cooperative games. They showed that the problem of computing the least core value of these games is strongly NP-hard,
and in fact, is inapproximable within a factor of 17/16− ε for any ε > 0 unless P = NP. In addition, they studied scheduling
games, a subclass of supermodular cost cooperative games. For these games, they showed that the Shapley value,5 which is
polynomial-time computable in this case, is also in the least core. They also showed that computing the least core value of
scheduling games is still NP-hard.

4 A set function is modular if it is both submodular and supermodular.
5 The Shapley value [34] of a cooperative game (N, v) is the cost allocation φ ∈ RN , where

φi =


S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|!


v(S ∪ {i}) − v(S)


for all agents i ∈ N.

In words, the Shapley value of each agent i reflects agent i’s average marginal contribution to the coalition N . The Shapley value is a classic, well-studied
solution concept in cooperative game theory; for example, see [35].
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1.4. Contributions of this work

Although computing the least core value of supermodular cost cooperative games is NP-hard, it may be the case that
acceptable approximations are computable in polynomial time. In this work, we propose approximations of the least
core value and accompanying approximate least core cost allocations of supermodular cost cooperative games that are
computable in polynomial time. In Section 2, we design approximation algorithms for computing the least core value
of supermodular cost cooperative games, using oracles that determine coalitions whose dissatisfaction is approximately
maximum.We also show how to compute accompanying approximate least core cost allocations. In Section 3, we apply our
framework to computing the least core value of scheduling games, for which we give a fully polynomial time approximation
scheme. Finally, in Section 4, we considermatroid profit games: a class of cooperative games with submodular profits. Using
the framework established in Section 2 with the appropriate natural modifications, we show that the least core value and a
cost allocation in the least core of these games can be computed in polynomial time.

2. Approximating the least core value and the least core

Before we begin, note that an arbitrary supermodular function v may not be compactly encoded. Therefore, for the
remainder of this sectionwe assume thatwe have a polynomial-time value-giving oracle for v. In addition, for the remainder
of the paper, we assume that there are at least two agents (n ≥ 2).

In this section, our objectives are two-fold. First, we aim to approximate the least core value – the optimal value of (LC) –
of supermodular cost cooperative games in polynomial time. Second, we seek to approximate a cost allocation in the least
core – an optimal solution to (LC) – of these games in polynomial time. What do wemean by an approximate least core cost
allocation? Suppose z∗ is the least core value of a cooperative game (N, v). For any ρ ≥ 1, we define the ρ-approximate least
core of (N, v) as the set of all cost allocations x such that

x(N) = v(N),

x(S) ≤ v(S) + ρz∗ for all S ⊆ N, S ≠ ∅,N,

or equivalently,

x(N) = v(N), max
S⊆N

S≠∅,N

e(x, S) ≤ ρz∗.

Recall that a cost allocation in the least core of (N, v) can be seen as the ‘‘least objectionable’’ in the sense that it is an efficient
cost allocation that minimizes the maximum dissatisfaction of any coalition. A cost allocation in the ρ-approximate least
core of (N, v) approximates being ‘‘least objectionable’’ by ensuring that the maximum dissatisfaction of a coalition is at
most a factor ρ away from the least core value z∗ – the minimum possible maximum dissatisfaction of a coalition under any
efficient cost allocation.

Note that one algorithm may not necessarily accomplish these objectives in tandem: for example, a polynomial-time
algorithm for computing a cost allocation in the ρ-approximate least core of a cooperative game is not necessarily also a
ρ-approximation algorithm6 for computing the least core value of the same game. In fact, the computational complexity
of these two objectives may be different: as we mentioned in the introduction, computing a cost allocation in the least
core of scheduling games can be accomplished in polynomial time, while computing the least core value of these games is
NP-hard [9].

2.1. Approximation by fixing a cost allocation

As a first attempt at approximation, we fix a cost allocation x such that x(N) = v(N), and then try to determine the
minimum value of z such that (x, z) is feasible in the least core linear program (LC). For any cooperative game (N, v), we
define the following problem:

x-maximum dissatisfaction problem for cooperative game (N, v) (x-MD). Given cost allocation x such that x(N) =

v(N), find a coalition S∗ whose dissatisfaction is maximum:

e(x, S∗) = max
S⊆N

S≠∅,N

e(x, S) = max
S⊆N

S≠∅,N


x(S) − v(S)


.

We want to find a value z that is as close to e(x, S∗) as possible, but larger than e(x, S∗), since (x, z) is feasible if and
only if z ≥ e(x, S∗). Note that an algorithm for the x-MD problem acts as a separation oracle for the vector (x, z) to the

6 A ρ-approximation algorithm (ρ ≥ 1) is an algorithm that always finds a solution whose objective value is within a factor ρ of the optimal value, and
whose running time is polynomial in the input size. The parameter ρ is known as the performance guarantee of the algorithm.
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linear program (LC): if z ≥ e(x, S∗), then (x, z) is feasible in (LC); otherwise, we have z < e(x, S∗), which implies that
x(S∗) ≤ v(S∗) + z is a constraint violated by (x, z).

How should we fix x? We would like to ensure that the cost allocation x we choose is at least in the vicinity of the least
core of (N, v), so thatwe do not prematurelyweaken the resulting approximation to the least core value. For any set function
v : 2N

→ R, we define the polytope

Bv =

x ∈ RN

: x(N) = v(N), x(S) ≥ v(S) for all S ⊆ N

.

For an arbitrary set function v, computing an element of Bv may require an exponential number of oracle calls, or Bv may be
empty. Fortunately, when v is supermodular, the vertices of Bv are computable in polynomial time, and even have explicit
formulas [36]. It turns out that any cost allocation x in Bv is in the 2-approximate least core of (N, v).

Theorem 2.1. Suppose (N, v) is a supermodular cost cooperative game, and x is a cost allocation in Bv . Let e(x, S∗) be the optimal
value of the x-maximum dissatisfaction problem for (N, v), and let z∗ be the least core value of (N, v). Then, the cost allocation
x is in the 2-approximate least core of (N, v), or equivalently, e(x, S∗) ≤ 2z∗.

Proof. Let (x∗, z∗) be an optimal solution to (LC). Since we have x∗(S) ≤ v(S) + z∗ and x∗(N \ S) ≤ v(N \ S) + z∗ for any
S ⊆ N, S ≠ ∅,N , and x∗(N) = v(N), it follows that

2z∗
≥ v(N) − v(S) − v(N \ S) for all S ⊆ N, S ≠ ∅,N.

Since x ∈ Bv , we can deduce that for any S ⊆ N, S ≠ ∅,N ,

2z∗
≥ v(N) − v(S) − v(N \ S) = x(S) − v(S) + x(N \ S) − v(N \ S) ≥ e(x, S).

Since the above lower bound on 2z∗ holds for any S ⊆ N, S ≠ ∅,N , it follows that 2z∗
≥ e(x, S∗). �

We use this observation, in conjunction with a ρ-approximation algorithm for the x-maximum dissatisfaction problem
for (N, v), to approximate the least core value of (N, v).

Theorem 2.2. Suppose (N, v) is a supermodular cost cooperative game, and x is a cost allocation in Bv . If there exists a
ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v), then there exists a 2ρ-approximation
algorithm for computing the least core value of (N, v).

Proof. Let S̄ be the output from a ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v), and let
z = ρe(x, S̄). We show that (x, z) is a feasible solution to the linear program (LC), and that z is within a factor of 2ρ of the
least core value z∗ of (N, v). Since x ∈ Bv , we have that x(N) = v(N). Since S̄ is output from a ρ-approximation algorithm
for the x-maximum dissatisfaction problem for (N, v), it follows that

z = ρe(x, S̄) ≥ e(x, S∗) ≥ x(S) − v(S)

for all S ⊆ N, S ≠ ∅,N . So (x, z) is a feasible solution to (LC). By Theorem 2.1, it follows that z = ρe(x, S̄) ≤ ρe(x, S∗) ≤

2ρz∗. �

Note that the x-maximumdissatisfaction problem for a supermodular cost cooperative game is an instance of submodular
function maximization. In addition, for any x ∈ Bv , the objective function e(x, ·) of the x-maximum dissatisfaction problem
is nonnegative. Buchbinder et al. [37] gave a deterministic 3-approximation algorithm and a randomized 2-approximation
algorithm for maximizing nonnegative submodular functions. With Theorem 2.2, this immediately implies the following
corollary.

Corollary 2.3. Suppose (N, v) is a supermodular cost cooperative game. Then, there exists a deterministic 6-approximation
algorithm and a randomized 4-approximation algorithm for computing the least core value of (N, v).

Given that any cost allocation in Bv is in the 2-approximate least core of a supermodular cost cooperative game (N, v),
onemightwonder if there always exists a cost allocation that is both in Bv and the least core of (N, v). The following example
shows that this is not the case.

Example 2.4. Consider the following cooperative game (N, v) with 5 players:

v({1, 2, 3, 4, 5}) = 22, v({1, 2, 5}) = 12, v({1, 2}) = 10, v({3, 5}) = 3,
v({1, 2, 3, 4}) = 15, v({1, 3, 4}) = 6, v({1, 3}) = 2, v({4, 5}) = 6,
v({1, 2, 3, 5}) = 15, v({1, 3, 5}) = 6, v({1, 4}) = 5, v({1}) = 1,
v({1, 2, 4, 5}) = 17, v({1, 4, 5}) = 8, v({1, 5}) = 3, v({2}) = 7,
v({1, 3, 4, 5}) = 13, v({2, 3, 4}) = 12, v({2, 3}) = 8, v({3}) = 1,
v({2, 3, 4, 5}) = 17, v({2, 3, 5}) = 10, v({2, 4}) = 11, v({4}) = 4,
v({1, 2, 3}) = 11, v({2, 4, 5}) = 13, v({2, 5}) = 9, v({5}) = 2,
v({1, 2, 4}) = 14, v({3, 4, 5}) = 10, v({3, 4}) = 5, v(∅) = 0.
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It turns out that v is supermodular, and the least core value of (N, v) is 19/5. However, when we add the constraints
x(S) ≥ v(S) for all S ⊆ N to (LC), the optimal value of this augmented linear program is 31/8 > 19/5. Therefore, for
this cooperative game (N, v), there does not exist a cost allocation in Bv that is also in the least core. �

2.2. Approximation without fixing a cost allocation

Suppose that, instead of fixing a cost allocation in advance, we compute a cost allocation along with an approximation to
the least core value. Let us assume thatwehave aρ-approximation algorithm for the x-maximumdissatisfaction problem for
(N, v), for every x such that x(N) = v(N).7 By using the ellipsoid method with binary search, we can establish the following
theorem.

Theorem 2.5. Suppose (N, v) is a supermodular cost cooperative game, and there exists a ρ-approximation algorithm for the
x-maximum dissatisfaction problem for (N, v), for every cost allocation x such that x(N) = v(N). Then,

(a) there exists a ρ-approximation algorithm for computing the least core value of (N, v), and
(b) there exists a polynomial-time algorithm for computing a cost allocation in the ρ-approximate least core of (N, v).

Proof sketch. For a complete proof, see Appendix A.
The idea behind the proof is as follows. Suppose that K is a polytope. The exact separation problem for polytope K is:

Exact separation problem for polytope K . Given y ∈ Qn, either (i) assert y ∈ K, or (ii) find a hyperplane that separates y
from K: find c ∈ Qn such that cTy > cTx for all x ∈ K.

The exact non-emptiness problem for K is:

Exact non-emptiness problem for polytope K . Either (i) find a vector y ∈ K or (ii) assert K is empty.

Grötschel et al. [38] showed that for a polytope K , by using the ellipsoid method, a polynomial-time algorithm for the exact
separation problem for K implies a polynomial-time algorithm for the exact non-emptiness problem for K .

Now suppose K̄ is a polytope that ‘‘approximates’’ K . Note that this ‘‘approximation’’ can be any arbitrary polytope. The
approximate separation problem for K and its approximation K̄ is:

Approximate separation problem for polytope K and its approximation K̄ . Given y ∈ Qn, either (i) assert y ∈ K̄ , or
(ii) find a hyperplane that separates y from K: find c ∈ Qn such that cTy > cTx for all x ∈ K .

The approximate non-emptiness problem for K and its approximation K̄ is:

Approximate non-emptiness problem for polytope K and its approximation K̄ . Either (i) find a vector y ∈ K̄ or (ii)
assert K is empty.

Using similar techniques to those used in [38], we can show that the ellipsoid method can be used with a polynomial-time
algorithm for the approximate separation problem to solve the approximate non-emptiness problem in polynomial time.

We use this general result for the least core value problem. For the following steps in detail, see Appendix A. Fix a
supermodular cost cooperative game (N, v), and let z∗ be its least core value. For any fixed γ ≥ 0, define the polytope

Qγ = {x ∈ RN
: x(N) = v(N), x(S) ≤ v(S) + γ for all S ⊆ N, S ≠ ∅,N}.

It is straightforward to show that a ρ-approximation algorithm for the x-maximumdissatisfaction problem for (N, v) can be
used as a polynomial-time algorithm for the approximate separation problem for Qγ and its approximation Qργ . Therefore,
there exists a polynomial-time algorithm for the approximate non-emptiness problem for Qγ and its approximation Qργ .
Suppose that A is such an algorithm. Since v is nonnegative, supermodular, and v(∅) = 0, the least core value z∗ of (N, v)
is in the interval [0, v(N)]. Since the polytope Qγ is nonempty for all γ ≥ z∗, and the polytope Qγ is empty for all γ < z∗,
using A with binary search on [0, v(N)] to find γ̄ such that Qγ̄−ε is empty but Qργ̄ is non-empty gives us an algorithm
for computing a ρ-approximation to the least core value of (N, v) and a cost allocation in the ρ-approximate least core

7 Note that since v is supermodular and v(∅) = 0, for any x such that x(N) = v(N), we have that


i∈N (xi − v({i})) ≥


i∈N xi − v(N) = 0. Therefore,
there must exist i ∈ N such that xi − v({i}) ≥ 0, and so maxS⊆N,S≠∅,N e(x, S) ≥ 0. This ensures that the notion of a ρ-approximation algorithm for the
x-maximum dissatisfaction problem is sensible, for any given cost allocation x such that x(N) = v(N).
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(the parameter ε ∈ Q>0 is the precision required, and log ε−1 is polynomial in n and log v(N)). The number of calls to A
that is needed for this binary search is polynomial in n and log v(N). �

Using an approximate separation oracle in conjunction with the ellipsoid method to achieve approximate optimization
has been studied previously for a variety of problems (e.g. [39–42]). It appears at first that this technique can be used for
any arbitrary linear program with an exponential number of constraints; however, the proofs for these results all depend
on the structure of the problem. For example, Jansen [40] considered polytopes of the form K = {x ∈ Rn

: Ax ≤ b} ∩ Bwith
approximations K̄ = {x ∈ Rn

: Ax ≤ αb} ∩ B for some α ≥ 1, where n,m ∈ Z>0, A ∈ Rm×n, b ∈ Rm
>0, and B is an arbitrary

polynomial-time-separable polytope. In addition, it is assumed that the zero vector is in the polytope K . With this assump-
tion, simply multiplying a feasible point in K̄ by the scalar 1/α yields a feasible point in K ; without this assumption, it is not
clear how to convert a feasible point in K̄ to a feasible point in K . In the proof of Theorem 2.5, this kind of conversion is un-
necessary sincewe are able to exploit the structure of the constraints and their relation to the objective function in the linear
program (LC): for any vector x in the approximation Qργ̄ , the vector (x, ργ̄ ) is a feasible solution to the linear program (LC).

With Theorem 2.5 in hand, it remains to show how to solve the x-maximum dissatisfaction problem for a supermodular
cost cooperative game (N, v), for every cost allocation x such that x(N) = v(N). As we noted in Section 2.1, the x-maximum
dissatisfaction problem for a supermodular cost cooperative game (N, v) is an instance of submodular function maximiza-
tion. Unlike in Section 2.1, however, the objective functions for the instances of the x-maximum dissatisfaction problem
that need to be solved for Theorem 2.5 are not necessarily nonnegative. As mentioned previously, Buchbinder et al. [37]
designed a deterministic 3-approximation algorithm for maximizing nonnegative submodular functions. A straightforward
examination reveals that their analysis of this algorithm holds even if the submodular function f : 2N

→ R to be maxi-
mized is not nonnegative, but only satisfies f (∅) ≥ 0 and f (N) ≥ 0. Since e(x, ∅) = e(x,N) = 0 for any cost allocation x
such that x(N) = v(N), we obtain the following corollary.

Corollary 2.6. Suppose (N, v) is a supermodular cost cooperative game.

(a) there exists a deterministic 3-approximation algorithm for computing the least core value of (N, v), and
(b) there exists a deterministic polynomial-time algorithm for computing a cost allocation in the 3-approximate least core of

(N, v).

By computing a cost allocation on the fly using the ellipsoid method, we are able to design an approximation algorithm
for computing the least core value of a supermodular cost cooperative game whose performance guarantee compares
favorably to those of the fixed-cost-allocation-based approximation algorithms discussed in Section 2.1. Interestingly,
however, the comparison for the accompanying cost allocations of these approximation algorithms is reversed: the cost
allocation computed by the ellipsoid-method-based approximation algorithm is guaranteed to be in the 3-approximate least
core, while the cost allocation used in the fixed-cost-allocation-based approximation algorithms is guaranteed to be in the
2-approximate least core, and can even be computed without the ellipsoidmethod or an algorithm for submodular function
maximization.

3. A special case from single-machine scheduling

In this section, we study the least core value of a particular supermodular cost cooperative game that arises from
scheduling situations. Consider a setting where each agent has a job that needs to be processed on a machine, and any
coalition of agents can potentially open their own machine. Suppose each agent i ∈ N has a job whose processing time is
pi ∈ R>0 and weight is wi ∈ R≥0. Jobs are independent, and are scheduled non-preemptively on a single machine, which
can process at most one job at a time. A scheduling game is a cooperative game (N, v) where the cost v(S) to a coalition S is
the minimum sum of weighted completion times of jobs in S. If weight wi is interpreted as agent i’s per-unit-time waiting
cost, then v(S) can be seen as the minimum total waiting cost for agents in S. The least core value of scheduling games has
a natural interpretation: it is the minimum amount we need to charge any coalition for opening a new machine in order to
encourage all the agents to cooperate.

Scheduling games have been studied by several authors. For example, Maniquet [7] and Mishra and Rangarajan [8] gave
axiomatic characterizations of various cost sharing rules for these games. Mishra and Rangarajan [8] also gave a simplified
characterization of the Shapley value of scheduling games that implies it is computable in polynomial time. Schulz and
Uhan [9], using a result of Wolsey [43] and Queyranne [44], showed that scheduling games are indeed supermodular cost
cooperative games, and that computing the least core value of these games is still NP-hard. In addition, Schulz and Uhan [9]
showed that for scheduling games, the Shapley value is a least core cost allocation.

We will apply the results of Section 2.1, in which approximation is based on fixing a cost allocation, to finding the least
core value of scheduling games. Before we begin, we restate some results from [9], which we will use later on. To simplify
the analysis, for the remainder of this section we assume without loss of generality that

w1

p1
≥ · · · ≥

wn

pn
;

in other words, the agents’ jobs are indexed in the order that minimizes the sum of weighted completion times [45].
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Theorem 3.1 ([9]). Suppose (N, v) is a scheduling game. Consider the cost allocation x̄ defined as

x̄i =
1
2
wi

i
j=1

pj +
1
2
pi

n
j=i

wj for all i = 1, . . . , n. (3.1)

(a) For any S ⊆ N,

x̄(S) − v(S) =
1
2


v(N) − v(S) − v(N \ S)


.

(b) The cost allocation x̄ is in the least core of (N, v).

It is straightforward to show that x̄ ∈ Bv; in fact, it is a convex combination of two vertices of Bv . So, by Theorem 2.2, a
ρ-approximation algorithm for the x̄-maximum dissatisfaction problem implies a 2ρ-approximation algorithm for
computing the least core value of (N, v). However, we can do better, since the cost allocation x̄ is in the least core, and
therefore

z∗
= max

S⊆N
S≠∅,N


x̄(S) − v(S)


= max

S⊆N
S≠∅,N

e(x̄, S).

As a result, we obtain the following strengthening of Theorem 2.2.

Theorem 3.2. Suppose there exists a ρ-approximation algorithm for the x̄-maximum dissatisfaction problem for scheduling
games. Then there exists a ρ-approximation algorithm for computing the least core value of scheduling games.

By Theorem 3.1(a), we know that x̄-MD is in fact

max
S⊆N

S≠∅,N

e(x̄, S) =
1
2

max
S⊆N

S≠∅,N


v(N) − v(S) − v(N \ S)


.

Therefore,maximizing e(x̄, S) is equivalent tominimizing the sumofweighted completion times of jobs inN on two identical
parallel machines. This two-machine problem is NP-complete [46], and has a fully polynomial time approximation scheme
(FPTAS) [47]. Although the two problems are equivalent from the optimization perspective, it is not possible to use the FPTAS
for the two-machine scheduling problem directly as an FPTAS for the x̄-MD problem: there exists an instance in which the
precision required to use the FPTAS for the two-machine problem as an FPTAS for the x̄-MD problem results in a running
time exponential in the input size [48]. Nevertheless, as we show in the next theorem, an FPTAS for the x̄-MD problem is
indeed possible. The analysis uses standard techniques for designing approximation schemes (for example, see [49]).

Theorem 3.3. There exists a fully polynomial time approximation scheme for the x̄-maximum dissatisfaction problem for
scheduling games.

Proof. For simplicity of exposition, we consider maximizing g(S) = 2e(x̄, S) for the remainder of this proof. We determine
the maximizer S∗ of g by scheduling the jobs in N on two machines: the jobs scheduled on machine 1 will form S∗, and the
jobs scheduled onmachine 2will formN \S∗. As usual, we consider the jobs in order of nonincreasingweight-to-processing-
time ratios (i.e. 1, . . . , n). We can partition the jobs into S∗ and N \ S∗ sequentially using the following dynamic program.
The state space E is partitioned into n disjoint sets, E1, . . . , En. A schedule σ for jobs {1, . . . , k} on twomachines corresponds
to a state (a, b, c) ∈ Ek. The first coordinate a is the sum of processing times of all jobs scheduled by σ on machine 1. The
second coordinate b is the sum of processing times of all jobs scheduled by σ on machine 2. The third coordinate c is the
running objective value: v({1, . . . , k}) minus the sum of weighted completion times on two machines for σ .

Suppose jobs 1, . . . , k−1have alreadybeen scheduled, and job k is under consideration. If job k is scheduled onmachine 1,
then the running objective value increases by wk(a + b + pk) − wk(a + pk) = wkb. If job k is scheduled on machine 2, then
the running objective value increases by wk(a + b + pk) − wk(b + pk) = wka. This suggests the following exact dynamic
program.

Input: scheduling game (N, v) with weights wi, processing times pi for all i ∈ N .
Output: g(S∗) = max{g(S) : S ⊆ N, S ≠ ∅,N}.

E1 = {(p1, 0, 0), (0, p1, 0)}
For k = 2, . . . , n
For every vector (a, b, c) ∈ Ek−1
Put (a + pk, b, c + wkb) and (a, b + pk, c + wka) in Ek

Find (a, b, c) ∈ En with maximum c value, c∗

Return g(S∗) = c∗.
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Let P =
n

i=1 pi and W =
n

i=1 wi. Each state corresponds to a point in {(a, b, c) ∈ Z3
: 0 ≤ a ≤ P, 0 ≤ b ≤ P, 0 ≤ c ≤

WP}. Note that for any state (a, b, c) ∈ Ek with k = 1, . . . , n, if a is known, then b is already determined, and vice versa.
Therefore, the running time of this dynamic program is O(nWP2).

Let δ = (1+ε/(2n))−1 for some ε ∈ (0, 1). Note that δ ∈ (0, 1). In addition, define L = ⌈log1/δ P⌉ andM = ⌈log1/δ WP⌉.
Consider the grid formed by the points (δ−r , δ−s, δ−t) for all r = 1, . . . , L, s = 1, . . . , L, and t = 1, . . . ,M . For each
k = 1, . . . , n, we divide the state set Ek into the boxes formed by the grid:

{(a, b, c) ∈ R3
: δ−r+1

≤ a ≤ δ−r , δ−s+1
≤ b ≤ δ−s, δ−t+1

≤ c ≤ δ−t
}

for all r = 1, . . . , L, s = 1, . . . , L, and t = 1, . . . ,M.

Observe that if (a1, b1, c1) and (a2, b2, c2) are in the same box, then

δa1 ≤ a2 ≤
a1
δ

, δb1 ≤ b2 ≤
b1
δ

, δc1 ≤ c2 ≤
c1
δ

. (3.2)

We simplify the state sets Ek by using a single point in each box as a representative for all vectors in the same box. We denote
these simplified state sets by Eδ

k . The following trimmed dynamic program is based on this simplified state space.

Input: scheduling game (N, v) with weights wi, processing times pi for all i ∈ N , precision ε ∈ (0, 1).
Output: an approximation g(S̄) to max{g(S) : S ⊆ N, S ≠ ∅,N}.

δ = (1 + ε/(2n))−1

Eδ
1 = {(p1, 0, 0), (0, p1, 0)}

For k = 2, . . . , n
For every vector (a, b, c) ∈ Eδ

k−1

Put corresponding representatives of (a + pk, b, c + wkb) and (a, b + pk, c + wka) in Eδ
k

Find (a, b, c) ∈ Eδ
n with maximum c value, c̄

Return g(S̄) = c̄.

The key observation is that every element in the state space of the exact dynamic program is relatively close to an element
in the state space of the trimmed dynamic program. In particular,

For every (a, b, c) ∈ Ek, there exists a vector (a′, b′, c ′) ∈ Eδ
k such that a′

≥ δka, b′
≥ δkb, and c ′

≥ δkc. (3.3)

We show (3.3) by induction. The base case k = 1 holds by (3.2). Assume the induction hypothesis holds for 1, . . . , k − 1.
Consider an arbitrary (a, b, c) ∈ Ek. The exact dynamic program puts (a, b, c) ∈ Ek when it schedules job k. Therefore,
(a, b, c) = (α + pk, β, γ + wkβ) or (a, b, c) = (α, β + pk, γ + wkα) for some (α, β, γ ) ∈ Ek−1. Suppose (a, b, c) =

(α + pk, β, γ + wkβ) for some (α, β, γ ) ∈ Ek−1. By the induction hypothesis, there exists a vector (α′, β ′, γ ′) ∈ Eδ
k−1 such

that α′
≥ δk−1α, β ′

≥ δk−1β , and γ ′
≥ δk−1γ . In the kth phase, the trimmed dynamic program puts a state (a′, b′, c ′) in Eδ

k
that is in the same box as (α′

+ pk, β ′, γ ′
+wkβ

′). Therefore, since δ ∈ (0, 1), there exists a vector (a′, b′, c ′) ∈ Eδ
k such that

a′
≥ δ(α′

+ pk) ≥ δkα + δpk ≥ δk(α + pk) = δka,
b′

≥ δβ ′
≥ δkβ = δkb,

c ′
≥ δ(γ ′

+ wkβ
′) ≥ δkγ + δkwkβ = δk(γ + wkβ) = δkc.

The case where (a, b, c) = (α, β + pk, γ + wkα) for some (α, β, γ ) ∈ Ek−1 follows similarly. Therefore, the induction step
is complete, and (3.3) holds.

We now analyze the performance of the trimmed dynamic program. Let c∗
= g(S∗), the optimal value of g . Note that

there exists a vector (a∗, b∗, c∗) ∈ En. By (3.3), there exists a vector (a′, b′, c ′) ∈ Eδ
n such that c ′

≥ δnc∗. Recall that
δ = (1 + ε/(2n))−1 for some ε ∈ (0, 1). Since (1 + ε/(2n))n ≤ 1 + ε, we have that c ′

≥ (1 + ε/(2n))−nc∗
≥ (1 + ε)−1c∗.

As for the running time of the trimmed dynamic program, note that each Eδ
k has at most one point from each box, or

O(L2M) points. So, the running time of this algorithm is O(nL2M). Since log z ≥ (z − 1)/z for any z ≥ 1, we can bound L and
M as follows:

L =


log P

log 1/δ


≤


1 +

2n
ε


log P


, M =


logWP
log 1/δ


≤


1 +

2n
ε


(logW + log P)


.

Therefore, the running time of this algorithm is polynomial in n, logW , log P , and 1/ε. �

Combining Theorems 3.2 and 3.3, gives us the following result.

Theorem 3.4. There exists a fully polynomial time approximation scheme for computing the least core value of scheduling games.
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4. Submodular profits and a special case frommatroid optimization

Up to this point, we have only considered cooperative games in which agents are assigned a cost for their joint actions.
But what about cooperative games in which agents act together to collect a reward, or profit? Consider a cooperative game
(N, v) where v(S) represents the profit allocated to the agents in S. For these games, solution concepts should reflect the
rationality of a profit allocation; for example, the core for a profit cooperative game (N, v) is defined as the set of all profit
allocations x such that

x(N) = v(N),

x(S) ≥ v(S) for all S ⊆ N.

The least core for a profit cooperative game (N, v) is defined in a similar manner: it is the set of all profit allocations x that
are optimal for the problem

z∗
= minimize z

subject to x(N) = v(N)
x(S) ≥ v(S) − z for all S ⊆ N, S ≠ ∅,N.

(LC-profit)

The least core value of (N, v) is the optimal value z∗ to this linear program. Note that it still reflects theminimumpenaltywe
need to charge a coalition for acting independently in order to ensure the existence of an efficient and stable profit allocation.

If v is nonnegative, submodular and v(∅) = 0, we call (N, v) a submodular profit cooperative game. It is straightforward to
see that all the results established for supermodular cost cooperative games in Section 2 also hold true for submodular profit
cooperative games, with the following natural modifications. For a cooperative game (N, v) with v representing profits, the
dissatisfaction for any subset of agents S under a profit allocation x is defined as e(x, S) = v(S)−x(S).We define the polytope
Bv as {x ∈ Rn

: x(N) = v(N), x(S) ≤ v(S) for all S ⊆ N}. The x-maximum dissatisfaction problem for a cooperative game
(N, v) with v representing profits is still to find a subset S∗ such that e(x, S∗) = maxS⊆N,S≠∅,N e(x, S).

4.1. Matroid profit games

Consider the following example of a profit cooperative game (N, v). Each agent i ∈ N has a job with unit processing time
and a deadline di ∈ Z>0. In addition, each agent i ∈ N has an associated profitwi ∈ R≥0, which is earned if job i is completed
by its deadline. The profit v(S) to any subset of agents S is the maximum profit attainable by scheduling jobs in S on a single
machine. It turns out that if we define

I = {S ⊆ N : every job in S can be completed by its deadline},
then (N, I) is a matroid [50]. For any family of sets I, define I|S = {T ∈ I : T ⊆ S}. In this cooperative game, v(S) is the
maximum w-weight of an independent set in (S, I|S), for any coalition S ⊆ N .

In this section, we study a generalization of the cooperative game described above, defined as follows. Let (N, I) be a
matroid with weights wi ∈ R≥0 for each i ∈ N . We define v(S) as the maximum w-weight of an independent set in (S, I|S),
for every coalition S ⊆ N . Then (N, v) defines a cooperative game where the profit to a coalition S is represented by v(S).
We call such games matroid profit games. Cooperative games that arise from matroid optimization have been considered
previously. Nagamochi et al. [51] studied the computational complexity of various solution concepts for minimum base
games, in which for a given matroid (N, I), the cost v(S) to a coalition S is the minimum weight of a basis in (S, I|S). In
these games, the costs to a coalition are not necessarily supermodular, and so the results of Section 2 do not apply.

Throughout this section, we assume that the matroid (N, I) and its restrictions are given by an independence oracle that
asserts whether or not a given subset S ⊆ N belongs to I. It is well known that v as defined here is a submodular function
(for example, see p. 715 in [52]), and so matroid profit games are submodular profit cooperative games. It turns out that
the x-maximum dissatisfaction problem for matroid profit games is quite tractable: we show that it can be solved exactly
in polynomial time for any profit allocation x such that x(N) = v(N).

Theorem 4.1. Suppose (N, v) is a matroid profit game. Then for any profit allocation x such that x(N) = v(N), the x-maximum
dissatisfaction problem for (N, v) can be solved in polynomial time.

Proof. Fix some profit allocation x such that x(N) = v(N), and let A = {i ∈ N : xi < 0}. Consider the following algorithm
for the x-maximum dissatisfaction problem for (N, v):
Input: matroid profit game (N, v) with matroid (N, I) and weights wi ∈ R≥0 for all i ∈ N .

Output: an optimal solution S̄ to x-MD for (N, v).
1. Compute a maximum w̄-weight independent set T ∗ of (N, I), where

w̄i =


wi if i ∈ A
wi − xi if i ∈ N \ A.

2. Let T̄ = T ∗
∪ A.

• If T̄ ≠ ∅,N , output S̄ = T̄ .
• Otherwise, output S̄ = argmax{e(x, S) : S ∈ {T ,N \ T }} for some T ⊆ N, T ≠ ∅,N .
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First, since v is submodular, we have that e(x, S) + e(x,N \ S) = v(S) + v(N \ S) − v(N) ≥ 0 for all S ⊆ N such that
S ≠ ∅,N , and so

e(x, S) ≥ 0 or e(x,N \ S) ≥ 0 or both for all S ⊆ N, S ≠ ∅,N. (4.1)

In addition, we have that

e(x, ∅) = e(x,N) = 0. (4.2)

Therefore,

max
S⊆N

S≠∅,N

e(x, S) = max
S⊆N

e(x, S)  
(i)

≥ 0. (4.3)

Next, since v is nondecreasing and xi < 0 for all i ∈ A, any optimal solution to (i) must contain all elements of A, and so

max
S⊆N

e(x, S) = max
S⊆N


v(S) − x(S)


= max

S⊆N


v(S) − x(S \ A)


  

(ii)

−x(A). (4.4)

We show that the independent set T ∗ computed in Step 1 of the above algorithm is an optimal solution to (ii). Let S∗ be an
optimal solution to (ii), and suppose that v(S∗) − x(S∗

\ A) > v(T ∗) − x(T ∗
\ A). Note that without loss of generality, S∗

is an independent set of (N, I). Otherwise, there exists some i ∈ S∗ that is not in a maximum weight independent set of
(S∗, I|S∗). Take such i. If xi ≥ 0, then i ∈ S∗

\ A can be removed without decreasing the objective value of (ii); if xi < 0, then
i ∈ A, and removing it does not affect the objective value of (ii). Therefore,

w̄(S∗) = w(S∗) − x(S∗
\ A) = v(S∗) − x(S∗

\ A)

> v(T ∗) − x(T ∗
\ A) = w(T ∗) − x(T ∗

\ A) = w̄(T ∗),

which contradicts the assumption that T ∗ is a maximum w̄-weight independent set of (N, I). So T ∗ is an optimal solution to
(ii), and therefore an optimal solution to (i). By (4.1)–(4.3), it follows that the output T̄ of the above algorithm is an optimal
solution to x-MD for (N, v).

Since amaximumweight independent set of a matroid can be found in polynomial time [53,54], it follows that the above
algorithm solves the x-maximum dissatisfaction problem for a matroid profit game in polynomial time. �

By the appropriate analogue of Theorem 2.5, if (N, v) is a submodular profit cooperative game and we have a
ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v) for any given profit allocation x such
that x(N) = v(N), then we have a ρ-approximation algorithm for computing the least core value of (N, v). Therefore, by
Theorem 4.1, we immediately obtain the following theorem.

Theorem 4.2. Suppose (N, v) is a matroid profit game. Then there exists a polynomial-time algorithm for

(a) computing the least core value of (N, v), and
(b) computing a profit allocation in the least core of (N, v).

5. Conclusion

We provided a general framework for approximating the least core value of supermodular cost cooperative games. Using
this framework with the approximation algorithms for submodular function maximization of Buchbinder et al. [37], we
obtained a 3-approximation algorithm for computing the least core value of supermodular cost cooperative games. We also
showed that we can compute a cost allocation in the 2-approximate least core of supermodular cost cooperative games in
polynomial time. Finally, we applied this general framework to two special cases. For scheduling games, we gave a fully
polynomial-time approximation scheme for computing the least core value. For matroid profit games, we showed how to
compute the least core value as well as a cost allocation in the least core in polynomial time.

There are several interesting directions for future research that extend from this work. One drawback of the least
core value as a mechanism for encouraging cooperation is that it imposes the same defection penalty for every coalition,
regardless of its size or power. For situations in which this is not appropriate, the f -least core of a cooperative game (N, v)
[30] offers a way to address this issue: it is the set of cost allocations x that are optimal solutions to the linear program

z∗
= minimize z

subject to x(N) = v(N),
x(S) ≤ v(S) + z f (S) for all S ⊆ N, S ≠ ∅,N

for some function f : 2N
→ R. Several forms of the f -least core have been considered in the literature for various

cooperative games, including f (S) = |S| for all S ⊆ N [19], and f (S) = v(S) for all S ⊆ N [55]. It would be interesting to
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study the f -least core for supermodular cost cooperative games, for various forms of f , as it provides a natural way to model
different penalties for defection for different coalitions. Another interesting direction of research related to this work is to
study the nucleolus of supermodular cost cooperative games. The computational complexity of computing the nucleolus
of supermodular cost cooperative games is open. It would also be interesting to investigate whether our framework for
least core approximation can be used in a fruitful manner to approximate the nucleolus of supermodular cost cooperative
games. Last, but not least, the computational complexity of computing a cost allocation in the least core of supermodular
cost cooperative games remains open.
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Appendix. Proof of Theorem 2.5

We begin in Appendix A.1 by establishing some definitions from polyhedral theory. Then, in Appendix A.2, we show
that an approximate separation oracle for a given polytope, in conjunction with the ellipsoid method, can be used to either
find an element in an ‘‘approximation’’ of that polytope, or determine that the polytope is empty. The result we show is
actually more general than needed for the proof of Theorem 2.5. Finally, in Appendix A.3, we show how to use the results
from Appendix A.2 to approximately solve the least core linear program (LC). The ideas here closely follow and generalize
the analyses found in [38,40].

A.1. Preliminaries

To simplify the exposition, for the remainder of this appendix, we assume that v is integer-valued.
For a symmetric matrix A ∈ Rn×n, we denote the spectral norm of A as

∥A∥ = max

|λ| : λ is an eigenvalue of A


= max


|xTAx| : ∥x∥ = 1


.

For any vector a ∈ Rn and positive definite matrix A, we define the ellipsoid

E(A, a) =

x ∈ Rn

: (x − a)TA−1(x − a) ≤ 1

.

Suppose K ⊆ Rn is a polyhedron, and ϕ and ν are positive integers. We say that K has facet complexity at most ϕ if there
exists a system of inequalities with rational coefficients that has solution set K and the encoding length of each inequality
of the system is at most ϕ. We say that K has vertex complexity at most ν if there exist finite sets V , E of rational vectors such
that K = conv(V ) + cone(E) and each of the vectors in V and E has encoding length at most ν. We will use the following
well-known lemma that relates the facet complexity and the vertex complexity of a polyhedron.

Lemma A.1 ([38, 6.2.4]). Let K ⊆ Rn be a polyhedron.

(a) If K has facet complexity at most ϕ, then K has vertex complexity at most 4n2ϕ.
(b) If K has vertex complexity at most ν , then K has facet complexity at most 3n2ν .

A well-described polyhedron is a triple (K ; n, ϕ) where K ⊆ Rn is a polyhedron with facet complexity at most ϕ. The
encoding length of a well-described polyhedron (K ; n, ϕ) is ϕ + n.

A.2. Approximate separation implies approximate non-emptiness

Let us assume that (K ; n, ϕ) is a bounded, rational, well-described polyhedron in Rn. In other words, K ⊆ Rn is a rational
polytope with facet complexity at most ϕ. Let K̄ be an ‘‘approximation’’ to K . Consider the following problem:

Strong approximate separation problem for polytope K and its approximation K̄ (S-APP-SEP). Given y ∈ Qn, either
(i) assert y ∈ K̄ , or (ii) find a hyperplane that separates y from K: find c ∈ Qn such that cTy > cTx for all x ∈ K and ∥c∥∞ = 1.

Suppose we have an oracle for S-APP-SEP. We use this approximate separation oracle in the ellipsoid method as follows.

Algorithm A.2 (Central-cut Ellipsoid Method with Approximate Separation Oracle (APP-ELL)).

Input: ε ∈ Q such that ε ∈ (0, 1), bounded rational polyhedron K ⊆ Rn given by an oracle for S-APP-SEP, R ∈ Q such
that K ⊆ E(R2I, 0) (where I denotes the identity matrix).

Output: either (i) y ∈ K̄ , or (ii) positive definite A ∈ Qn×n, a ∈ Qn such that K ⊆ E(A, a) and vol(E(A, a)) ≤ ε.
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1. Set the following values:

N = ⌈5n| log ε| + 5n2
| log 2R|⌉, p = 8N. (A.1)

2. Generate the sequence of ellipsoids E(A0, a0), E(A1, a1), . . . , E(AN , aN) as follows:
• Initialize the sequence:

a0 = 0, A0 = R2I. (A.2)
• For k = 0, . . . ,N − 1, call S-APP-SEP oracle for K with input y = ak.

– If the S-APP-SEP oracle asserts ak ∈ K̄ , return ak. Stop.
– If the S-APP-SEP oracle returns ck ∈ Qn such that

∥ck∥∞ = 1, cTk ak > cTk x for all x ∈ K , (A.3)
then compute

ak+1 ≈ ak −
1

n + 1
Akck
cTkAkck

(A.4)

Ak+1 ≈
2n2

+ 3
2n2


Ak −

2
n + 1

AkckcTkAk

cTkAkck


(A.5)

where ‘‘≈’’ means the computations are done with p digits after the binary point.
• If k = N , return aN and AN . Stop.

To prove the correctness of the algorithm, we need the following lemma.

Lemma A.3 ([38, 3.2.8–3.2.10]). Let K ⊆ Rn be a convex set such that K ⊆ E(R2I, 0). Let N, p be defined as in (A.1). Suppose
Ak and ak (k = 0, 1, . . . ,N) are defined as in (A.2) and (A.4)–(A.5), and ck (k = 0, 1, . . . ,N) satisfy (A.3). Then, the following
statements hold for k = 0, 1, . . . ,N:

(a) Ak is positive definite.
(b) ∥ak∥ ≤ R2k, ∥Ak∥ ≤ R22k, and ∥A−1

k ∥ ≤ R−24k.
(c) K ⊆ E(Ak, ak).
(d) vol(E(Ak+1, ak+1)) ≤ e−

1
5n vol(E(Ak, ak)).

Using the above lemma, we can show:

Theorem A.4. Algorithm A.2 (APP-ELL) is correct.

Proof. Lemma A.3 immediately implies that Ak and ak (k = 0, 1, . . . ,N) as defined in (A.2) and (A.4)–(A.5) are well-defined
and have polynomial encoding lengths.

If the algorithm stops with k < N , the algorithm terminates correctly by construction. If the algorithm returns aN and
AN , then Lemma A.3 implies that K ⊆ E(AN , aN) and

vol(E(AN , aN)) ≤ e−
N
5n vol(E(A0, a0)) ≤ e−

N
5n (2R)n < 2−

N
5n (2R)n ≤ ε.

So if k = N , the algorithm terminates correctly. �

Before proceeding further, we need the following lemma.

Lemma A.5 ([38, pp. 175–176]). Let (K ; n, ϕ) be awell-described polyhedron. In addition, let ε = 2−48n5ϕ . Suppose K ⊆ E(A, a)
where vol(E(A, a)) ≤ ε. Then there exists f ∈ Zn and g ∈ Z>0 such that f ≠ 0 and K ⊆ {x ∈ Rn

: f Tx = g}. Moreover, f and g
can be found in time polynomial in n, ϕ, and the encoding length of A−1.

Consider the following problem:

Approximate non-emptiness problem for polytope K and its approximation K̄ (APP-NEMPT). Either (i) find a vector
y ∈ K̄ or (ii) assert K is empty.

We are now ready to show the main result of this appendix: we can use APP-ELL (Algorithm A.2) in conjunction with an
oracle for S-APP-SEP to solve APP-NEMPT.

Theorem A.6. Suppose there exists an algorithm that can solve S-APP-SEP in time polynomial in n and ϕ. Then, there exists an
algorithm that can solve APP-NEMPT in time polynomial in n and ϕ.
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Proof. By assumption, K has facet complexity at most ϕ. Therefore, by Lemma A.1, K has vertex complexity at most 4n2ϕ.
Apply APP-ELL (Algorithm A.2) to K with R = 24n2ϕ and ε = 2−48n5ϕ . If APP-ELL returns a vector y ∈ K̄ , then we have solved
APP-NEMPT, and we can stop. Otherwise, APP-ELL returns an ellipsoid E ⊆ Rn such that K ⊆ E and vol(E) ≤ ε. Then, by
Lemma A.5, we can find f 1 ∈ Zn and g1

∈ Z>0 such that f 1 ≠ 0 and K ⊆ {x ∈ Rn
: (f 1)Tx = g1

}. Without loss of generality,
assume that f 11 ≠ 0.

Suppose that we have found k linearly independent vectors f 1, . . . , f k ∈ Zn and g1, . . . , gk
∈ Z>0 such that f i ≠ 0 for

i = 1, . . . , k and

K ⊆

x ∈ Rn

: (F1 F2) x = g


where F1 ∈ Zk×k is upper triangular with non-zero diagonal entries and F2 ∈ Zk×(n−k) such that

(F1 F2) =

 (f 1)T
...

(f k)T

 and g =

g1

...

gk

 .

We show how to find f k+1
∈ Zn, gk+1

∈ Z>0 such that f 1, . . . , f k, f k+1 are linearly independent, f k+1
≠ 0, and

K ⊆

x ∈ Rn

: (f 1)Tx = g1, . . . , (f k)Tx = gk, (f k+1)Tx = gk+1.
Let

Kk =


u ∈ Rn−k

: ∃ z ∈ Rk such that

z
u


∈ K


.

Therefore, w ∈ Kk if and only if
z
w


∈ K ⊆


x ∈ Rn

: (F1 F2) x = g


for some z ∈ Rk, which happens if and only if
F−1
1 g − F−1

1 F2w
w


∈ K .

Note that for any vertex u∗ of Kk, there exists z∗
∈ Rk such that

z∗
u∗


is a vertex of K . Therefore, since K has vertex complexity

at most 4n2ϕ, Kk has vertex complexity at most 4n2ϕ. This implies that Kk has facet complexity at most ϕ′
= 3n2(4n2ϕ).

Apply APP-ELL to Kk with R = 24n2ϕ′

and ε = 2−48n5ϕ′

, using the following modified approximate separation oracle for Kk:
Input: w ∈ Rn−k.

Output: either (i) assert y ∈ K̄ , where

y =


F−1
1 g − F−1

1 F2w
w


or (ii) find c̄ ∈ Qn−k such that ∥c̄∥∞ = 1 and c̄Tw > c̄Tu for all u ∈ Kk.

1. Apply S-APP-SEP oracle for K on

y =


F−1
1 g − F−1

1 F2w
w


2. If the S-APP-SEP oracle asserts y ∈ K̄ , then assert y ∈ K̄ . Stop.
3. Otherwise, the S-APP-SEP oracle returns c ∈ Qn such that cTy > cTx for all x ∈ K . Let c1 ∈ Qk and c2 ∈ Qn−k such that

c =
c1
c2

. Therefore,

(c1)T(F−1
1 g − F−1

1 F2w) + (c2)Tw > (c1)T(F−1
1 g − F−1

1 F2u) + (c2)Tu for all u ∈ K k,

or equivalently,

((c2)T − (c1)TF−1
1 F2)w > ((c2)T − (c1)TF−1

1 F2)u for all u ∈ K k.

Return

c̄ =
c2 − (F−1

1 F2)Tc1

∥c2 − (F−1
1 F2)Tc1∥∞

as the vector representing a hyperplane that separates w and K k. Stop.
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If APP-ELL returns a vector y ∈ K̄ , thenwe have solved APP-NEMPT andwe are done. Otherwise, APP-ELL returns an ellipsoid
Ek

⊆ Rn−k such that K k
⊆ Ek and vol(Ek) ≤ ε. Therefore, by Lemma A.5 we can find f̄ k+1

∈ Zn−k and gk+1
∈ Z>0 such that

K k
⊆ {y ∈ Rn−k

: f̄ k+1y = gk+1
}. Without loss of generality, let f̄ k+1

1 ≠ 0. Let f k+1
∈ Zn such that (f k+1)T = (0 · · · 0 f̄ k+1)T.

It follows that K ⊆ {x ∈ Rn
: (f k+1)Tx = gk+1

}. Therefore,

K ⊆ {x ∈ Rn
: (f 1)Tx = g1, . . . , (f k)Tx = gk, (f k+1)Tx = gk+1

}

and f 1, . . . , f k, f k+1 are linearly independent.
When k = n, we have that

K ⊆ {x ∈ Rn
: (f 1)Tx = g1, . . . , (f n)Tx = gn

}.

Since f 1, . . . , f n are linearly independent, K must be equal to the unique vector y in {x ∈ Rn
: (f 1)Tx = g1, . . . , (f n)Tx = gn

},
or empty. Running the S-APP-SEP oracle for K on y, we either determine that y ∈ K̄ or K is empty.

By Lemmas A.3(b) and A.5, we can find the vectors f 1, . . . , f n and the scalars g1, . . . , gn in time polynomial in n and ϕ.
In addition, the inputs ε and R defined above imply that the calls to APP-ELL above run in time polynomially bounded by
n, ϕ, and the running time of the S-APP-SEP oracle (which is assumed to be polynomial in n and ϕ). Since at most n calls to
APP-ELL are made, the prescribed method above solves APP-NEMPT in time polynomial in n and ϕ. �

A.3. Approximately solving the least core optimization problem

For a cooperative game (N, v), we define Q to be the feasible region of the linear program (LC):

Q = {x ∈ RN , z ∈ R : x(N) = v(N), x(S) ≤ v(S) + z for all S ⊆ N, S ≠ ∅,N}.

In addition, for any fixed γ ≥ 0, let

Qγ = {x ∈ RN
: x(N) = v(N), x(S) ≤ v(S) + γ for all S ⊆ N, S ≠ ∅,N}. (A.6)

We restate the strong approximate separation problem and approximate non-emptiness problem for polytopes of the form
Qγ , using Qργ as its approximation:

Strong approximate separation problem for Qγ of cooperative game (N, v) and its approximation Qργ

(S-APP-SEP-Qγ ). Given x ∈ QN such that x(N) = v(N), either (i) assert x ∈ Qργ or (ii) find a hyperplane separating x
and Qγ .

Approximate non-emptiness problem for Qγ of cooperative game (N, v) and its approximation Qργ

(APP-NEMPT-Qγ ). Either (i) find x ∈ Qργ or (ii) assert Qγ is empty.

Since the facet complexity of Qγ is polynomially bounded by n and the encoding length of v(N)+γ , Theorem A.6 implies
the following theorem.

Theorem A.7. Fix γ so that its encoding length is polynomially bounded by n and log v(N). Suppose S-APP-SEP-Qγ can be solved
in time polynomial in n and log v(N). Then APP-NEMPT-Qγ can be solved in time polynomial in n and log v(N).

The following lemma is a consequence of Theorem A.7 and the fact that an approximation algorithm for the x-maximum
dissatisfaction problem can be used to solve the approximate separation problem for x and Qγ .

Lemma A.8. Fix γ so that its encoding length is polynomially bounded by n and log v(N). Suppose (N, v) is a cooperative game,
and there exists a ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v), for all cost allocations x such
that x(N) = v(N). Then APP-NEMPT-Qγ can be solved in time polynomial in n and log v(N).

Proof. Fix some cost allocation x such that x(N) = v(N). Suppose we run a ρ-approximation algorithm for the x-maximum
dissatisfaction problem for (N, v), and it outputs S̄. If e(x, S̄) ≤ γ , then for all S ⊆ N, S ≠ ∅,N , we have that

x(S) − v(S) ≤ max
S⊆N

S≠∅,N

e(x, S) ≤ ρe(x, S̄) ≤ ργ ,

and therefore x ∈ Qργ . Otherwise, e(x, S̄) > γ , and for all y ∈ Qγ we have that

x(S̄) − v(S̄) > γ ≥ y(S̄) − v(S̄).

So using a ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v) allows us to solve S-APP-SEP-
Qγ in time polynomial in n and log v(N), which by Theorem A.7, allows us to solve APP-NEMPT-Qγ in time polynomial in n
and log v(N). �



178 A.S. Schulz, N.A. Uhan / Discrete Optimization 10 (2013) 163–180

Finally, we are ready to prove Theorem 2.5. We do this by showing that using a polynomial-time algorithm for APP-
NEMPT-Qγ in conjunction with binary search yields an appropriate cost allocation and approximation to the least core
value of (N, v).

Proof of Theorem 2.5. Suppose that (N, v) is a supermodular cost cooperative game, and A is an algorithm that solves
APP-NEMPT-Qγ in time polynomial in n and log v(N) for every γ ≥ 0 whose encoding length is polynomially bounded by
n and log v(N). Since we assume that a ρ-approximation algorithm for the x-maximum dissatisfaction problem for (N, v)
exists for every cost allocation x such that x(N) = v(N), by Lemma A.8, such an algorithm A exists.

Consider the following algorithm:

Input: supermodular cost cooperative game (N, v) with v integer-valued; algorithm A that solves APP-NEMPT-Qγ for
every γ ≥ 0 whose encoding length is polynomially bounded by n and log v(N).

Output: a feasible solution (x, z) to the least core linear program (LC) for (N, v).

1. Set the following values:

m = 4(n + 1)2(2(n + 1) + ⌈log(v(N) + 1)⌉ + 1), (A.7a)

M = 2m, (A.7b)

ε = (2M)−2. (A.7c)

2. Using A, find γ̄ ∈ Q by binary search on [0, v(N)] such that Qγ̄−ε is empty, but Qργ̄ is non-empty. Denote the vector that
A finds in Qργ̄ by x̄.

3. Find p, q ∈ Z such that

1 ≤ q ≤ 2M and
γ̄ −

p
q

 <
1

2Mq
. (A.8)

Use A to solve APP-NEMPT-Qp/q. If A finds a vector in Qρp/q, denote that vector by x̂.
4. Output:

• If A finds a vector x̂ ∈ Qρp/q in Step 3, and p/q < γ̄ , then output (x, z) = (x̂, ρp/q).
• Otherwise, output (x, z) = (x̄, ργ̄ ).

First, we establish that the above algorithm is well-defined, by proving the following claims:

1. The binary search interval prescribed in Step 2 is valid. Consider the cost allocation xwhere xi = v(N)/n for all i ∈ N . Since
v is nonnegative, (x, v(N)) is feasible for (LC): for any S ⊆ N, S ≠ ∅,N , we have that v(S) + v(N) ≥ |S|v(N)/n = x(S).
Therefore, z∗

≤ v(N). Since v is supermodular and v(∅) = 0, it follows that z∗
≥ 0. So, the least core value of (N, v) lies

in the interval [0, v(N)].
2. Every trial value of γ̄ in the binary search of Step 2 has encoding length polynomially bounded by n and log v(N). Since the

binary search of Step 2 is on the interval [0, v(N)], the numerator and denominator of any trial value of γ̄ is nonnegative.
In addition, the binary search of Step 2 undergoes ⌈log v(N)

ε
⌉+1 iterations. This implies that the denominator of any trial

value of γ̄ is at most

2

log v(N)

ε


+1

≤ 22+log v(N)
ε =

4v(N)

ε
.

Since the binary search is performed on the interval [0, v(N)], the numerator of any trial value of γ̄ is at most 4v(N)2/ε.
By (A.7a)–(A.7c), the claim follows.

3. The integers p and q computed in Step 3 have encoding lengths polynomially bounded by n and log v(N). By (A.8), and since
M ≥ 1 and γ̄ ∈ [0, v(N)], we have that

p < γ̄ q +
1
2M

≤ 2Mv(N) + 1,

p > γ̄ q −
1
2M

≥ −
1
2
.

Therefore, |p| < 2Mv(N) + 1. Since |q| ≤ 2M , the claim follows by (A.7a)–(A.7c).

Next, we analyze the running time of the above algorithm. The algorithm makes a total of O(log v(N)

ε
) calls to A, which

runs in time polynomial in n and log v(N) each time it is called. It follows by (A.7a)–(A.7c) that the total running time of A
throughout the algorithm is polynomial in n and log v(N). By using the method of continued fractions [38, pp. 134–137],
finding integers p and q to satisfy (A.8) in Step 3 of the algorithm can be done in time polynomial in n and log v(N). Therefore,
the above algorithm runs in time polynomial in n and log v(N).

Finally, we analyze the quality of the solution returned by the above algorithm.We start by showing that min{p/q, γ̄ } ≤

z∗ by considering two cases:
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1. γ̄ − ε < z∗ < γ̄ . Consider p, q computed in Step 3 of the algorithm. Since v is integer-valued, nonnegative, and
supermodular with v(∅) = 0, z∗

= r/s for some r ∈ Z≥0 and s ∈ Z>0. Note that since v is nonnegative, supermodular,
and v(∅) = 0, the facet complexity of Q is at most ϕ = 2(n+1)+⌈log(v(N)+1)⌉+1. Therefore, the vertex complexity
of Q is at mostm = 4(n + 1)2ϕ, and so s ∈ (0, 2m) = (0,M). Since

γ̄ −
r
s

= γ̄ − z∗ < ε =
1

(2M)2
≤

1
2Mq

,

it follows thatpq − z∗

 =

pq −
r
s

 <

pq − γ̄

+ γ̄ −
r
s

 <
1
Mq

<
1
sq

.

Therefore, z∗
=

p
q . It follows that min{p/q, γ̄ } ≤ z∗.

2. z∗
≥ γ̄ . Clearly, min{p/q, γ̄ } ≤ z∗.

With this fact in hand, we now show that the solution (x, z) computed in Step 4 of the above algorithm is feasible in the
linear program (LC), and that z ≤ ρz∗. We consider the following cases:

1. p/q < γ̄ . In this case, we have that p/q ≤ z∗. Consider the output of A in Step 3 of the algorithm:
(a) A finds x̂ ∈ Qρp/q. Therefore, (x, z) = (x̂, ρp/q) is feasible in (LC), and z = ρp/q ≤ ρz∗.
(b) A asserts that Qp/q is empty. Therefore, z∗ > p/q. By the arguments above, we have that z∗

≥ γ̄ . So, (x, z) = (x̄, ργ̄ )
is feasible in (LC), and z = ργ̄ ≤ ρz∗.

2. p/q ≥ γ̄ . In this case, we have that z∗
≥ γ̄ . So, (x, z) = (x̄, ργ̄ ) is feasible in (LC), and z ≤ ρz∗. �

For submodular profit cooperative games (described in Section 4), the results of Appendix A.3 still hold, with the
natural modifications. There is one issue that needs careful consideration. When v is nonnegative and supermodular with
v(∅) = 0, v is also nondecreasing. As a result, v(N) is an upper bound on the least core value of a supermodular cost
cooperative game, and the encoding length of v(N) is an upper bound on the encoding length of v(S) for any S ⊆ N .
However, this is no longer the case when v is nonnegative and submodular with v(∅) = 0; in this case, we have that
v(S) ≤


i∈N v({i}) for all S ⊆ N . Therefore,


i∈N v({i}) is an upper bound on the least core value of a submodular profit

cooperative game, and the encoding length of


i∈N v({i}) is an upper bound on the encoding length of v(S) for any S ⊆ N .
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