
P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

Journal of Combinatorial Optimization 1, 413–426 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Improved Bounds on Relaxations of a Parallel
Machine Scheduling Problem∗

CYNTHIA A. PHILLIPS† caphill@cs.sandia.gov
Sandia National Labs, Albuquerque, NM

ANDREAS S. SCHULZ‡ schulz@math.tu-berlin.de
Department of Mathematics, Technical University of Berlin, 10623 Berlin, Germany

DAVID B. SHMOYS§ shmoys@cs.cornell.edu
School of Operations Research & Industrial Engineering and Department of Computer Science, Cornell University,
Ithaca, NY 14853

CLIFF STEIN¶ cliff@cs.dartmouth.edu
Department of Computer Science, Sudikoff Laboratory, Dartmouth College, Hanover, NH

JOEL WEIN‖ wein@mem.poly.edu
Department of Computer Science, Polytechnic University, Brooklyn, NY, 11201

Received November 1, 1996; Revised February 15, 1997; Accepted April 15, 1997

Abstract. We consider the problem of schedulingn jobs with release dates onm identical parallel machines to
minimize the average completion time of the jobs. We prove that the ratio of the average completion time of the
optimal nonpreemptive schedule to that of the optimal preemptive schedule is at most7

3 , improving a bound of
(3 − 1

m) due to Phillips, Stein and Wein. We then use our technique to give an improved bound on the quality of
a linear programming relaxation of the problem considered by Hall, Schulz, Shmoys and Wein.

Keywords: scheduling, preemptive scheduling, release dates, identical parallel machines, average completion
time, approximation algorithms, relaxations, linear programming

∗A preliminary presentation of these results was given in the Proceedings of the 1996 International Colloquium
on Automata, Languages and Programming (Chakrabarti et al., 1996).
†This work was performed under U.S. Department of Energy contract number DE-AC04-76AL85000.
‡Research partially supported by the graduate school Algorithmische Diskrete Mathematik (DFG), grant We
1265/2-1.
§Research partially supported by NSF grants CCR-9307391 and DMS-9505155 and ONR grant N00014-96-1-
0050O.
¶Research partially supported by NSF Award CCR-9308701 and NSF Career Award CCR-9624828, a Walter
Burke Research Initiation Award and a Dartmouth College Research Initiation Award.
‖Research partially supported by NSF Research Initiation Award CCR-9211494, NSF Grant CCR-9626831, and a
grant from the New York State Science and Technology Foundation, through its Center for Advanced Technology
in Telecommunications.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

414 PHILLIPS ET AL.

1. Introduction

Recently there has been much activity in the development of approximation algorithms for
a number of scheduling problems in which the goal is to minimize the average completion
time of the jobs scheduled (Chekuri et al., 1997; Chudak and Shmoys, 1997; Goemans,
1997; Hall et al., 1996, 1997; M¨ohring et al., 1996; Phillips et al., 1995; Schulz and Skutella,
1996; Schulz, 1996). The key idea behind most of these results is that, given certain sorts of
relaxations of scheduling problems, a valid schedule can be inferred from a simple ordering
that can be easily constructed from these relaxations.

In this note we improve the analytical methods available for the analysis of the schedules
constructed from these relaxations. Specifically, we consider the problem of schedulingn
jobsJ = {1, . . . , n} on m identical parallel machines. Each jobj has arelease date rj
before which it is not available for processing. We will denote the completion time of jobj in
a scheduleSasCS

j , and the total completion time of scheduleSasCS = ∑
j ∈J CS

j . We will
often drop theSwhen the schedule in question is clear. The goal is to construct a schedule
S that minimizesCS, which is an objective function equivalent to the average completion
time 1

nCS. We require anonpreemptive schedulein which each job must be processed in an
uninterrupted fashion. This problem is often denoted byP|r j |

∑
Cj (Lawler et al., 1993),

and isNP-hard (Lenstra et al., 1977); thus, it is natural to be interested in approximately-
optimal solutions that can be computed in polynomial time. We define aρ-approximation
algorithmas an algorithm that runs in polynomial time and always produces a solution of
value within a factor ofρ of the optimum.

Until recently little was known about approximation algorithms for this problem, or in
general for scheduling problems with a minsum optimality criterion subject to release date
constraints (or other types of constraints, such as precedence constraints). The first progress
in developing approximation algorithms with constant-factor performance guarantees for
these problems was made by Phillips, Stein and Wein (1995), who developed approximation
algorithms by using apreemptiveschedule as a relaxation of the nonpreemptive schedule.
Specifically, they showed that, in the special case ofm= 1, a nonpreemptive schedule of
average completion time within a factor of 2 of optimal can be constructed simply by order-
ing the jobs nonpreemptively by their completion times in an optimal preemptive schedule.
Since the preemptive version of the one-machine problem can be solved in polynomial time,
this leads immediately to a 2-approximation algorithm. For generalm they showed that list
scheduling in order of the completion times in a preemptive schedule yields a nonpreemp-
tive schedule of average completion time at most a factor of(3− 1

m) larger than that of the
preemptive. Unfortunately, in this case the underlying preemptive problem isNP-hard.
By also providing an approximation algorithm for the preemptive problem, Phillips, Stein,
and Wein were able to apply this conversion technique to yield a 6-approximation algorithm
for P|r j |

∑
Cj .

The idea of scheduling in a natural order dictated by a relaxation of the problem has proved
to be quite powerful. Inspired by this idea, Hall, Schulz, Shmoys, and Wein (1997), which
is a joint journal version of Hall et al. (1996) and Schulz (1996), studied a number of linear
programming relaxations of constrained minsum scheduling problems and gave methods to
round their solutions to feasible schedules. Their techniques yield improved performance

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 415

guarantees for many problems, and in some cases, the first constant performance guarantees.
In particular, they give a(4 − 1

m)-approximation algorithm forP|r j |
∑

Cj ; this result was
discovered independently by Queyranne (1995). This result makes use of a linear program-
ming relaxation of the problem in completion-time variables and as a result establishes a
bound on the quality of the relaxation; Hall et al. (1996) showed that, for any instance, the
fractional solution to the linear program is no more than a factor of(4 − 1

m) from optimal.
Our results improve upon both the techniques of Phillips, Stein and Wein (1995) and of

Hall et al. (1997). Specifically,

• we show that list scheduling in order of the completion times in a preemptive identical-
parallel-machine schedule yields a nonpreemptive schedule of average completion time
at most a factor of73 larger than that of the preemptive schedule, improving the previous
bound of(3 − 1

m) (Phillips et al., 1995);
• we improve the analysis of Hall et al. to show that the linear programming relaxation

that they consider yields a lower bound within a factor of 3.75 of optimal, improving on
the bound of(4 − 1

m) (Hall et al., 1997).

Neither of these results gives the best current performance guarantee for an approxima-
tion algorithm forP|r j |

∑
Cj . The current best approximation algorithm for the underlying

preemptive problem is a 2-approximation algorithm (Phillips et al., 1995); thus our first
technique yields only a 4.666-approximation algorithm. The second technique does im-
prove over the best previously known approximation algorithm, but simultaneously with
our discovery of this result we also discovered a(2.89+ε)-approximation algorithm for the
problem using rather different techniques (Chakrabarti et al., 1996). We note, however, that
our 3.75-approximation algorithm can be implemented inO(n logn) time (by applying
results of Queyranne and Schulz (1994) and Goemans (1996)) whereas the(2.89 + ε)-
approximation algorithm is rather computationally intensive. Subsequent to the results in
this paper, Chekuri et al. (1997) gave a 2.85-approximation algorithm that runs inO(n logn)

time, and quite recently, Schulz and Skutella (1996) have given a randomizedO(n logn)

2-approximation algorithm. (A consequence of this result is also an improved bound of 2
on the ratio of the optimal nonpreemptive to preemptive schedule.)

Our results, however, are important for three reasons. First, the idea of scheduling in
a natural order based on a linear programming relaxation in completion-time variables, or
related formulations, has found many applications to a number of scheduling problems, e.g.,
(Chakrabarti et al., 1996; Chekuri et al., 1997; Chudak and Shmoys, 1997; Goemans, 1997;
Hall et al., 1997; M¨ohring et al., 1996; Schulz and Skutella, 1996; Wang, 1996). This is
currently a very active area of research, and our techniques offer new ideas that we believe
may find other applications and lead to further improvements. The analyses of Phillips, Stein
and Wein (1995) and Hall et al. (1997) show, respectively, that the completion time of jobj in
the schedule found is within a constant factor of the preemptive completion time ofj and the
LP completion time ofj . We give a technique that strengthens this “job-by-job” approach,
by showing how to make use of the total completion time in our analysis. We hope that this
will lead to further progress in obtaining stronger cumulative bounds in other settings.

Second, the linear programming formulations considered in these results have received
a great deal of attention both from the perspective of their strength when used to give

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

416 PHILLIPS ET AL.

lower bounds in computing optimal solutions to small problem instances, and from the per-
spective of their use in giving polyhedral characterizations of various scheduling problems
(Queyranne and Schulz, 1994). Until the recent work to which we have referred, these poly-
hedral formulations have had no worst-case analysis; therefore our results in Section 3.2
create more precise connections between the worst-case analysis of scheduling problems
and the study of polyhedral formulations of these problems.

Finally, our results are of interest from a perspective different from that of approximation
algorithms and polyhedral methods. Researchers have long been interested in character-
izing the power of preemption in scheduling, with the goal of optimizing both

∑
Cj (Lin

and Vitter, 1992; McNaughton, 1959; Phillips et al., 1995) and the makespan (maxj Cj)
(Coffman and Garey, 1991; Goyal, 1977; Hong and Leung, 1992; Liu, 1972) of a schedule.
For both of these optimality criteria, the optimal preemptive schedule for an instance will
often be significantly better than that of the optimal nonpreemptive schedule; however, in
the real world preemption is viewed as being difficult to implement and as incurring a cost,
and a nonpreemptive schedule, if of reasonable quality, is more desirable.

McNaughton (1959) proved that no finite number of preemptions can improve the av-
erage completion time of a set of jobs on parallel machines; combined with a result
from open-shop scheduling theory (Lawler et al., 1993), this establishes that that for the
scheduling of jobswithout release dateson identical parallel machines to minimize average
completion time, the optimal preemptive schedule is no better than the optimal nonpre-
emptive schedule. When release dates are introduced the situation changes significantly;
our result in Section 3.1 gives an improved understanding of the power of preemption in
this scheduling environment. Specifically, by disallowing preemption, the average com-
pletion time can increase by no more than a factor of7

3. In contrast, T.C. Lai (1995)
has proven the best known lower bound: there exists an instance for which the optimal
value for a nonpreemptive schedule is at least18

13 times the optimal value for a preemptive
schedule.

Both of our results arise from the application of a list-scheduling algorithm to a list
determined by the solution to a relaxation of the scheduling problem. In Section 2 we present
this list-scheduling algorithm LIST and establish several basic bounds on the performance
of LIST on any ordered list of jobs. In Section 3 we apply this technique to prove our two
results by specializing the analysis to ordered lists derived from a preemptive schedule and
from a solution to a linear programming relaxation of the problem.

2. The algorithm LIST

We consider the algorithm LIST (see also figure 1), which accepts as input an ordered
list of jobs and uses that list to produce a nonpreemptive scheduleN for the jobs onm
identical parallel machines that respects the release dates of the jobs. LIST is essentially a
list-scheduling algorithm; for each job in turn, it schedules it as early as possible without
violating its release date, and without disturbing the jobs that have already been scheduled.

In order to analyze LIST we will also apply an algorithm POSTto N that yields a schedule
N ′. It will always be the case thatCN ′ ≥ CN , but in certain cases it will be easier to analyze
N ′ in order to boundCN .

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 417

Algorithm LIST

Input: An ordered listL of jobs; without loss of generality, let this ordering be 1, . . . , n.
Output: A nonpreemptive scheduleN.
List schedule nonpreemptively usingL, in the following manner:
For each jobj on the list, schedulej as early as possible subject to the following constraints:

• Job j does not start beforer j .
• Jobs 1, . . . , j − 1 have already been scheduled inN, and their position is fixed.

Figure 1. The algorithm LIST.

The algorithm POST takes as input the nonpreemptive scheduleN that is produced by
LIST, and the setL of the lastm jobs in the list. These jobs, however, need not be the set
of jobs that are the last to be processed on some machine inN. POSTcreates a scheduleN ′

in which the jobs inL also are the jobs that are the last to be processed on some machine
in N ′. Consider each machine inN. On some machines, the last job to be processed is not
in L; on these machines POST removes from the schedule all jobs inL and places them in
a setH. On the remaining machines the last job to be processed is inL; in fact, the last
several to be processed might be inL. On these machines, POSTremoves from the schedule
every job inL except for the first in the “concluding block” of jobs inL on that machine
and adds them toH. POSTthen assigns the jobs inH in a 1-to-1 fashion to all machines on
which the last job to be processed is not fromL. These newly-assigned jobs are scheduled
last on the machine to which they are assigned. Figure 2 gives a more formalized version
of POST. We note again that the scheduleN ′ is constructed by POST solely for the sake of
our analysis;CN ′

is never smaller thanCN , but at timesN ′ will be easier to analyze.
We now establish several general bounds on the completion times of jobs inN and the

average completion time of the schedulesN andN ′; in the next section we will specialize
the bounds to each of our applications.

Lemma 2.1. Let L be an ordered list of n jobs and without loss of generality let this
ordering be1, . . . , n. Let r′(j) = maxi =1,..., j r i . Let N be the nonpreemptive schedule

Algorithm POST

Input: A nonpreemptive scheduleN derived from application of LIST to a listL.
Output: A nonpreemptive scheduleN′.

1. LetL be the lastm jobs in the listL.
2. Let ti be the earliest time such that all work in scheduleN on machineMi after timeti is

given to jobs fromL, and let ji be the job that starts at timeti . If no job fromL is scheduled
last on machineMi in scheduleN, thenti = ∞ and ji does not exist. LetH be the set of
jobs j ∈ L which are notji for some machineMi . LetM′ be the set of machines whose last
job in scheduleN is not inL (ti = ∞).

3. Remove the jobs inH from their present machines, and instead assign them to run last on
machines inM′. The assignment can be any 1-to-1 assignment.

Figure 2. The algorithm POST.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

418 PHILLIPS ET AL.

resulting from the application ofLIST to L. Then

CN
j ≤ r ′(j) + 1

m

(
j −1∑
i =1

pi

)
+ pj .

Proof: The proof is essentially identical to arguments given by both Phillips, Stein and
Wein (1995) and Hall et al. (1997). Consider the schedule of jobs 1, 2, . . . , j − 1, and
suppose that jobj is then scheduled to start at timet . Trace back in this (partial) schedule
to find the latest timet ′ that a machine is idle prior to timet . Since all machines are
busy throughout the interval(t ′, t], we see that

∑ j −1
i =1 pi ≥ m(t − t ′), or equivalently,

t ≤ t ′ + (
∑ j −1

i =1 pi)/m. Consider a machine that is idle immediately prior to timet ′, and
let j ′ be the job that starts processing on this machine att ′. Since the algorithm LIST does
not start j ′ earlier on this machine, we can conclude thatt ′ = r j ′ ≤ r ′(j). Since job j
completes at timet + pj , we see thatCN

j ≤ r ′(j) + (
∑ j −1

i =1 pi)/m + pj . 2

If we let F(j) = r ′(j) + (
∑ j −1

i =1 pi)/m + pj , then we can succinctly state this upper
bound asCN

j ≤ F(j), for each j = 1, . . . , n. We next show that the scheduleN ′ is
dominated by the scheduleN.

Lemma 2.2. For each job j= 1, . . . , n, CN
j ≤ CN ′

j .

Proof: Suppose that the lemma were false, and that there exists a jobj for whichCN
j >

CN ′
j . Assume thatj starts on machineM ′ at some timet + t1 in N and on machineM ′′ at

time t in N ′ (wheret1 > 0). Since POST rescheduled jobj to be the last job processed by
M ′′ in N ′, it follows that in N, no job runs onM ′′ after t . Therefore, in the construction
of N by LIST, at the point when jobj is to be scheduled, machineM ′′ was free at timet ;
hence jobj would have been scheduled at this earlier time, which is a contradiction.2

We now divideL, the lastm jobs in the listL, into two setsL1 andL2. The setL2 contains
those jobsj ∈ L for which CN ′

j = r j + pj and the setL1 = L − L2. LetK = J − L.
Lemma 2.2 has the following immediate corollary.

Lemma 2.3. For each job j∈ L2, we have that CNj = r j + pj .

Proof: SinceN is a feasible schedule, we have thatr j + pj ≤ CN
j for each job j =

1, . . . , n. However, by Lemma 2.2,CN
j ≤ CN ′

j = r j + pj for each jobj ∈ L2, and so we
have proved the claim. 2

Lemma 2.4. Let CN be the total completion time of the schedule constructed by Algorithm
LIST. Then,

CN ≤
∑

j ∈K∪L1

F(j) +
∑
j ∈L2

(r j + pj).

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 419

Proof: We apply the boundCN
j ≤ F(j) to the jobs inL1 ∪ K, apply the boundCN

j =
r j + pj to the jobs inL2, and sum over all jobs. 2

Lemma 2.5. Let CN ′
be the total completion time of the schedule constructed by Algorithm

POST. Then,

CN ′ ≤
∑
j ∈K

F(j) +
∑
j ∈L2

(r j + pj) +
∑
k∈K

rk +
∑

j ∈L1∪K
pj .

Proof: Since the algorithm POSTonly changes the times at which jobs inL are processed,
we have that for each jobj ∈ K, CN ′

j = CN
j ≤ F(j). For each jobj ∈ L2, we will apply

the boundCN ′
j = r j + pj , which follows directly from the definition ofL2.

We now bound the completion times of jobs inL1, which are each on a different machine
in the scheduleN ′. Consider a particular jobj ∈ L1 on some machineM . Let t be the last
time that machineM was idle before runningj . Let k be the job that starts processing at
time t on machineM . We will show thatt = rk.

Assume, for a contradiction, that jobk is not scheduled to start at its release date. If
either of the algorithms LIST or POST schedules a job to start later than its release date, it
must schedule that job to immediately follow the processing of another job on the same
machine without any intervening idle time. Hence, when the algorithm schedules jobk,
there must be another jobk′ that is processed up until timet on machineM . This implies
that jobk was not scheduled in this position by POST. Consequently, jobk is scheduled
by the algorithm LIST, and then POST has rescheduled jobk′. This implies thatk′ ∈ L.
Furthermore, for each machine, POST reschedules all jobs inL except the first of the final
block of jobs inL. This implies thatk 6∈ L: sincek′ is rescheduled by POST, thenk is not
the first of the final block of jobs inL; hence ifk were inL, then POST would have also
rescheduledk. But it is also impossible fork to be inK, since thenk precedesk′ in the list
L: when LIST schedulesk, the jobk′ is not yet scheduled, and so jobk would be scheduled
to start earlier than timet . Hence,t = rk.

Since jobk begins processing at timet = rk and j 6∈ L2, we know thatk 6= j , and hence
k ∈ K. Let j1, . . . , j` be the jobs that run onM betweenk and j in the scheduleN ′. Then

CN ′
j = rk + pk + pj1 + · · · + pj` + pj . (1)

If we sum (1) over all jobs inL1, then each job inK∪L1 contributes to the right-hand side at
most once, since each job inL1 is on a different machine. The jobs inL2 do not contribute at
all, since they are run on machines distinct from the ones which run jobs inL1 in N ′. Thus,
summing over all jobsj ∈ L1, we obtain

∑
j ∈L1

CN ′
j ≤ ∑

k∈K rk + ∑
j ∈L1∪K pj . Combin-

ing this with the above-mentioned bounds for the other jobs, we obtain our lemma.2

3. Applications

3.1. Preemptive and nonpreemptive schedules

In this section we consider preemptive and nonpreemptive schedules for minimizing average
completion time of jobs with release dates on identical parallel machines. We will show

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

420 PHILLIPS ET AL.

that the ratio between the optimal nonpreemptive and preemptive average completion times
is at most7

3 by analyzing the application of LIST to the list that orders the jobs by their
completion times in the preemptive schedule. We will show that this yields a nonpreemptive
schedule with average completion time at most7

3 times greater. This improves on the bound
of (3 − 1

m) given by Phillips, Stein and Wein (1995).
For any preemptive scheduleP, let L(P) denote the set ofm jobs with the largest

completion times (where ties are broken, for example, by job index). In general, it need
not be the case that the set of jobs that are the last to be processed on each machine is equal
toL(P). However, the following lemma shows that this property can be assumed without
loss of generality.

Lemma 3.1. For each preemptive schedule P, there exists a preemptive schedule P′ such
that CP

j = CP′
j for each j = 1, . . . , n, with the property thatL(P′) is equal to the set of

jobs that are the last to be processed on each machine in P′.

Proof: Consider some jobj ∈ L(P), which completes on machineM , but is not the last
job to be processed onM . Assume that the final piece of jobj runs from timet to CP

j .
By a pigeonhole argument, there must be some jobj ′ 6∈ L(P) which is the last to

complete on some machineM ′. Observe thatCP
j ′ ≤ CP

j , and thatM ′ is idle afterCP
j ′ . We

make a simple interchange: we schedule jobj on M ′ from timet toCP
j , and swap whatever

is scheduled onM ′ in P during this interval to be scheduled onM instead. Jobj now
completes onM ′, and is the last job to be processed onM ′. Furthermore, all job completion
times are unaffected by this interchange.

This interchange reduces the number of jobs inL that are not the last to be processed
on some machine, and so after at mostm iterations of this procedure, we will obtain the
desired schedule. 2

Thus, when we refer toL = L(P) for some preemptive schedule, we will be make use of
the fact that it is equivalent to think ofL as the set of jobs that finish last on some machine.
We defineCL1 = ∑

j ∈L1
CP

j , CK = ∑
j ∈K CP

j , andCL2 = ∑
j ∈L2

CP
j . For our improved

analysis it will be necessary to analyze
∑

j ∈J pj in terms of the preemptive schedule, so
we begin by establishing a useful bound on this sum.

Lemma 3.2. For any preemptive schedule P,∑
j ∈J

pj ≤ CL1 + CL2.

Proof: Let P′ be the schedule obtained fromP by Lemma 3.1; we shall prove the
lemma by consideringP′ instead. For each machineM , there exists a distinct job in
j ∈ L which is the last job processed onM in P′, and hence this machine runs from
time 0 until CP

j . Thus, we can view the total processing capacity of this schedule as∑
j ∈LCP

j = CL1 + CL2. Since this capacity is sufficient for all of the jobs inJ , the lemma
follows. 2

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 421

We are now ready to establish the 7/3 bound; we do this by establishing two new upper
bounds, one onCN and one onCN ′

. We will order the jobs by their completion times in
the scheduleP and call the resulting listL P.

Lemma 3.3. The algorithmLIST, when applied to the list LP, produces a nonpreemptive
schedule N in which CN ≤ 2CK + 3CL1 + 2CL2.

Proof: We will make use of the bound of Lemma 2.4:

CN ≤
∑

j ∈K∪L1

F(j) +
∑
j ∈L2

(r j + pj).

We first relateF(j) to the completion times of the jobs inP. Recall that

F(j) = r ′(j) + 1

m

(
j −1∑
i =1

pi

)
+ pj .

We can boundr ′(j) ≤ CP
j , since jobs 1, . . . , j all complete inP by time CP

j , and thus
must be released by then. We may also bound(

∑ j −1
i =1 pi)/m ≤ CP

j since jobs 1, . . . , j all
complete inP by timeCP

j ; thusF(j) ≤ 2CP
j + pj , and we obtain

CN ≤
∑

j ∈K∪L1

(
2CP

j + pj
) +

∑
j ∈L2

(r j + pj)

≤ 2(CK + CL1) +
∑
j ∈J

pj +
∑
j ∈L2

r j

≤ 2(CK + CL1) +
∑
j ∈J

pj + CL2. (2)

We now apply Lemma 3.2 to bound
∑

j ∈J pj , and substituting into (2) we obtain the
lemma. 2

Roughly, whenCL1 is small, this bound is good. However, whenCL1 is large we need
to apply POSTand use the resulting schedule to boundCN.

Lemma 3.4. The algorithmLIST, when applied to LP and followed byPOST, produces a
nonpreemptive schedule N′ in which CN ′ ≤ 3CK + CL1 + 2CL2.

Proof: We make use of the bound of Lemma 2.5:

CN ′ ≤
∑
j ∈K

F(j) +
∑
j ∈L2

(r j + pj) +
∑
k∈K

rk +
∑

j ∈L1∪K
pj ,

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

422 PHILLIPS ET AL.

and substituteF(j) ≤ 2CP
j + pj . Then,

CN ′ ≤
∑
j ∈K

(
2CP

j + pj
) +

∑
j ∈L2

(r j + pj) +
∑
k∈K

rk +
∑

j ∈L1∪K
pj

≤ 2CK +
∑
k∈K

pk + CL2 +
∑
k∈K

rk +
∑

j ∈L1∪K
pj

≤ 3CK + CL2 +
∑

j ∈L1∪K
pj

≤ 3CK + CL2 + (CL1 + CL2),

where the last inequality follows from Lemma 3.2. 2

We can now combine the previous two lemmas to prove that the average completion
time of the nonpreemptive schedule constructed by algorithm LIST is at most73 times the
average completion time of the preemptive schedule that served as the input. Recall that
CP = CK + CL1 + CL2. If CL1 ≤ 1

3CP, then the bound from Lemma 3.3 becomes
CN ≤ 2(CK + CL1 + CL2) + CL1 ≤ 2CP + 1

3CP = 7
3CP. If CL1 > 1

3CP then the
bound from Lemma 3.4 becomesCN ′ ≤ 3CK + CL1 + 2CL2 = 2CP + CK − CL1. But
CL1 > 1

3CP and thusCK ≤ 2
3CP, so this simplifies toCN ′ ≤ 7

3CP. By Lemma 2.2, we
have thatCN ≤ CN ′

, and so we see that in both cases,CN ≤ 7
3CP.

Theorem 3.5. Given a preemptive schedule P for an instance of scheduling jobs with
release dates on identical parallel machines, algorithmLIST, when applied to LP, produces
a nonpreemptive schedule for that instance whose total completion time is at most7

3CP.

3.2. Bounding a linear programming relaxation

The(4− 1
m)-approximation algorithm of Hall et al. (1997) is based on the LP relaxation of

a formulation in which there arecompletion-time variables: with each jobj we associate
a variableCj . We show that by lettinḡCj , j = 1, . . . , n, a feasible solution to the LP
relaxation, play the role of the preemptive completion times in the previous section, we
obtain an improved approximation algorithm and an equivalent bound on the quality of the
lower bounds delivered by that linear programming formulation.

The linear programming formulation that we consider is the following (LPC):

minimize
∑
j ∈J

Cj

subject to
∑
j ∈A

pj Cj ≥ 1

2m

(∑
j ∈A

pj

)2

+ 1

2m

∑
j ∈A

p2
j for eachA ⊆ J

Cj ≥ r j + pj for each j ∈ J.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 423

The second class of constraints are quite simple, merely stating that the completion time
of job j in a valid schedule can be no earlier than the sum of its release date and processing
time. The first set of constraints is less intuitive, but can be readily derived by summing over
load-based constraints on job completion times (Hall et al., 1997). We note that the first set
of constraints is exponential in size, but as a consequence of the results of Queyranne (1993)
we can separate over these constraints in polynomial time, and thus an optimal solution to
this linear programming relaxation can be obtained in polynomial time. More surprisingly,
as a consequence of the results of Queyranne and Schulz (1994) and Goemans (1996, 1997),
an optimal solution to this linear program can actually be obtained inO(n logn) time. For
further discussion of this formulation, see (Hall et al., 1997; Queyranne and Schulz, 1994).

Let C̄ j , j = 1, . . . , n, be an optimal solution to the linear programLPC, and renumber
the jobs so that̄C1 ≤ · · · ≤ C̄n. In this setting, we apply LIST to the list 1, . . . , n, or in
other words, to the list of jobs ordered by theirC̄ j values in the optimal LP solution. We
call this list LLP.

In this setting,L is the set of jobs with them largest values̄Cj ; analogously,K = J −L,
L2 is the set of jobsj ∈ L for which CN ′

j = r j + pj andL1 = L − L2. We let

CL1 = ∑
j ∈L1

C̄ j , CK = ∑
j ∈K C̄ j , andCL2 = ∑

j ∈L2
C̄ j .

The following lemma was the central step in the earlier analysis that led to a 4-approxi-
mation algorithm, and is equally important for our improved analysis; for completeness,
we include its proof.

Lemma 3.6. For any subset A⊆ J , 1
2m

∑
j ∈A pj ≤ maxj ∈A C̄ j .

Proof: SinceC̄ j , j = 1, . . . , n, is a feasible solution toLPC, we have that

∑
j ∈A

pj C̄ j ≥ 1

2m

(∑
j ∈A

pj

)2

.

However,(
max
j ∈A

C̄ j

)(∑
j ∈A

pj

)
≥

∑
j ∈A

pj C̄ j ,

and so(
max
j ∈A

C̄ j

)(∑
j ∈A

pj

)
≥ 1

2m

(∑
j ∈A

pj

)2

,

which is equivalent to the inequality claimed in the lemma. 2

We use this lemma to derive an upper bound on
∑

j ∈K∪L1
pj .

Lemma 3.7.∑
j ∈K∪L1

pj ≤ 3CL1 + 2CL2.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

424 PHILLIPS ET AL.

Proof: We apply Lemma 3.6 withA = K to obtain 1
2m

∑
j ∈K pj ≤ maxj ∈K C̄ j . Since for

each j ∈ L, maxk∈K C̄k ≤ C̄ j , we also have that12m

∑
k∈K pk ≤ C̄ j . Summing over each

j ∈ L, we see that∑
j ∈L

1

2m

∑
k∈K

pk = |L| 1

2m

∑
k∈K

pk = 1

2

∑
k∈K

pk ≤
∑
j ∈L

C̄ j .

This enables us to bound∑
j ∈K∪L1

pj =
∑
k∈K

pk +
∑
j ∈L1

pj ≤ 2CL1 + 2CL2 + CL1.

2

Lemma 3.8. The algorithmLIST, when applied to list LL P, produces a nonpreemptive
schedule N in which

CN ≤ 3CK + 6CL1 + 3CL2.

Proof: We again make use of the bound of Lemma 2.4:

CN ≤
∑

j ∈K∪L1

F(j) +
∑
j ∈L2

(r j + pj).

We wish to relateF(j) to the optimal solution to the linear program̄Cj , j = 1, . . . , n. We
can boundC̄ j ≥ r ′(j), sinceC̄ j ≥ C̄i for i = 1, . . . , j , and we know that̄Ci ≥ ri + pi for
eachi = 1, . . . , n because of the constraints of the linear program. We are not guaranteed,
however, thatC̄ j ≥ (

∑ j −1
i =1 pi)/m, since theC̄ j do not describe a valid schedule but rather

a feasible solution to this linear programming relaxation of the scheduling problem. By
settingA = {1, . . . , j }, we can apply Lemma 3.6 to obtain the following bound:

1

2m

j −1∑
i =1

pi ≤ C̄ j .

As a result, we see that

F(j) = r ′(j) +
(

j −1∑
i =1

pi

)/
m + pj ≤ 3C̄ j + pj .

We therefore obtain

CN ≤
∑

j ∈K∪L1

(3C̄ j + pj) +
∑
j ∈L2

(r j + pj)

≤ 3(CK + CL1) +
∑

j ∈K∪L1

pj +
∑
j ∈L2

(pj + r j)

≤ 3(CK + CL1) +
∑

j ∈K∪L1

pj + CL2.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

IMPROVED BOUNDS ON RELAXATIONS 425

Now, we substitute the bound of Lemma 3.7, which yields

CN ≤ 3CK + 6CL1 + 3CL2.
2

Lemma 3.9. The algorithmLIST, when applied to LL P and followed byPOST, produces
a nonpreemptive schedule N′ in which

CN ′ ≤ 4CK + 3CL1 + 3CL2.

Proof: We make use of the bound of Lemma 2.5:

CN ′ ≤
∑
j ∈K

F(j) +
∑
j ∈L2

(r j + pj) +
∑
k∈K

rk +
∑

j ∈L1∪K
pj ,

and substituteF(j) ≤ 3C̄ j + pj . Using the bounds
∑

j ∈K(r j + pj) ≤ CK and
∑

j ∈L2
(r j +

pj) ≤ CL2, we obtain

CN ′ ≤ 3CK + CK + CL2 +
∑

j ∈L1∪K
pj .

We can now apply Lemma 3.7 to obtain a bound of 4CK + 3CL1 + 3CL2. 2

Again, by balancing the two cases we can prove the desired bound on the ratio of the
total completion timeCN of the nonpreemptive scheduleN to the LP valueC̄ = ∑

j C̄ j . If

CK ≤ 3
4C̄, Lemma 3.9 impliesCN ≤ 3C̄ + CK ≤ 15

4 C̄. On the other hand, ifCK > 3
4C̄,

thenCL1 ≤ 1
4C̄. Consequently, Lemma 3.8 implies thatCN ≤ 3C̄ + 3CL1 ≤ 15

4 C̄. The
following theorem summarizes our result.

Theorem 3.10. There is a3.75-approximation algorithm to minimize the average com-
pletion time of jobs with release dates on identical parallel machines.

Note that we have created a nonpreemptive schedule of average completion time at
most 3.75 times

∑
j ∈J C̄ j , the solution to linear programLPC. This implies the following

corollary on the quality of the solution delivered by this relaxation.

Corollary 3.11. For any instance of P|r j |
∑

Cj , its optimal value is within a factor of
3.75of the optimal value to its linear programming relaxationLPC.

Acknowledgments

We thank Leslie Hall and Soumen Chakrabarti for helpful discussions.

P1: KCUP1: KCU

Journal of Combinatorial Optimization KL527-06-Phillips December 29, 1997 9:46

426 PHILLIPS ET AL.

References

S. Chakrabarti, C. Phillips, A.S. Schulz, D.B. Shmoys, C. Stein, and J. Wein, “Improved Approximation Algorithms
for Minsum Criteria,” inProc. of the 1996 International Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 1099, Springer-Verlag, Berlin, 1996, pp. 646–657.

C. Chekuri, R. Motwani, B. Natarajan, and C. Stein, “Approximation Techniques for Average Completion Time
Scheduling,” inProc. of the 8th ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 609–618.

F.A. Chudak and D.B. Shmoys, “Approximation Algorithms for Precedence-Constrained Scheduling Problems
on Parallel Machines that Run at Different Speeds,” inProc. of the 8th ACM-SIAM Symposium on Discrete
Algorithms, 1997, pp. 581–590.

E.G. Coffman, Jr., and M.R. Garey, “Proof of the 4/3 Conjecture for Preemptive vs. Nonpreemptive Two-Processor
Scheduling,” inProc. of the 23rd Annual ACM Symposium on Theory of Computing, 1991, pp. 241–248.

M. Goemans, “A Supermodular Relaxation for Scheduling with Release Dates,” inProc. of the 5th MPS Conference
on Integer Programming and Combinatorial Optimization, 1996, pp. 288–300. (Published as Lecture Notes in
Computer Science 1084, Springer-Verlag.)

M. Goemans, “Improved Approximation Algorithms for Scheduling with Release Dates,” inProc. of the 8th
ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 591–598.

D.K. Goyal, “Nonpreemptive Scheduling of Unequal Execution Time Tasks on Two Identical Processors,” Tech-
nical Report CS-77-039, Washington State University, Pullman, WA, 1977.

L.A. Hall, D.B. Shmoys, and J. Wein, “Scheduling to Minimize Average Completion Time: Off-line and On-line
Algorithms,” in Proc. of the 7th ACM-SIAM Symposium on Discrete Algorithms, 1996, pp. 142–151.

L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein, “Scheduling to minimize average completion time: Off-line
and on-line approximation algorithms,”Mathematics of Operations Research, vol. 22, pp. 513–544, 1997.

K.S. Hong and J.Y. Leung, “Some results on Liu’s conjecture,”SIAM Journal on Discrete Mathematics, vol. 5,
pp. 500–523, 1992.

T.C. Lai, Personal communication, 1995.
E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, “Sequencing and Scheduling: Algorithms and

Complexity,” inHandbooks in Operations Research and Management Science, Vol. 4.,Logistics of Production
and Inventory, S.C. Graves, A.H.G. Rinnooy Kan, and P.H. Zipkin (Eds.), North-Holland, 1993, pp. 445–522.

J.K. Lenstra, A.H.G. Rinnooy Kan, and P. Brucker, “Complexity of machine scheduling problems,”Annals of
Discrete Mathematics, vol. 1, pp. 343–362, 1977.

J.H. Lin and J.S. Vitter, “ε-Approximation with Minimum Packing Constraint Violation,” inProc. of the 24th
Annual ACM Symposium on Theory of Computing, 1992, pp. 771–782.

C.L. Liu, “Optimal Scheduling on Multiprocessor Computing Systems,” inProc. of the 13th Annual IEEE Sym-
posium on Switching and Automata Theory, 1972, pp. 155–160.

R. McNaughton, “Scheduling with deadlines and loss functions,”Management Science, vol. 6, pp. 1–12, 1959.
R.H. Möhring, M.W. Sch¨affter, and A.S. Schulz, “Scheduling Jobs with Communication Delays: Using Infeasible

Solutions for Approximation,” inAlgorithms—ESA’96, J. Diaz and M. Serna (Eds.), Vol. 1136 ofLecture Notes
in Computer Science, pp. 76–90. Springer, Berlin, 1996,Proceedings of the 4th Annual European Symposium
on Algorithms.

C. Phillips, C. Stein, and J. Wein, “Scheduling Jobs that Arrive Over Time,” inProc. of Fourth Workshop on
Algorithms and Data Structures, Lecture Notes in Computer Science, 955, Springer-Verlag, Berlin, 1995,
pp. 86–97, Journal version to appear in Mathematical Programming B.

M. Queyranne, “Structure of a simple scheduling polyhedron,”Mathematical Programming, vol. 58, pp. 263–285,
1993.

M. Queyranne, Private communication, 1995.
M. Queyranne and A.S. Schulz, “Polyhedral Approaches to Machine Scheduling,” Technical Report 408/1994,

Technical University of Berlin, 1994.
A.S. Schulz, “Scheduling to Minimize Total Weighted Completion Time: Performance Guarantees of lp Based

Heuristics and Lower Bounds,” inProc. of the 5th MPS Conference on Integer Programming and Combinatorial
Optimization, 1996, pp. 301–315. Published as Lecture Notes in Computer Science 1084, Springer-Verlag.

A. Schulz and M. Skutella, “Randomization Strikes in lP-based Scheduling: Improved Approximations for Min-
sum Criteria,” Manuscript, 1996.

Y. Wang, “Bicriteria Job Scheduling with Release Dates,” Technical Report, Max-Planck-Institut f¨ur Informatik,
Saarbr¨ucken, Germany, 1996.

