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1. Introduction

Recently there has been much activity in the development of approximation algorithms for
a number of scheduling problems in which the goal is to minimize the average completion
time of the jobs scheduled (Chekuri et al., 1997; Chudak and Shmoys, 1997; Goemans,
1997; Halletal., 1996, 1997; dhring et al., 1996; Phillips etal., 1995; Schulz and Skutella,
1996; Schulz, 1996). The key idea behind most of these results is that, given certain sorts of
relaxations of scheduling problems, a valid schedule can be inferred from a simple ordering
that can be easily constructed from these relaxations.

In this note we improve the analytical methods available for the analysis of the schedules
constructed from these relaxations. Specifically, we consider the problem of scheaduling
jobsJ = {1,...,n} onm identical parallel machines. Each jgbhas arelease date
before which itis notavailable for processing. We will denote the completion time ¢fifob
aschedul&asC?, and the total completion time of sched@asCS = Y;_; C>. We will
often drop theSwhen the schedule in question is clear. The goal is to construct a schedule
Sthat minimizesCS, which is an objective function equivalent to the average completion
time %CS. We require anonpreemptive schedulewhich each job must be processed in an
uninterrupted fashion. This problem is often denotedly; | > C; (Lawler et al., 1993),
and isN"P-hard (Lenstra et al., 1977); thus, it is natural to be interested in approximately-
optimal solutions that can be computed in polynomial time. We defim@pproximation
algorithmas an algorithm that runs in polynomial time and always produces a solution of
value within a factor of of the optimum.

Until recently little was known about approximation algorithms for this problem, or in
general for scheduling problems with a minsum optimality criterion subject to release date
constraints (or other types of constraints, such as precedence constraints). The first progres
in developing approximation algorithms with constant-factor performance guarantees for
these problems was made by Phillips, Stein and Wein (1995), who developed approximation
algorithms by using areemptiveschedule as a relaxation of the nonpreemptive schedule.
Specifically, they showed that, in the special caseef 1, a nonpreemptive schedule of
average completion time within a factor of 2 of optimal can be constructed simply by order-
ing the jobs nonpreemptively by their completion times in an optimal preemptive schedule.
Since the preemptive version of the one-machine problem can be solved in polynomial time,
this leads immediately to a 2-approximation algorithm. For gemethky showed that list
scheduling in order of the completion times in a preemptive schedule yields a nonpreemp-
tive schedule of average completion time at most a fact¢B ef %) larger than that of the
preemptive. Unfortunately, in this case the underlying preemptive problefishard.

By also providing an approximation algorithm for the preemptive problem, Phillips, Stein,
and Wein were able to apply this conversion technique to yield a 6-approximation algorithm
for P|rj| >_C;.

Theidea of scheduling in a natural order dictated by a relaxation of the problem has proved
to be quite powerful. Inspired by this idea, Hall, Schulz, Shmoys, and Wein (1997), which
is a joint journal version of Hall et al. (1996) and Schulz (1996), studied a number of linear
programming relaxations of constrained minsum scheduling problems and gave methods tc
round their solutions to feasible schedules. Their techniques yield improved performance
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guarantees for many problems, and in some cases, the first constant performance guarantee
In particular, they give &4 — %)-approximation algorithm foP|r;| > C;; this result was
discovered independently by Queyranne (1995). This result makes use of a linear program-
ming relaxation of the problem in completion-time variables and as a result establishes a
bound on the quality of the relaxation; Hall et al. (1996) showed that, for any instance, the
fractional solution to the linear program is no more than a factgd of %) from optimal.

Our results improve upon both the techniques of Phillips, Stein and Wein (1995) and of
Hall et al. (1997). Specifically,

e we show that list scheduling in order of the completion times in a preemptive identical-
parallel-machine schedule yields a nonpreemptive schedule of average completion time
at most a factor og larger than that of the preemptive schedule, improving the previous
bound of(3— 1) (Phillips et al., 1995);

e we improve the analysis of Hall et al. to show that the linear programming relaxation
that they consider yields a lower bound within a factor %B3of optimal, improving on
the bound of4 — 2) (Hall et al., 1997).

Neither of these results gives the best current performance guarantee for an approxima
tion algorithm forP|r;| " C;. The current best approximation algorithm for the underlying
preemptive problem is a 2-approximation algorithm (Phillips et al., 1995); thus our first
technique yields only a.866-approximation algorithm. The second technique does im-
prove over the best previously known approximation algorithm, but simultaneously with
our discovery of this result we also discovera@89+ ¢)-approximation algorithm for the
problem using rather different techniques (Chakrabarti et al., 1996). We note, however, that
our 375-approximation algorithm can be implementedQiinlogn) time (by applying
results of Queyranne and Schulz (1994) and Goemans (1996)) whereg@s89e- ¢)-
approximation algorithm is rather computationally intensive. Subsequent to the results in
this paper, Chekurietal. (1997) gave82approximation algorithm that runs@(n log n)
time, and quite recently, Schulz and Skutella (1996) have given a randoigeldg n)
2-approximation algorithm. (A consequence of this result is also an improved bound of 2
on the ratio of the optimal nonpreemptive to preemptive schedule.)

Our results, however, are important for three reasons. First, the idea of scheduling in
a natural order based on a linear programming relaxation in completion-time variables, or
related formulations, has found many applications to a number of scheduling problems, e.g.,
(Chakrabarti et al., 1996; Chekuri et al., 1997; Chudak and Shmoys, 1997; Goemans, 1997
Hall et al., 1997; Mhring et al., 1996; Schulz and Skutella, 1996; Wang, 1996). This is
currently a very active area of research, and our techniques offer new ideas that we believe
may find other applications and lead to furtherimprovements. The analyses of Phillips, Stein
and Wein (1995) and Hall etal. (1997) show, respectively, thatthe completion timejdafjob
the schedule found is within a constant factor of the preemptive completion tijrenafthe
LP completion time ofj. We give a technique that strengthens this “job-by-job” approach,
by showing how to make use of the total completion time in our analysis. We hope that this
will lead to further progress in obtaining stronger cumulative bounds in other settings.

Second, the linear programming formulations considered in these results have receivec
a great deal of attention both from the perspective of their strength when used to give
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lower bounds in computing optimal solutions to small problem instances, and from the per-

spective of their use in giving polyhedral characterizations of various scheduling problems

(Queyranne and Schulz, 1994). Until the recent work to which we have referred, these poly-
hedral formulations have had no worst-case analysis; therefore our results in Section 3.2
create more precise connections between the worst-case analysis of scheduling problem
and the study of polyhedral formulations of these problems.

Finally, our results are of interest from a perspective different from that of approximation
algorithms and polyhedral methods. Researchers have long been interested in characte
izing the power of preemption in scheduling, with the goal of optimizing Botg; (Lin
and Vitter, 1992; McNaughton, 1959; Phillips et al., 1995) and the makespan @npx
(Coffman and Garey, 1991; Goyal, 1977; Hong and Leung, 1992; Liu, 1972) of a schedule.
For both of these optimality criteria, the optimal preemptive schedule for an instance will
often be significantly better than that of the optimal nonpreemptive schedule; however, in
the real world preemption is viewed as being difficult to implement and as incurring a cost,
and a nonpreemptive schedule, if of reasonable quality, is more desirable.

McNaughton (1959) proved that no finite number of preemptions can improve the av-
erage completion time of a set of jobs on parallel machines; combined with a result
from open-shop scheduling theory (Lawler et al., 1993), this establishes that that for the
scheduling of jobsvithout release datesn identical parallel machines to minimize average
completion time, the optimal preemptive schedule is no better than the optimal nonpre-
emptive schedule. When release dates are introduced the situation changes significantly
our result in Section 3.1 gives an improved understanding of the power of preemption in
this scheduling environment. Specifically, by disallowing preemption, the average com-
pletion time can increase by no more than a factor%oin contrast, T.C. Lai (1995)
has proven the best known lower bound: there exists an instance for which the optimal
value for a nonpreemptive schedule is at I%ﬂimes the optimal value for a preemptive
schedule.

Both of our results arise from the application of a list-scheduling algorithm to a list
determined by the solution to a relaxation of the scheduling problem. In Section 2 we present
this list-scheduling algorithmIET and establish several basic bounds on the performance
of LIST on any ordered list of jobs. In Section 3 we apply this technique to prove our two
results by specializing the analysis to ordered lists derived from a preemptive schedule anc
from a solution to a linear programming relaxation of the problem.

2. The algorithm LisT

We consider the algorithmI&T (see also figure 1), which accepts as input an ordered

list of jobs and uses that list to produce a nonpreemptive schadte the jobs onm

identical parallel machines that respects the release dates of the jgb& &ssentially a

list-scheduling algorithm; for each job in turn, it schedules it as early as possible without

violating its release date, and without disturbing the jobs that have already been scheduled
In order to analyze isT we will also apply an algorithm®sT1to N that yields a schedule

N’. It will always be the case th@N > CN, but in certain cases it will be easier to analyze

N’ in order to boundCN.
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Algorithm LIST

Input: An ordered listL of jobs; without loss of generality, let this ordering be 1, n.

Output: A nonpreemptive scheduld.

List schedule nonpreemptively usihg in the following manner:

For each jobj on the list, schedulg as early as possible subject to the following constraints:

e Jobj does not start beforg .
e Jobs1...,j —1have already been scheduledNnand their position is fixed.

Figure L The algorithm LST.

The algorithm BsT takes as input the nonpreemptive scheddléhat is produced by
LisT, and the seL of the lastm jobs in the list. These jobs, however, need not be the set
of jobs that are the last to be processed on some machiMeRoST creates a scheduld’
in which the jobs inC also are the jobs that are the last to be processed on some machine
in N’. Consider each machine k. On some machines, the last job to be processed is not
in £; on these machinesd3Tremoves from the schedule all jobs4nand places them in
a setH. On the remaining machines the last job to be processed4s in fact, the last
several to be processed might befinOn these machinespBTremoves from the schedule
every job inL except for the first in the “concluding block” of jobs ifion that machine
and adds them t&{. PosTthen assigns the jobs #{ in a 1-to-1 fashion to all machines on
which the last job to be processed is not frdmThese newly-assigned jobs are scheduled
last on the machine to which they are assigned. Figure 2 gives a more formalized version
of POST. We note again that the schediNé is constructed by &sT solely for the sake of
our analysisCV’ is never smaller tha@N, but at timesN’ will be easier to analyze.

We now establish several general bounds on the completion times of jdbsimd the
average completion time of the scheduesnd N’; in the next section we will specialize
the bounds to each of our applications.

Lemma 2.1. Let L be an ordered list of n jobs and without loss of generality let this
ordering bel,...,n. Letr(j) = max-y_ ;ri. Let N be the nonpreemptive schedule

.....

Algorithm PosT
Input: A nonpreemptive schedule derived from application of isT to a listL.
Output: A nonpreemptive scheduls’.

1. LetL be the lastn jobs in the listL.

2. Lett; be the earliest time such that all work in schedNlen machineM; after timet; is
given to jobs fromZ, and letj; be the job that starts at time If no job from £ is scheduled
last on machiné/; in scheduleN, thent; = co and j; does not exist. Let{ be the set of
jobs j € £ which are notj; for some machind/;. Let M’ be the set of machines whose last
job in scheduleN is notin L (tj = 00).

3. Remove the jobs ifit from their present machines, and instead assign them to run laston
machines inM’. The assignment can be any 1-to-1 assignment.

Figure 2 The algorithm BsST.



418 PHILLIPS ET AL.

resulting from the application dfisTto L. Then

L LS
cM<r (”+E<; pi>+pj.

Proof: The proof is essentially identical to arguments given by both Phillips, Stein and
Wein (1995) and Hall et al. (1997). Consider the schedule of jol#s.1., j — 1, and
suppose that jol is then scheduled to start at tiheTrace back in this (partial) schedule

to find the latest timd’ that a machine is idle prior to time Since all machines are
busy throughout the intervat’, t], we see thatZi';ll pi > m(t — t’), or equivalently,
t<t'+ (Zij;ll pi)/m. Consider a machine that is idle immediately prior to titheand

let j’ be the job that starts processing on this machirté &ince the algorithm isT does

not startj” earlier on this machine, we can conclude tHat rj: < r’(j). Since jobj

completes at timé + p;, we see thaCJ-N <r'(j)+ (Zij;ll pi)/m+ pj. ]

IfweletF(j) =r'()) + (Zij:_ll pi)/m+ p;, then we can succinctly state this upper
bound asCJN < F(j), for eachj = 1,...,n. We next show that the schedul is
dominated by the schedul.

Lemma2.2. Foreachjob j=1,...,n,CN <C}N.

Proof: Suppose that the lemma were false, and that there existsjafgotwhich CjN >
C]N Assume thaj starts on machin®’ at some timé + t; in N and on machind1” at
timet in N’ (wheret; > 0). Since BsTrescheduled joly to be the last job processed by
M” in N’, it follows that in N, no job runs onM” aftert. Therefore, in the construction
of N by LisT, at the point when jolj is to be scheduled, machii¢” was free at time;
hence jobj would have been scheduled at this earlier time, which is a contradiction.

We now divideZ, the lasmjobs in the listL, into two setsC; andL,. The seil, contains
those jobsj e £ for which C]-N' =rj+ pjandthesel; = L - L, LetK = J - L.
Lemma 2.2 has the following immediate corollary.

Lemma 2.3. For eachjob je £, we have that(}’f =TI+ pj.

Proof: SinceN is a feasible schedule, we have that+ p; < CJ-N for each jobj =

1.....n. However, by Lemma 2.} < CN' =r; + pj for each jobj € £, and so we
have proved the claim. ]

Lemma2.4. LetCN be the total completion time of the schedule constructed by Algorithm
LisT. Then

CN< > R+ Y j+pp.

jeKuL jeLls
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Proof:  We apply the boun€} < F(j) to the jobs inly U K, apply the boundC}' =
rj + p; to the jobs inC,, and sum over all jobs. m|

Lemma2.5. LetCN be the total completion time of the schedule constructed by Algorithm
PosT. Then

CV <> F(D+ ) ti+p)+y re+ Y, pi
jexk j€Ls ke jeLUK
Proof:  Since the algorithm®&sTonly changes the times at which jobsdrare processed,
we have that for each jop € K, C'' = C) < F(j). For each jobj e L2, we will apply
the bound:}\‘/ =r; 4+ pj, which follows directly from the definition of,.

We now bound the completion times of jobsdr, which are each on a different machine
in the scheduldN’. Consider a particular jop € £1 on some machin®!. Lett be the last
time that machinévl was idle before running. Letk be the job that starts processing at
timet on machineM. We will show thatt = ry.

Assume, for a contradiction, that jdbis not scheduled to start at its release date. If
either of the algorithms IsT or POST schedules a job to start later than its release date, it
must schedule that job to immediately follow the processing of another job on the same
machine without any intervening idle time. Hence, when the algorithm schedulés job
there must be another jéb that is processed up until timeon machineM. This implies
that jobk was not scheduled in this position bp#®r. Consequently, jolx is scheduled
by the algorithm LsT, and then BST has rescheduled joki. This implies thak’ € L.
Furthermore, for each machinep®rreschedules all jobs i except the first of the final
block of jobs inL. This implies thak ¢ £: sincek’ is rescheduled bydsT, thenk is not
the first of the final block of jobs irf; hence ifk were in L, then ST would have also
rescheduled. Butitis also impossible fok to be in/C, since therk precede&’ in the list
L: when LisT scheduleg, the jobk’ is not yet scheduled, and so j&lwould be scheduled
to start earlier than time Hencet = ry.

Since jobk begins processing at tinte=r andj ¢ £,, we know thak # j, and hence
ke K. Letj, ..., j, be the jobs that run oM betweerk and | in the schedulé’. Then

CJ' =rc+ et pjy+ -+ Py + Py (1)

If we sum (1) over all jobs i1, then each job ilC U £; contributes to the right-hand side at
most once, since each jobAh is on a different machine. The jobsl do not contribute at
all, since they are run on machines distinct from the ones which run jobsimN’. Thus,
summing over all jobg € £q, we obtaind_; ., CJ-N' < D ker Tkt 2 jer,uc Pj- Combin-
ing this with the above-mentioned bounds for the other jobs, we obtain our lemmal

3. Applications
3.1. Preemptive and nonpreemptive schedules

In this section we consider preemptive and nonpreemptive schedules for minimizing average
completion time of jobs with release dates on identical parallel machines. We will show
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that the ratio between the optimal nonpreemptive and preemptive average completion times
is at most% by analyzing the application ofi&T to the list that orders the jobs by their
completion times in the preemptive schedule. We will show that this yields a nonpreemptive
schedule with average completion time at rr%)times greater. This improves on the bound

of (3— %) given by Phillips, Stein and Wein (1995).

For any preemptive schedul, let £(P) denote the set ofn jobs with the largest
completion times (where ties are broken, for example, by job index). In general, it need
not be the case that the set of jobs that are the last to be processed on each machine is eqt
to L(P). However, the following lemma shows that this property can be assumed without
loss of generality.

Lemma3.1. Foreach preemptive schedule fhere exists a preemptive schedulesBch
that C” = C[” for each j= 1,...,n, with the property thatC(P’) is equal to the set of
jobs that are the last to be processed on each machiné.in P

Proof: Consider some jolp € £L(P), which completes on machird, but is not the last
job to be processed dd. Assume that the final piece of jgbruns from timet to CJF’.

By a pigeonhole argument, there must be some jjol¢g L£(P) which is the last to
complete on some machiné’. Observe tha€/’ < C[, and thatM'’ is idle afterCf’. We
make a simple interchange: we schedulejj@n M’ from timet to ij, and swap whatever
is scheduled oM’ in P during this interval to be scheduled & instead. Jobj now
completes oiM’, and is the last job to be processedwh Furthermore, all job completion
times are unaffected by this interchange.

This interchange reduces the number of job£ithat are not the last to be processed
on some machine, and so after at msiterations of this procedure, we will obtain the
desired schedule. a

Thus, when we refer t6 = £(P) for some preemptive schedule, we will be make use of
the fact that it is equivalent to think df as the set of jobs that finish last on some machine.
We defineCtt = 37, CP, C =3, Cf,andC"2 = 37, CF". For ourimproved
analysis it will be necessary to anaIijej p; in terms of the preemptive schedule, so
we begin by establishing a useful bound on this sum.

Lemma 3.2. For any preemptive schedule P

Y pj=chyche
jeg

Proof: Let P’ be the schedule obtained from by Lemma 3.1; we shall prove the
lemma by considerind®’ instead. For each machird, there exists a distinct job in

j € L which is the last job processed dvi in P’, and hence this machine runs from
time O until CjP. Thus, we can view the total processing capacity of this schedule as
> jec Cf = Cht 4 Cl=. Since this capacity is sufficient for all of the jobsjh the lemma
follows. m]
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We are now ready to establish thg3mound; we do this by establishing two new upper
bounds, one o€N and one orCN'. We will order the jobs by their completion times in
the scheduld® and call the resulting list p.

Lemma 3.3. The algorithmLIST, when applied to the list k, produces a nonpreemptive
schedule N in which & < 2CK 4 3Ct: 4 2Cte,

Proof: We will make use of the bound of Lemma 2.4:

CN< > F+ D+ pp.

jeKuULy jeLs

We first relateF (j) to the completion times of the jobs . Recall that

F(h=r'()+= (Z p.> +pj.

We can bound’(j) < C , since jobs 1...,j all complete inP by time CP and thus
must be released by then We may also bo(@ﬂ_1 pi)/m < CP since ]ObS 1...,jall
complete inP by tlmeC ;thusF(j) < ZCP + p;, and we obtaln

CN< > (2C +py)+ Y 0+ b))

jekuL, jeLs
<2C*+CH+) P+ )y T
ieg jeLs
<2CK+C+ ) pj+Ch )
je7

We now apply Lemma 3.2 to bounﬁjie] p;, and substituting into (2) we obtain the
lemma. a

Roughly, wherC't is small, this bound is good. However, whéh: is large we need
to apply PosTand use the resulting schedule to bo@Y

Lemma 3.4. The algorithmLiST, when applied to k and followed byPosT, produces a
nonpreemptive schedule’ b which CN" < 3CK 4 Ct + 2Cl2,

Proof: We make use of the bound of Lemma 2.5:

CYV< > F+) tj+m+) i+ D pj

jexk jeLly ke jeLUK
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and substitutd (j) < 2C}" + p;. Then,

CV <> (2CT+p)+ D i +p)+Y e+ Y b

jeKk jeLy ke jeLLUK
<20+ p+C > e+ > p
kek ke jeLUK
<3k +ch+ Y p
jeLUK

<3CK+che4(Cchr+Ch,
where the last inequality follows from Lemma 3.2. ]

We can now combine the previous two lemmas to prove that the average completion
time of the nonpreemptive schedule constructed by algoritlsn ik at most% times the
average completion time of the preemptive schedule that served as the input. Recall tha
CP = CK 4 Clr 4 Cla. If Ct+ < 1CP, then the bound from Lemma 3.3 becomes
CN < 2(CK +Chr 4+ Ch2) + Ch < 2CP + 4CP = ICP.If Ct > 1CP then the
bound from Lemma 3.4 becom&" < 3CK 4 CLt 4+ 2C2 = 2CP 4+ CK — CL1. But
Clt > ICP and thusCK < 2CP, so this simplifies t&CN' < ZCP. By Lemma 2.2, we
have thaCN < CV', and so we see that in both casg$, < ICP.

Theorem 3.5. Given a preemptive schedule P for an instance of scheduling jobs with
release dates on identical parallel machinakyorithmLisT, when applied to k, produces
a nonpreemptive schedule for that instance whose total completion time is a%@f’ost

3.2. Bounding a linear programming relaxation

The(4— %)—approximation algorithm of Hall et al. (1997) is based on the LP relaxation of
a formulation in which there areompletion-time variableswith each jobj we associate
a variableC;. We show that by Iettin@j, j = 1,...,n, afeasible solution to the LP
relaxation, play the role of the preemptive completion times in the previous section, we
obtain an improved approximation algorithm and an equivalent bound on the quality of the
lower bounds delivered by that linear programming formulation.

The linear programming formulation that we consider is the followimg):

minimize ) " C;

jed
1 ? 1
i C. . 2
subject to Zp,C, > ﬁ(Z p,) +ﬁij foreachA C J
jeA jeA jeA
Cj =rj+ p; foreachj e J.
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The second class of constraints are quite simple, merely stating that the completion time
of job j in a valid schedule can be no earlier than the sum of its release date and processing
time. The first set of constraints is less intuitive, but can be readily derived by summing over
load-based constraints on job completion times (Hall et al., 1997). We note that the first set
of constraints is exponential in size, but as a consequence of the results of Queyranne (1993
we can separate over these constraints in polynomial time, and thus an optimal solution to
this linear programming relaxation can be obtained in polynomial time. More surprisingly,
as a consequence of the results of Queyranne and Schulz (1994) and Goemans (1996, 1997
an optimal solution to this linear program can actually be obtainé(imlogn) time. For
further discussion of this formulation, see (Hall et al., 1997; Queyranne and Schulz, 1994).

Let Cj, j =1,...,n, be an optimal solution to the linear prograrc, and renumber
the jobs so tha€; < --- < C,. In this setting, we apply IsT to the list 1 ..., n, or in
other words, to the list of jobs ordered by thér values in the optimal LP solution. We
call this listL p.

In this setting £ is the set of jobs with thm Iargest value€;; analogouslyk = J — L,

L> is the set of jOij e L for which CN =r;+pjandLy = L — L. We let
Ch = Z|e£1CI’ Z]EICCI’andC ZJGLZCJ

The following lemma was the central step in the earlier analysis that led to a 4-approxi-
mation algorithm, and is equally important for our improved analysis; for completeness,
we include its proof.

Lemma 3.6. For any subset A 7, 2 D jea Pj < MaXea C;.
Proof: SinceCj, j = 1,...,n, is a feasible solution toPc, we have that

2.piCi= (ZD;) :

jeA jeA
However,
maxC ) i iCi,
(12¢)(Zp )= Tre
jeAd jeAd

and so

re5)-5 (2]

which is equivalent to the inequality claimed in the lemma. o
We use this lemma to derive an upper boundofL ., P;j-
Lemma 3.7.

> py=3Ch42ct
jekuUL,y



424 PHILLIPS ET AL.

Proof:  We apply Lemma 3.6 withh\ = K to obtain:- Yjex Pj < MaXjex C;. Since for

eachj € £, maxcx Cx < Cj, we also have thag- 3", . p« < Cj. Summing over each
j € L, we see that

1

1 1 -
Z%Zpk=|ﬁ|%gpk=ézpkfzcj~

jeLl keK ke jeLl

This enables us to bound

D Pi=) P+ pj=2Cty2ct 4 ch
jeKUL, kel jeLy O

Lemma 3.8. The algorithmLisT, when applied to list Lp, produces a nonpreemptive
schedule N in which

cN <3ck +6CHt +3Cte.
Proof: We again make use of the bound of Lemma 2.4:

cN< > Rl + Y+ pp.

jekuLy jeL,

We wish to relatd- (j) to the optimal solution to the linear prograﬁp, ji=1...,n.We

can boundC; > r'(j), sinceCj > C; fori = 1,..., j, and we know tha€; > r; + p; for

eachi =1, ..., nbecause of the constraints of the linear program. We are not guaranteed,
however, thaC; > (Zi‘;ll pi)/m, since theC; do not describe a valid schedule but rather

a feasible solution to this linear programming relaxation of the scheduling problem. By

settingA = {1, ..., j}, we can apply Lemma 3.6 to obtain the following bound:
1 1= -
P pi <Cj.

As a result, we see that

j—1
F()=ra)+ (Z pi)/m+ pj = 3Cj + p;j.
i=1
We therefore obtain

CN< Y @CiHpp)+ Y 4P

jekuLy jeLs

<3CK+CH+ Y P+ D (p+ry)

jekuLy €Ly

<3CA+C+ Y pi+Che
jekuLy
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Now, we substitute the bound of Lemma 3.7, which yields

CN <3C" +6Ctt 4 3Ct. -

Lemma 3.9. The algorithmLisT, when applied to Lp and followed byPosT, produces
a nonpreemptive schedule’ M which

CN < 4cKk +3ctt +3Cte.

Proof: We make use of the bound of Lemma 2.5:

CYV <D F(+ Y i+p)+) r+ Y by,

jexk jeLs ke jeLUK

and substitut& (j) < 3C; + p;. Using the bound¥_; _(r; + pj) <CX and}; ., (rj +
p;) < C'2, we obtain

cV<ack+ch+ch2+ Y py.
jeLUK

We can now apply Lemma 3.7 to obtain a bound 64+ 3C: 4+ 3CL2. m]

Again, by balancing the two cases we can prove the desired bound on the ratio of the
total completion timeCN of the nonpreemptive scheduleto the LP valueC = Zj Cj. If
CK < 3C, Lemma 3.9 implie€ < 3C + CK < £2C. On the other hand, €¥ > 3C,
thenC: < 1C. Consequently, Lemma 3.8 implies tf@t < 3C +3C" < £2C. The
following theorem summarizes our result.

Theorem 3.10. There is a3.75-approximation algorithm to minimize the average com-
pletion time of jobs with release dates on identical parallel machines.

Note that we have created a nonpreemptive schedule of average completion time at
most 375 times) _; _; Cj, the solution to linear progranPc. This implies the following
corollary on the quality of the solution delivered by this relaxation.

Corollary 3.11. For any instance of Rj| Y C;j, its optimal value is within a factor of
3.75 of the optimal value to its linear programming relaxatiorc.
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