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Abstract 

The permutahedron Perm(P) of a poset P is defined as the convex hull of those permutations 
that are linear extensions of P. Von Arnim et al. (1990) gave a linear description of the 
permutahedron of a series-parallel poset. Unfortunately, their main theorem characterizing the 
facet defining inequalities is only correct for not series-decomposable posets. We do not only 
give a proof of the revised version of this theorem but also extend it partially to the case of 
arbitrary posets and obtain a new complete and minimal description of Perm(P) if P is series- 
parallel. Furthermore, we summarize briefly results about the corresponding separation problem. 

1. The permutahedron of a poset 

We follow to a large extent the notation and terminology introduced in [2]. Let 

P = (N, -+) be a partially ordered set (poset) on N = { 1.. . , PI). The permutahedron 

of P is defined as the convex hull of those permutations 71: N -+ ( 1, . , n 1 that are 

linear extensions of P, 

Perm(P):= conv((z(l), ,x(n)): 7~ permutation with Z(U) < z(u) if u <,c). 

The poset P has an unique series decomposition P = PI * ... * Pk where P, , , Pk 

are neither empty nor series-decomposable. The dimension of the polytope Perm(P) is 

determined by the number of these suborders. 

Theorem 1.1. Let P be a poset with series decomposition PI * ... * Pk. Then 

.u(Pi)=f’(Pi) + (Pi((lP,I + “’ + lPi-11), i= l,...,k (1) 
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is a maximal irredundant linear equation system for Perm(P), where f(S) := f ( SI (I S 1 + 1) 

for S E P. 

Proof. First, observe that each linear extension z of P is the concatenation of linear 
extensions ni of Pi, i.e. 72 = (rci, . . . , zk) where each component of I is shifted by 

[PI]+ *.. + 1 Pi_ I (. Therefore, equation system (1) is valid with regard to Perm(P). 
Obviously, the matrix of this equation system has full row rank. Thus, it remains to be 
shown that for any equation ax = a satisfied by all linear extensions of P, there exists 
~~R~suchthat&=a,forall~~Pi,i~(l,..., k}. Let ax = M be such an equation and 
letu,uforiE{l,..., k} be two distinct elements of Pi. We have to show that a, = a,. 
We consider two cases. 

(i) Let u and v be incomparable. Then there exists a linear extension n of P such 
that n(v) = n(u) + 1. Let 71 be the adjacent transposition of TL with it(u) = n(v) 
and E(v) = rc(u). Then it is also a linear extension of P. Therefore, 
0 = a71 - a7T = (a, - a,)(n(v) - K(U)), i.e. a, = a,. 

(ii) Now assume that u and u are comparable. It suffices to consider the case that 
u is covered by u, i.e. there does not exist an element w E Pi\{u, u} with u -=c~ w <p u. 
Let U c Pi\{,} be the set of elements that are incomparable with u. Notice that 
1 U I > 1 since Pi is not series-decomposable. If there exists an element u” E U being also 
incomparable with u, we get a, = a, = a, applying (i). Otherwise, each element of 
U precedes v. Then let I’ be the set of those elements in Pi\(u} that are incomparable 
with u. All elements of V are successors of u. Since Pi is not series-decomposable, there 
exist two incomparable elements u” E U and v” E I/. Thus, using (i) again, we obtain 
a,=a,=a,=a,. 0 

Note that Theorem 1.1 holds for arbitrary posets. Therefore, it implies the following 
extension of Theorem 4.3 of [2]. 

Corollary 1.2. Let P be a poset with series decomposition PI * ... *Pk. Then 

dim(Perm(P)) = IP( - k 

and there exist IPI - k + 1 linearly independent linear extensions of P. 

2. Facet inducing ideal constraints 

Von Arnim et al. [2] derived the following two classes of valid inequalities for 
Perm(P): ideal constraints 

x(l) 2 f(Z), I c P is an ideal of P 

and convex set constraints 

JAlx(B) - IBlx(A) 2 f(A((BI(IAJ + IElI), A*B c P convex. 
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These two classes of inequalities together with the equation system (1) are sufficient to 
describe Perm(P) completely if P is series-parallel (cf. [2]). 

The following theorem corrects and extends Theorem 4.6(i) in [2] that is only 
correct for posets that are not series-decomposable. Before stating it, we observe that 
anyidealZcPisalwaysoftheformI=P,a.~.*Pi*~forsomei~{O,...,k-1) 
where I^ is an ideal of the suborder Pi+ 1 and P has the series decomposition 
P,* ... *Pk. Furthermore, such an ideal I induces a nontrivial and proper face of 
Perm(P) if and only if t#t c I^ c Pi+ 1. 

Theorem 2.1. Let P be a poset with series decomposition PI * ... *Pk. An ideal 
I=P~~~~~~Pi*~,i~{O,...,k-1},deJnesafacetofPerm(P)ifandonlyif~~I^~ 
Pi + , and both I^ and Pi + 1 \I^ are not series-decomposable. 

Proof. The most important observation for proving this theorem is the fact that the 
face induced by an ideal I is itself the permutahedron of an appropriate poset. More 
precisely,letQbetheposetdefinedbyQ:=P,*...*Pi*I^*(Pi+,\i)*Pi+,*...*P,. 
Then 

{x E Perm(P): x(l) =f(Z)} = PermCQ). 

Now Corollary 1.2 completes the proof. 0 

The characterization of the facet defining ideal constraints as stated in Theorem 2.1 
was independently obtained by von Arnim [l]. 

3. The series-parallel case 

Although it is possible to characterize those series-decomposable convex sets that 
induce facets of the permutahedron of an arbitrary poset (cf. [3]), we restrict ourselves 
here to the series-parallel case, just correcting Theorem 4.6(ii) of [2]. A series- 
decomposable set C = A * I3 E P is called bipartite if neither A nor B is itself series- 
decomposable. 

Theorem 3.1. Let P be a series-parallel poset with series decomposition PI * ..’ *Pk. 
A bipartite convex set C = A* B induces a facet of Perm(P) if and only if 

(a) C c Pi, for some i E { 1, . . . , k}, or 
(b) A =P<, B c Pi+l, for some iE(l,...,k-1) and Pi+ 1\ B is not series-decompo- 

sable, or 
(c) A c Pi, B = Pi+l, for some i E { 1, . . , k - 1) and Pi\A is not series-decompo- 

sable. 



88 ‘4.S. Schulz /Discrete Applied Mathematics 57 (1995) 85-90 

Proof. Let C = A *B be a bipartite convex set that induces a facet of Perm(P). 

Suppose that neither the set inclusion of (a) nor the set relationships of(b) nor those of 

(c) are valid. Not (a) implies that C $ Pi for all i E { 1, . . , k). Pi not series-decompos- 

able implies that C # Pi. Since C is convex and bipartite, we have A E Pi and 

B s Pi+ifOrSOmeiE{l,... , k - 11. Regarding not (b) and not (c), there are only two 

possibilities, namely A c Pi and B c Pi+, , or A = Pi and B = Pi+ 1. From the latter 

we obtain by Theorem 1.1 that every x E Perm(P) satisfies the inequality under 

consideration with equality and therefore a contradiction. In order to lead the other 

case to a contradiction we use 

{x~Perm(P): JAlx(B) - IBlx(A) =)lAljBl(lAj + /B/)} = Perm(Q), (2) 

where the extension Q of P is defined as Q := PI * ... *(P,\A) *A * B*(P,+ ,\B) 
* ... *Pk. Equation (2) was already observed by von Arnim et al. Hence, using 

Corollary 1.2 we obtain dim(Perm(Q)) ,< n - k - 2, contradicting our assumption. 

Thus we have proved that C has to satisfy one of the set relationships (a)-(c). 

Therefore, the last observation needed is that Pi+ 1 \B in case (b) and Pi\A in case (c) 

are not series-decomposable, respectively. This follows also from Eq. (2), since other- 

wise Corollary 1.2 implies again that the respective convex set constraint defines no 

facet. 

For the converse direction we already know that (a) implies that C defines a facet. 

This is due to von Arnim et al. In case (b) and (c) we consider once more the 

corresponding poset Q that satisfies (2). Since Pi+ l\B and Pi\A are not series- 

decomposable, Corollary 1.2 implies that these convex set constraints are facet 

defining ones, respectively. 0 

Note that Theorem 3.1 does not exclude that there are series-decomposable convex 

subsets of P which are not bipartite but facet defining. However, it is quite easy to 

show that these facets are identical to some of those mentioned in Theorem 3.1. 

There is another important remark on the facet defining inequalities of Theorems 

2.1 and 3.1. They do not necessarily induce distinct facets. First, notice that C = Pi *B 
is convex and bipartite with Pi+ ,\B not series-decomposable if and only if 

I = PI * ... * Pi * B is an ideal with B and Pi + l\B not series-decomposable. Analog- 

OUSly,D=A*Pi+l is convex and bipartite with Pi\A not series-decomposable if and 

only if J = PI * ... *Pi_ 1 *(P;\A) is an ideal and both A and Pi\A are not series- 

decomposable. If one remembers the proofs of Theorems 2.1 and 3.1, it is not hard to 

see that the facets induced by C and I as well as those induced by D and J, respectively, 

are identical. Observe further that all the other inequalities characterized in these 

theorems induce mutually distinct facets. 

Given a polyhedron T = {x E R”: Ax 3 b$, there is at least one inequality ax 3 p of 

the system Ax 3 b with F = {x E T: ax = fi) for each facet F of T. Furthermore, T is 

completely described by the system which is obtained by taking one of these inequali- 

ties for each facet together with a maximal irredundant equation system for T. 
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Therefore, the above observations together with Theorem 3.3 of [2] imply the 

following theorem. 

Theorem 3.2. Let P be u series-parallel poset with series decomposition P, * ... * P,. 

Then the following linear system is a complete and minimal linear description of 

Perm( P): 

x(Pi)=f(Pi)+IPiJ(IP1I+ ... +lP;-I/), i= 1, . . ..k. 

x(I) >,f(I), ,for all ideals I( = PI * ... *Pi * r^ ,for some i E {0, . . . , k - 1) ), r^ 

and Pi+, \r^ not series-decomposable, 8 c I^ c Pi+ 1 ; 

(Alx(B) - IBlx(A) >+1Al1Bl(1,4 + IBI), A*B c Pi cont’ex and bipurtite for 

someiE [l, . . ..k). 

4. The separation problem 

The complete description of Perm(P) by means of linear equations and inequalities 

leads naturally to the question how to solve the separation problem for a given point 

in R” and Perm(P). Queyranne and Wang (cf. [4, 51) studied a closely related 

full-dimensional single machine scheduling polyhedron P(N). They derived inequali- 

ties corresponding to initial (ideal) and intermediate (convex) sets, respectively, which 

turn out to be identical to those mentioned above when all job processing times are 

equal to one. In this case Perm(P) is a proper face of P(N), and it is a facet if and only if 

the poset P is not series-decomposable. 

Queyranne and Wang [S] proposed an O(n log n) separation-algorithm for the class 

of ideal constraints that is based on sorting the components of the given point for 

which the separation problem has to be solved. They adapted this algorithm to the 

class of those convex sets A *B, where A or B is a singleton. It is even possible to 

extend this idea to the case (A I = p or 1 B 1 = p where p is fixed, providing an O(nP’ ’ ) 

algorithm. Nevertheless, in the case of a series-parallel poset P it is easy to include the 

whole class of convex set constraints using the binary decomposition tree of P as 

follows. 

We are interested in series-decomposable sets A * B. Thus, it is obviously sufficient 

to consider only those tree nodes corresponding to a series composition. We consider 

these nodes separately. The basic idea is now to fix the cardinalities of A and B and to 

compute for each possible combination of these cardinalities at the actual tree node 

the difference between the left-hand side and the right-hand side of the convex set 

constraint built by the set of the biggest elements of the left subtree and the set of the 

smallest elements of the right subtree. This is quite natural and the reader should be 

able to fill in the details. 

However, determining the computational complexity of the separation problem for 

the class of convex set constraints in the case of an arbitrary poset P remains an open 

problem. 
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