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Abstract. An important class of scheduling problems concerns parallel machines and precedence
constraints. We consider precedence delays, which associate with each precedence constraint a certain
amount of time that must elapse between the completion and start times of the corresponding jobs.
Together with ordinary precedence constraints, release dates and delivery times can be modeled
in this manner. We present a 4-approximation algorithm for the total weighted completion time
objective for this general class of problems. The algorithm is a rather simple form of list scheduling.
The list is in order of job midpoints derived from a linear programming relaxation. Our analysis
unifies and simplifies that of a number of special cases heretofore separately studied, while actually
improving many of the former approximation results.

Key words. approximation algorithm, linear programming relaxation, performance guarantee,
precedence constraints, scheduling

AMS subject classifications. 68W25, 90B35, 90C59, 68W40, 68Q25, 68M20, 06A99, 90C27

DOI. 10.1137/S0097539799358094

1. Introduction. Scheduling problems with precedence constraints are among
the most difficult problems in the area of machine and processor scheduling, in par-
ticular for the design of good approximation algorithms. Our understanding of the
structure of these problems and our ability to generate near-optimal solutions remain
limited. The following examples illustrate this point:

(i) The first approximation algorithm for P|prec|Cmax by Graham (1969) with
performance ratio 2 − 1/m is still the algorithm of choice for this problem. On the
other hand, it is known only that no polynomial-time algorithm can have a better
approximation ratio than 4/3, unless P = NP (Lenstra and Rinnooy Kan (1978)).

(ii) The computational complexity of the problem Pm|prec, pj = 1|Cmax, open
problem “OPEN8” from the original list of Garey and Johnson (1979), is still open.

(iii) No constant-factor approximation algorithms are known for machines running
at different speeds. For the makespan and total weighted completion time objectives,
Chudak and Shmoys (1999) only recently improved to O(logm) performance ratios
of O(

√
m) due to Jaffe (1980) and Schulz (1996a), respectively.

(iv) Progress is also quite recent for the latter objective on a single machine or
identical parallel machines. Until recently, no constant-factor approximation algo-
rithms were known. Lately, the use of linear programming (LP) relaxations has led
to 2- and 2.7183-approximation algorithms for 1|prec|

∑
wjCj and 1|rj ,prec|

∑
wjCj ,

respectively (Schulz (1996b), Schulz and Skutella (1997)), and to a 5.3281-approxima-
tion algorithm for P|rj ,prec|

∑
wjCj (Chakrabarti et al. (1996)). (Since then, Chudak
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and Hochbaum (1999), Chekuri and Motwani (1999), and Margot, Queyranne, and
Wang (2003) have proposed various combinatorial 2-approximation algorithms for
1|prec|

∑
wjCj .) Few deep negative results are known for these problems (Hoogeveen,

Schuurman, and Woeginger (2001)).
We consider (a generalization of) the scheduling problem P|rj ,prec|

∑
wjCj and

answer a question of Hall et al. (1997, page 530), which they raised in the context of
a 7-approximation algorithm for this problem:

Unfortunately, we do not know how to prove a good performance
guarantee for this model by using a simple list-scheduling variant.

We show that using a similar LP relaxation as Hall et al. (1997) and Chakrabarti et al.
(1996) in a different way (reading the list order from the LP midpoints instead of LP
completion times) yields a simple 4-approximation algorithm for P|rj ,prec|

∑
wjCj .

We actually obtain this result in the more general framework of precedence delays.
Let us describe the model in detail. We are given a set N of n jobs, and m identical

parallel machines. Each job j has a nonnegative processing time pj ; it must be
processed uninterruptedly for that amount of time on any one of the machines. Each
machine can process only one job at a time. An acyclic, directed graph D = (N,A)
specifies precedence constraints between jobs. A nonnegative precedence delay dij is
associated with each precedence-constrained job pair (i, j) ∈ A, with the following
meaning: in every feasible schedule, job j cannot start until dij time units after job i
is completed. Precedence delays can be used to model ordinary precedence constraints
(dij = 0), release dates rj ≥ 0 (by adding a dummy job 0 with zero processing time
and precedence delays d0j = rj for all other jobs), or delivery times qj ≥ 0, which
must elapse between the end of a job’s processing and its actual completion time.

Precedence delays were considered for project scheduling under the name of
“finish-to-start lags,” e.g., by Bartusch, Möhring, and Radermacher (1988) and Her-
roelen and Demeulemeester (1995), for one-machine scheduling by Wikum, Llewellyn,
and Nemhauser (1994) under the name of “generalized precedence constraints,” and
by Balas, Lenstra, and Vazacopoulos (1995) under that of “delayed precedence con-
straints”; the latter authors used the Lmax minimization problem as a key relaxation
in a modified version of the shifting bottleneck procedure for the classic job-shop
scheduling problem. The one-machine problem 1|prec. delays dij = k, pj = 1|Cmax

corresponds to a basic pipeline scheduling problem; see Lawler et al. (1987) for a sur-
vey. Leung, Vornberger, and Witthoff (1984) showed that this problem is strongly NP-
complete. Several other authors, including Bruno, Jones III, and So (1980), Bernstein
and Gertner (1989), Palem and Simons (1993), Finta and Liu (1996), and Brucker and
Knust (1999), derived polynomial-time algorithms for particular instances by utilizing
well-known algorithms for special cases of the classical m-machine problem. In the
context of approximation algorithms, Hall and Shmoys (1989, 1990, 1992) presented
polynomial-time approximation schemes for the problems 1|rj , qj |Cmax, P|rj , qj |Cmax,
and 1|rj ,prec, qj |Cmax, respectively. Schuurman (1998) gave a fully polynomial-time
approximation scheme for 1|prec. delays dij |Cmax when the partial order A has a spe-
cial structure introduced by Wikum, Llewellyn, and Nemhauser (1994). Graham’s
list-scheduling algorithm (Graham (1969)) was extended to P|prec. delays dij = k,
pj = 1|Cmax to yield a worst-case performance ratio of 2 − 1/(m(k + 1)) (Lawler
et al. (1987), Palem and Simons (1993)). This result was in turn extended by Mu-
nier to nonidentical precedence delays and processing times; see Munier, Queyranne,
and Schulz (1998) for details. We refer to Brucker and Knust (1999) for an overview
of complexity results for single-machine problems with precedence delays, including
polynomially solvable cases with total completion time objective.
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For given nonnegative job weights wj ≥ 0, we consider the objective of min-
imizing the weighted sum

∑
j∈N wjCj of completion times. Here, Cj denotes the

completion time of job j in the corresponding schedule. Even special cases of this
problem P|prec. delays dij |

∑
wjCj are NP-hard;1 we therefore discuss the quality

of relaxations and approximation algorithms. An α-approximation algorithm is a
polynomial-time algorithm that produces a solution with objective value at most α
times the optimal value. Sometimes α is called the (worst-case) performance guaran-
tee of the algorithm. Similarly, an α-relaxation is a relaxation with objective value at
least 1/α times the optimal value.

For P|prec. delays dij |
∑

wjCj , we present in section 3 a new algorithm with a
performance guarantee of 4. This algorithm is based on an LP relaxation of this prob-
lem, which is a direct extension of earlier LP relaxations proposed by Schulz (1996b)
and Hall et al. (1997). The decision variables are the job completion times Cj ; in
particular, this relaxation ignores the machine assignments. There are two sets of
linear constraints: one represents the precedence delays in a straightforward fashion;
the other set of constraints is a relatively simple way of enforcing the total capacity of
the m machines. Although the machine assignments are ignored and the machine ca-
pacities are modeled in a simplistic way, this is sufficient to obtain the best relaxation
and approximation bounds known so far for these problems and several special cases
thereof. We show that using job midpoints (instead of completion times) derived from
the LP relaxation leads to a performance ratio of 4 for the general problem described
above. In a given schedule, the midpoint of a job is the earliest point in time at which
half of its processing has been performed; if the schedule is nonpreemptive, then the
midpoint of job j is simply Cj−pj/2. Midpoints and more general notions of α-points
have previously been used in the design and analysis of approximation algorithms for
a variety of scheduling problems with the weighted sum of completion times objective;
see, e.g., Phillips, Stein, and Wein (1998), Hall, Shmoys, and Wein (1996), Goemans
(1997), Chekuri et al. (2001), Goemans et al. (2002), and Schulz and Skutella (2002a,
2002b).

In summary, the contributions of this paper are as follows:
(i) We shed further light on the relationship between two forms of list-scheduling

algorithms: Graham’s nonidling, machine-based list scheduling and job-driven list
scheduling.2 It is well known that the former is appropriate for optimizing objec-
tives, such as the makespan Cmax, that are related to maximizing machine utilization,
whereas they are inappropriate (leading to unbounded performance ratio) for job-
oriented objectives, such as the weighted sum of completion times

∑
j wjCj . This

difficulty was recognized by, among others, Chekuri et al. (2001), who proposed a
variant of machine-based list scheduling that allows for insertion of idle time, us-
ing a mechanism for “charging” such idle time to jobs. This technique leads to a
5.8285-approximation algorithm for P|rj ,prec|

∑
wjCj . We show that job-driven list-

scheduling algorithms have bounded performance ratio for the
∑

j wjCj objective if
the priority list is sensibly chosen.

(ii) Using job completion times as a basis for job-driven list scheduling may yield
very poor schedules for problems with parallel machines, precedence constraints, and a
weighted sum of completion times objective. This may happen even if the completion

1For example, P2| |
∑

wjCj , 1|rj |
∑

wjCj , and 1|prec|
∑

wjCj are NP-hard (Bruno, Coffman,
Jr., and Sethi (1974), Lenstra, Rinnooy Kan, and Brucker (1977), Lawler (1978), Lenstra and Rin-
nooy Kan (1978)).

2Sometimes also called the parallel and serial methods; see Kolisch (1996) for a recent review in
the context of resource-constrained project scheduling.
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times are those of an optimal schedule. In contrast, we show that job-driven list
scheduling according to job midpoints from an appropriate LP relaxation leads to
job-by-job error bounds of at most 4 for a broad class of problems.

(iii) The general model of scheduling with precedence delays allows us to treat in
a unified framework ordinary precedence constraints and release dates. In particular,
this simplifies and unifies the analysis and proof techniques.

(iv) We present the best polynomial-time approximation bounds known so far for
a broad class of parallel machine scheduling problems with precedence constraints or
delays and a total weighted completion time objective. These approximation results
are summarized in Table 1.1.

Table 1.1

Summary of results.

Problem Performance Guarantee Reference

P|prec. delays dij |
∑

wjCj 4 Corollary 3.3

P|prec. delays dij , pj = p|
∑

wjCj 3 Corollary 3.7

P|rj , prec|
∑

wjCj 4 Corollary 3.3

P|rj , prec, pj = p|
∑

wjCj 3 Corollary 3.7

P|prec|
∑

wjCj 4 − 2/m Corollary 3.5

P|prec, pj = p|
∑

wjCj 3 − 1/m Corollary 3.7

P|prec = stiff|
∑

wjCj 3 − 1/m Corollary 3.8

1|prec. delays dij |
∑

wjCj 3 Corollary 3.6

2. List-scheduling algorithms. List-scheduling algorithms, first analyzed by
Graham (1966, 1969), are among the simplest and most commonly used approximate
solution methods for parallel machine scheduling problems. These algorithms use pri-
ority rules, or job rankings. Whenever one of the m machines becomes idle, the next
available job in the list is started on that machine. In the presence of precedence
constraints, a job is available if all of its predecessors have completed processing. By
their nonidling property, Graham’s list-scheduling algorithms are appropriate when
machine utilization is an important consideration. Indeed, Graham (1969) showed
that list scheduling is a (2− 1/m)-approximation algorithm for P|prec|Cmax, no mat-
ter which priority order is used. In contrast, the two examples below show that
the nonidling property may lead to poor performance ratios for a weighted sum of
completion times objective

∑
j wjCj .

Example 2.1. Consider the following two-job instance of the single-machine non-
preemptive scheduling problem 1|rj |

∑
wjCj (a special case of a precedence delay

problem, as discussed in the introduction). For a parameter q ≥ 2, job 1 has p1 = q,
r1 = 0, and w1 = 1, whereas job 2 has p2 = 1, r2 = 1, and w2 = q2. The optimal
strategy is to leave the machine idle during the time interval [0, 1) so as to process
job 2 first. The optimum objective value is 2q2 + q + 2. Any nonidling heuristic
starts processing job 1 at time 0, leading to an objective value of q3 + q2 + q. The
performance ratio is unbounded as q may be arbitrarily large.

The following example is of the same type but uses ordinary precedence con-
straints instead of release dates.

Example 2.2. Consider an instance with m ≥ 3 machines and three types of jobs.
Unit-time job 1 precedes jobs a(1), a(2), . . . , a(m), each of which has processing time 1
as well. Jobs b(1), b(2), . . . , b(m − 1) are independent and have processing time m
each. Job 1 and jobs b(1), b(2), . . . , b(m− 1) have zero weight, whereas wa(h) = 1 for
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h = 1, 2, . . . ,m. The optimal schedule starts job 1 at time 0 on some machine and
leaves m − 1 machines idle during the time interval [0, 1) so as to complete all jobs
a(1), a(2), . . . , a(m) by time 2. Hence, its objective value is 2m. Any form of Graham’s
machine-based list scheduling starts processing jobs b(1), b(2), . . . , b(m− 1) at time 0.
These jobs occupy their machines until time m, forcing jobs a(1), a(2), . . . , a(m) onto
the same machine as job 1, which results in an objective value of (m+1)(m+2)/2−1.
Therefore, the performance ratio increases with m.

Evidently, the appropriate introduction of idle time is an important element in the
design of approximation algorithms to minimize a weighted sum of completion times
subject to precedence delays. As Examples 2.1 and 2.2 illustrate, idle time is needed
to prevent large-weight jobs, which may soon become available, from being delayed
by other, less important jobs.3 On the other hand, too much idle time is undesirable
as well. The necessity to balance these two effects contributes to the difficulty of this
problem. All former approximation algorithms for P|rj ,prec|

∑
wjCj with constant-

factor performance ratios are based on variants of Graham’s original list scheduling,
which actually tries to avoid machine idle time. In fact, Hall et al. (1997) partitioned
jobs into groups that are individually scheduled according to Graham’s list-scheduling
rule, and then these schedules are concatenated to obtain a solution for the original
problem. To find a good partition, this scheme was enriched with randomness by
Chakrabarti et al. (1996). Chekuri et al. (2001) presented a different variant of Gra-
ham’s list scheduling by artificially introducing idle time whenever it seems that a
further delay of the next available job in the list (if it is not the first) can be afforded.
It is worth mentioning that these techniques, analyses, and approximation results also
generalize to precedence delays.

Another, arguably simpler, strategy is to consider the jobs one by one, in the given
list order, starting from an empty schedule. Each job is nonpreemptively inserted into
the current schedule without altering the jobs already scheduled. Specific job-driven
list-scheduling algorithms differ in how this principle is implemented. For definiteness,
consider the version in Figure 2.1, whereby every job is considered in the list order
and is scheduled at the earliest feasible time at the end of the current schedule on
a machine. We assume that the given list is a linear extension of the partial order
defined by the precedence constraints.

1. The list L = (�(1), �(2), . . . , �(n)) is given.
2. Initially, all machines are empty, with machine completion times

Γh := 0 for h = 1, 2, . . . ,m.
3. For k = 1 to n do:

3.1 Let job j = �(k); set its start time Sj := max
(
max{Ci + dij : (i, j) ∈ A},

min{Γh : h = 1, 2, . . . ,m}
)

and its completion time Cj := Sj + pj .
3.2 Assign job j to a machine h such that Γh ≤ Sj . Update Γh := Cj .

Fig. 2.1. Job-driven list-scheduling algorithm for P|prec. delays dij |
∑

wjCj .

Various rules may be used in step 3.2 for the choice of the assigned machine h, for
example, one with largest completion time Γh (so as to reduce the idle time between
Γh and Sj). Moreover, the above algorithm can be modified to allow the insertion of

3It is important to point out that this difficulty results from the nonpreemptive mode; Graham’s
list scheduling with jobs ordered according to LP completion times gives a 3-approximation for
P|rj , prec, pmtn|

∑
wjCj (Hall et al. (1997)).
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a job in an idle period before time Γh. In effect, the observations below also apply to
all these variants.

One method (e.g., Phillips, Stein, and Wein (1998) and Hall et al. (1997)) for
defining the list L consists of sorting the jobs in nondecreasing order of their com-
pletion times in a relaxation of the scheduling problem under consideration. In the
presence of ordinary precedence constraints, this works well for the case of a single
machine (Schulz (1996b), Hall et al. (1997)), but Example 2.3 shows that this may
produce very poor schedules for the case of identical parallel machines. This example
uses the list which is produced by an optimal schedule, the tightest kind of relaxation
that can be defined; moreover, this optimal schedule defines the same completion time
order as the LP relaxation in section 3.1.

Example 2.3. For a fixed number m ≥ 2 of identical parallel machines and a
positive number ε, let the job set N consist of m sets Jh (h = 1, 2, . . . ,m) of m + 1
jobs each, plus a “last job” n. (Thus n = m(m + 1) + 1.) Each set Jh consists of
a “long job” a(h), with processing time pa(h) = 1 + (h − 1)(m + 1)ε, and m “small
jobs” b(h, g) (for g = 1, 2, . . . ,m), each with processing time pb(h,g) = ε and subject to
the precedence constraint (a(h), b(h, g)). In addition, there is a precedence constraint
(b(h, g), n) from each small job b(h, g) (for h = 1, 2, . . . ,m and g = 1, 2, . . . ,m) to
the last job n, which has processing time ε. The objective is to minimize either the
makespan or a weighted sum

∑
j wjCj of job completion times with weights wj = 0

for all j �= n and wn = 1; due to the precedence constraints, these two objectives
coincide for any feasible schedule. An optimal schedule has, for h = 1, 2, . . . ,m, long
job a(h) starting at time S∗

a(h) = 0 on machine h, immediately followed by all small

jobs b(h, g) (for g = 1, 2, . . . ,m) in the same set Jh, assigned as uniformly as possible
to machines 1, 2, . . . , h. Note that all the jobs in Jh are completed before the next
long job a(h + 1) completes. Job n is then processed last on any machine, so that
the optimal objective value is C∗

max = C∗
n = 1 + (m2 + 1)ε. On the other hand, any

version of the job-driven list-scheduling algorithm with all jobs listed in order of their
optimal completion times produces the following schedule: long job a(1) is scheduled
first, with start time SL

a(1) = 0 and completion time CL
a(1) = 1; the m small jobs b(1, g)

(for g = 1, 2, . . . ,m) in J1 are then scheduled, each with start time SL
b(1,g) = 1 and

completion time CL
b(1,g) = 1 + ε on a different machine; this forces all subsequent jobs

to be scheduled no earlier than date 1+ ε. Consequently, for h = 1, 2, . . . ,m, long job
a(h) is scheduled with start time SL

a(h) = (h− 1)+ (h− 1+ (h− 1)(h− 2)(m+1)/2)ε,

followed by all small jobs b(h, g) (for g = 1, 2, . . . ,m) in the same set Jh, each with
start time SL

b(h,g) = SL
a(h) + pa(h) on a different machine. Finally, job n is scheduled

last with SL
n = m + (m + m(m − 1)(m + 1)/2)ε, and thus the objective value is

CL
max = CL

n = m + o(ε), arbitrarily close to m times the optimal value C∗
max when

ε > 0 is small enough.

3. LP-based approximation algorithms. In this section we present an LP
relaxation for the problem of minimizing a weighted sum

∑
j wjCj of job completion

times subject to precedence delays, and use it to develop a 4-approximation algorithm
for this problem. Thereafter, we refine the analysis to give improved bounds for various
relevant special cases.

3.1. The LP relaxation. The decision variables are the job completion times
Cj . The set of constraints is

Cj ≥ pj for all j ∈ N,(3.1)
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Cj ≥ Ci + dij + pj for all (i, j) ∈ A,(3.2)

∑
j∈F

pjCj ≥ 1

2m

(∑
j∈F

pj

)2

+
1

2

∑
j∈F

p2
j for all F ⊆ N.(3.3)

This relaxation is an extension of a relaxation introduced by Hall et al. (1997) for
P|rj ,prec|

∑
wjCj : on the one hand, ordinary precedence constraints are replaced by

inequalities (3.2), which model the precedence delays; on the other hand, inequalities
(3.3) are stronger than the analogous class of inequalities used by Hall et al. (1997).
Our analysis requires this strengthened class of inequalities, which was proposed by
Schulz (1996b). For m = 1 (the single-machine case), they are identical to inequalities
introduced by Wolsey (1985) to model the constraint that the machine can process
at most one job at a time; see Queyranne (1993) for further details. Constraints (3.1)
impose the trivial lower bounds on job completion times.

For a weighted sum of completion times objective, the LP formulation is simply

minimize
∑
j∈N

wjCj subject to (3.1)–(3.3).(3.4)

Although there is an exponential number of constraints in (3.3), the separation prob-
lem for these inequalities can be solved in polynomial time (Schulz 1996a). It follows
that this LP relaxation can be solved in polynomial time, using the ellipsoid method.

3.2. The approximation algorithm. Let CLP denote any feasible solution
to the constraint set (3.1)–(3.3) of this LP. We use this LP solution to define a
feasible schedule with completion time vector CH and analyze the job-by-job rela-
tionship between CH

j and CLP
j for every job j ∈ N . We define the LP midpoint as

MLP
j := CLP

j − pj/2. We now use the list-scheduling algorithm of Figure 2.1 with
the LP midpoint list L defined by sorting the jobs in nondecreasing order of their
midpoints MLP

j . The next theorem contains our main result.

Theorem 3.1. Let CLP denote any feasible solution to the constraint set (3.1)–
(3.3), and let MLP denote the corresponding vector of LP midpoints. Let SH be
the vector of start times of the feasible schedule constructed by the job-driven list-
scheduling algorithm using the LP midpoint list. Then

SH
j ≤ 4MLP

j for all jobs j ∈ N.(3.5)

Proof. Assume for simplicity that the jobs are indexed in the order of their LP
midpoints; that is, MLP

1 ≤ MLP
2 ≤ · · · ≤ MLP

n . We fix job j ∈ N and consider
the schedule constructed by the list-scheduling heuristic using the LP midpoint list
L = (1, 2, . . . , n) up to and including the scheduling of job j, that is, up to the
completion of step 3 with k = j. Let [ j ] := {1, 2, . . . , j}.

Let μ denote the total time between 0 and the start time SH
j of job j when all

m machines are busy at this stage of the algorithm. Since only jobs in [ j − 1] have

been scheduled so far, μ ≤
∑j−1

i=1 pi/m. Let λ := SH
j − μ. To prove (3.5), we need

only show that

(i)
1

m

j−1∑
i=1

pi ≤ 2MLP
j and (ii) λ ≤ 2MLP

j .

Inequality (i) follows from a straightforward variant of Lemma 1 in Schulz (1996b) or
Lemma 3.2 in Hall et al. (1997). For this, first observe that the inequalities (3.3) are
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equivalent to

∑
i∈F

piMi ≥
1

2m

(∑
i∈F

pi

)2

for all F ⊆ N.

Since MLP satisfies all these inequalities, letting F = [ j−1] and using MLP
1 ≤ MLP

2 ≤
· · · ≤ MLP

j , we obtain(
j−1∑
i=1

pi

)
MLP

j ≥
j−1∑
i=1

piM
LP
i ≥ 1

2m

(
j−1∑
i=1

pi

)2

,

implying (i).
To show (ii), let q denote the number of maximal intervals between dates 0 and SH

j

when at least one machine is idle (i.e., not processing a job in [ j − 1]) in the sched-
ule CH. Denote these idle intervals as [ah, bh) for h = 1, 2, . . . , q, so that 0 ≤ a1,
bh−1 < ah < bh for all h = 2, . . . , q, and bq ≤ SH

j . Hence, λ =
∑q

h=1(bh − ah) and all
machines are busy during the complementary intervals [bh, ah+1), including intervals
[0, a1) and [bq, S

H
j ), if nonempty.

Consider the digraph G[ j ] = ([ j ], A[ j ]), where

A[ j ] := {(k, �) ∈ A : k, � ∈ [ j ] and CH
� = CH

k + dk� + p�}.
That is, A[ j ] is the set of precedence pairs in [ j ] for which the precedence delay
constraints (3.2) are tight for CH. If bq > 0, then a machine becomes busy at date bq
(or starts processing job j if bq = SH

j ) and thus there exists a job x(q) ∈ [ j ] with

start time SH
x(q) = bq. Since x(q) ∈ [ j ] we have MLP

x(q) ≤ MLP
j . We repeat the

following process for decreasing values of the interval index h, starting with h = q,
until we reach the date 0 or the busy interval [0, a1). Let (v(1), . . . , v(s)) denote a
maximal path in G[ j ] with last node (job) v(s) = x(h). Note that we must have
bg < SH

v(1) ≤ ag+1 for some busy interval [bg, ag+1) with ag+1 < bh, for otherwise

some machine is idle immediately before the start time SH
v(1) of job v(1) and this job,

not being constrained by any tight precedence delay constraint, should have started
earlier than that date. (Unless SH

v(1) = 0, of course. In this case, ag+1 is the first

point in time at which some machine falls idle.) We have

bh − ag+1 ≤ SH
v(s) − SH

v(1) =

s−1∑
i=1

(
SH
v(i+1) − SH

v(i)

)
=

s−1∑
i=1

(
pv(i) + dv(i)v(i+1)

)
.(3.6)

On the other hand, the precedence delay constraints (3.2) imply

MLP
v(i+1) ≥ MLP

v(i) +
1

2
pv(i) + dv(i)v(i+1) +

1

2
pv(i+1)

for all i = 1, 2, . . . , s− 1. Therefore,

MLP
x(h) −MLP

v(1) ≥
1

2

s−1∑
i=1

(
pv(i) + dv(i)v(i+1)

)
≥ 1

2
(bh − ag+1).

If bg > 0, then let x(g) be a job with SH
x(g) = bg. Because of the order of jobs in the

priority list L, SH
x(g) < SH

v(1) implies MLP
x(g) ≤ MLP

v(1). Therefore,

MLP
x(h) −MLP

x(g) ≥
1

2
(bh − ag+1).(3.7)
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We also have (k, x(g)) ∈ A[ j ] for some k ∈ [ j ] with SH
k < bg = SH

x(g), for otherwise

job x(g) should have started processing on some idle machine before date bg. We may
thus repeat the above process with h = g and job x(h) = x(g). Since g < h at each
step, this whole process must terminate, generating a decreasing sequence of indices
q = H(1) > · · · > H(q′) = 0 such that every idle interval is contained in some interval
[aH(i+1)+1, bH(i)). Adding the corresponding inequalities (3.7), we obtain

λ ≤
q′−1∑
i=1

(bH(i) − aH(i+1)+1) ≤ 2(MLP
x(H(1)) −MLP

x(H(q′))) ≤ 2(MLP
j − 0).(3.8)

This establishes (ii). The proof of Theorem 3.1 is complete.
The following example shows that the factor 4 in inequality (3.5) is (asymptoti-

cally) best possible, even for ordinary precedence constraints only.
Example 3.2. For a given number m ≥ 2 of identical parallel machines, the job

set N includes m sets Jh (for h = 1, 2, . . . ,m) of m + 1 jobs each: a job a(h) with
processing time pa(h) = 2h−1−m, and m “small jobs” b(h, g) (for g = 1, 2, . . . ,m), each
with processing time pb(h,g) = 0 and subject to the ordinary precedence constraint
(a(h), b(h, g)) (with zero delay). In addition, there are m “unit jobs” u(i) (for i =
1, 2, . . . ,m) with processing time pu(i) = 1, and two jobs, n−1 and n, with processing
times pn−1 = 2/m and pn = 0 (thus n = (m + 1)2 + 1). There are two additional
(ordinary) precedence constraints: a(m) precedes n− 1 and n− 1 precedes n.

For sufficiently large m, the following solution CLP is feasible for constraints (3.1)–
(3.3): CLP

j = pa(h) = 2h−1−m for all jobs j ∈ Jh, for h = 1, 2, . . . ,m; CLP
u(i) = 1 + 2/m

for all unit jobs u(i); and CLP
n−1 = CLP

n = MLP
n = pa(m) + pn−1 = 1/2 + 2/m.

Therefore, an LP midpoint list starts with sets J1, J2, . . . , Jm (each with its medium
job before all its small jobs), followed by job n − 1, all unit jobs u(i), and finally
job n. This LP midpoint list produces the following schedule. First schedule the
sets Jh in sequence h = 1, 2, . . . ,m, beginning with the medium job a(h) on one
machine (starting just after set J(h − 1) is complete), immediately followed by the
m small jobs in Jh, each on a different machine. All jobs j in Jh have completion
time CH

j =
∑h

i=1 pa(i) = 2h−m − 2−m; since all machines are occupied at that date,
this forces all subsequent jobs to start no earlier than that date. After the last set Jm
is complete, schedule job n− 1 and m− 1 unit jobs u(i), each on a different machine.
After this, start the remaining unit job on the same machine as job n − 1. The
first m − 1 unit jobs have completion time CH

u(i) = 2 − 2−m. Finally, start job n at

date SH
n = 2 − 2−m. For m large enough, the latter expression is arbitrarily close to

4MLP
n = 2 + 8/m.
If CLP is an optimal LP solution, Theorem 3.1 implies performance ratios of

1/4 and 4 for the LP relaxation and the heuristic solution, respectively.
Corollary 3.3. Let CLP denote an optimal solution to the LP relaxation defined

in (3.4) for the problem P|prec. delays dij |
∑

wjCj. Let CH denote the solution con-
structed from CLP by the job-driven list-scheduling algorithm using the LP midpoint
list, and let C∗ denote an optimum schedule. Then,

∑
j∈N

wjC
LP
j ≥ 1

4

∑
j∈N

wjC
∗
j and

∑
j∈N

wjC
H
j ≤ 4

∑
j∈N

wjC
∗
j .(3.9)

The following example shows that the latter bound is (asymptotically) tight, even
for ordinary precedence constraints only, i.e., for problem P|prec|

∑
wjCj .
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Example 3.4. In Example 3.2, let the weights be wn = 1 and all other wj = 0, so
that the optimum solution has

∑
j∈N wjC

∗
j = wn(pa(m) + pn−1 + pn) = 1/2 + 2/m.

Since the precedence constraints (3.2) and the lower bounds (3.1) imply CLP
n ≥ pa(m)+

pn−1 + pn = 1/2 + 2/m, the solution CLP described in Example 3.2 is optimal for the
LP relaxation (3.4); its objective value is

∑
j∈N wjC

LP
j = 1/2 + 2/m =

∑
j∈N wjC

∗
j .

Using the LP midpoint list produces the schedule described in the above example,
with

∑
j∈N wjC

H
j = 2− 2−m. For m large enough, the latter expression is arbitrarily

close to 4
∑

j∈N wjC
∗
j .

We suspect that the first inequality in (3.9), bounding the performance ratio of
the LP relaxation, is not tight. The worst instances we know arise actually for m = 1
and lead to a gap of 2; see Hall et al. (1997) for details.

3.3. Special cases. The analysis in Theorem 3.1 can be refined for some special
cases, yielding tighter performance ratios. For the problem P|prec|

∑
wjCj , observe

that the list-scheduling algorithm will not allow all machines to be simultaneously
idle at any date before the start time of any job j ∈ N . Therefore, in the proof of
Theorem 3.1, all the idle intervals, with total length λ, contain some processing of
some job(s) i < j; as a result the total work during the busy intervals is at most∑j−1

i=1 pi − λ. Hence, we obtain the following result.

Corollary 3.5. Job-driven list scheduling by optimal LP midpoints is a (4 −
2/m)-approximation algorithm for the scheduling problem P|prec|

∑
wjCj.

Note that for m = 1 we recover the performance ratio of 2 for 1|prec|
∑

wjCj in
Schulz (1996b), which is known to be tight for that special case (Hall et al. (1997)).

In the case of precedence delays and a single machine, the idle intervals that
add up to λ time units cannot contain any processing. Therefore, in the proof of
Theorem 3.1 replace inequality (3.6) with bh−ag+1 ≤ SH

v(s)−CH
v(1) =

∑s−1
i=1 dv(i)v(i+1).

(Note that, if all processing times are positive, then s = 2 and the summation in the
right-hand side consists of a single term dv(1)v(2).) Adding up the precedence delay
constraints (3.2) for all i = 1, 2, . . . , s − 1 and omitting some processing times yields

MLP
x(h) −MLP

v(1) ≥
∑s−1

i=1 dv(i)v(i+1) ≥ bh − ag+1. Therefore, we may replace (3.8) with

λ ≤
∑q′−1

i=1 (bH(i) −aH(i+1)+1) ≤ MLP
x(H(1)) −MLP

x(H(q′)) ≤ MLP
j and thus inequality (ii)

with λ ≤ MLP
j . This implies SH

j ≤ 3MLP
j .

Corollary 3.6. Job-driven list scheduling by optimal LP midpoints is a 3-
approximation algorithm for the scheduling problem 1|prec. delays dij |

∑
wjCj.

Note that for the special case 1|rj ,prec|
∑

wjCj we recover the performance ratio
of 3 in Schulz (1996b). The best approximation algorithm known for this problem,
however, has a performance guarantee of e ≈ 2.7183 (Schulz and Skutella (1997)).

In principle, we may use any LP α-point CLP
j (α) := CLP

j − (1 − α)pj for some
0 ≤ α < 1 in section 3.2. Indeed, inequality (i) in the proof of Theorem 3.1 can be

replaced with
∑j−1

i=1 pi/m ≤ 2CLP
j (α), provided that α ≥ 1/2. On the other hand,

inequality (ii) becomes λ ≤ (1 − α)−1CLP
j (α). While it turns out that using the

midpoint MLP
j = CLP

j (1/2) leads to the best bound for the general case, we can take
advantage of this observation for some special cases.

For example, if the LP midpoint list coincides with the LP start-time list (which
is the case, e.g., if pi = pj for all i, j ∈ N), then we can apply inequality (i) in the
proof of Theorem 3.1 with α = 1/2 to bound the total busy time, whereas we can
use inequality (ii) with α = 0 to bound the total idle time λ by SLP

j = CLP
j (0). We

obtain the following result.
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Corollary 3.7. Let CLP denote an optimal solution to the LP relaxation (3.4).
If MLP

1 ≤ MLP
2 ≤ · · · ≤ MLP

n implies SLP
1 ≤ SLP

2 ≤ · · · ≤ SLP
n , then job-driven list

scheduling by LP midpoints is a 3-approximation algorithm for the problem P|prec.
delays dij |

∑
wjCj.

Because the arguments leading to Corollary 3.5 apply here as well, Corollary 3.7
actually gives a (3−1/m)-approximation algorithm for this special case of P|prec|

∑
wjCj .

Hall et al. (1997) had earlier proved these performance ratios for the special cases P|rj ,
prec, pj = 1|

∑
wjCj and P|prec, pj = 1|

∑
wjCj , respectively.

Let us finally consider “stiff” instances of P|prec|
∑

wjCj . Margot, Queyranne,
and Wang (2003) called an instance (of the single-machine problem 1|prec|

∑
wjCj)

stiff if w(I)/p(I) ≤ w(N)/p(N) for all initial sets I ⊆ N . A set I is initial if j ∈ I
and (i, j) ∈ A imply i ∈ I. Chekuri and Motwani (1999) and Margot, Queyranne,
and Wang (2003) showed that the total weighted completion time of any feasible one-
machine schedule of a stiff instance is within a factor 2 of that of an optimum. Given
an instance of P|prec|

∑
wjCj , we define a corresponding single-machine instance

with processing times pj/m, and we keep the original job weights and precedence
constraints. The objective value of an optimal solution to this single-machine instance
is a lower bound on the cost of an optimal schedule C∗ for the original instance on
m identical parallel machines (Chekuri et al. (2001)). Let us argue that job-driven
list scheduling according to optimal LP start times SLP

j = CLP
j − pj is a (3 − 1/m)-

approximation for stiff instances of P|prec|
∑

wjCj . In fact, it suffices when CLP is
an optimal solution to the LP with constraint set (3.1)–(3.2), which can be solved
combinatorially using shortest-path computations. That is, inequalities (3.3) are not
needed. So, let L be defined by SLP

1 ≤ SLP
2 ≤ · · · ≤ SLP

n . From the preceding
discussion, we already know that we can use inequality (ii) in the proof of Theorem 3.1

with α = 0 to bound the total idle time λ by SLP
j . It remains to bound

∑j
i=1 pi/m.

This time, we do not give a job-by-job bound, but bound the entire contribution of
busy periods to the objective function value of the heuristic schedule. Let C1 be the
completion time vector of an optimal schedule to the corresponding single-machine
instance. Note that

∑j
i=1 pi/m is the completion time of job j in the single-machine

schedule where jobs are sequenced according to L. Hence, as the instance is stiff,∑n
j=1 wj

∑j
i=1 pi/m ≤ 2

∑n
j=1 wjC

1
j . Overall, we obtain

n∑
j=1

wjC
H
j ≤

n∑
j=1

wj

(
j∑

i=1

pi/m +
(
1 − 1/m

)(
SLP
j + pj

))

≤ 2

n∑
j=1

wjC
1
j +

(
1 − 1/m

) n∑
j=1

wjC
LP
j

≤
(
3 − 1/m

) n∑
j=1

wjC
∗
j .

Corollary 3.8. Let CLP denote an optimal solution to the LP relaxation de-
fined over (3.1)–(3.2). Job-driven list scheduling by LP start times is a combinato-
rial (3 − 1/m)-approximation algorithm for stiff instances of the scheduling problem
P|prec|

∑
wjCj.

Finally, let us point out that Corollaries 3.5, 3.6, and 3.7 also imply corresponding
bounds on the quality of the LP relaxation (3.4) for these special cases.
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