
Operations Research Letters 39 (2011) 457–460
Contents lists available at SciVerse ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Integer-empty polytopes in the 0/1-cube with maximal Gomory–Chvátal rank

Sebastian Pokutta a, Andreas S. Schulz b,∗

a Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
b Massachusetts Institute of Technology, USA

a r t i c l e i n f o

Article history:
Received 6 March 2011
Accepted 13 September 2011
Available online 25 September 2011

Keywords:
Integer programming
Cutting planes
Gomory–Chvátal closure
Rank

a b s t r a c t

We provide a complete characterization of all polytopes P ⊆ [0, 1]n with empty integer hulls, whose
Gomory–Chvátal rank is n (and, therefore,maximal). In particular, we show that the first Gomory–Chvátal
closure of all these polytopes is identical.
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1. Introduction

The Gomory–Chvátal procedure is a well-known technique to
derive valid inequalities for the integral hull PI of a polyhedron
P = {x ∈ Rn

| Ax ≤ b}. It was introduced by Chvátal [2]
and, implicitly, by Gomory [6–8] as a means to establish certain
combinatorial properties via cutting-plane proofs. Cutting planes
and Gomory–Chvátal cuts, in particular, belong to today’s standard
toolbox in integer programming. However, despite significant
progress in recent years (see, e.g., [1,3,5,9]), the Gomory–Chvátal
procedure is still not fully understood from a theoretical stand-
point, especially in the context of polytopes contained in the
0/1-cube. For example, the question whether the currently best
known upper bound of O(n2 log n) on the Gomory–Chvátal rank,
established in [5], is tight, remains open. In [5], it was also shown
that there is a class of polytopes contained in the n-dimensional
0/1-cube whose rank exceeds n. (See [11] for a more explicit con-
struction.) However, no family of polytopes in the 0/1-cube is
known that realizes super-linear rank, and thus there is a large
gap between the best known upper bound and the largest realized
rank.

We consider the special case of P ⊆ [0, 1]n with PI = ∅

and Gomory–Chvátal rank rk(P) = n (i.e., maximal rank, as
rk(P) ≤ n holds for all P ⊆ [0, 1]n with PI = ∅; see [1]).
This case is of particular interest as, so far, all known proofs of
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polynomial upper bounds on the rank of polytopes in the 0/1-cube
(cf., [1,5]) crucially depend on this special case. The improvement
from O(n3 log n) in [1] to O(n2 log n) in [5] as an upper bound on
the rank of polytopes in [0, 1]n is a direct consequence of a better
upper bound on the rank of certain polytopes in the 0/1-cube
that do not contain integral points. It can actually be shown that
lower bounds on the rank of polytopes P ⊆ [0, 1]n with PI = ∅

play a crucial role in understanding the rank of any (well-defined)
cutting-plane procedure [10]. Moreover, in many cases, the rank
of a face F ⊆ P with FI = ∅ induces a lower bound on the rank of
P itself. In fact, the construction of the aforementioned families of
polytopes in [0, 1]n whose rank is strictly larger than n exploits this
connection.

In view of this, a thorough understanding of the Gomory–
Chvátal rank of polytopes P ⊆ [0, 1]n with PI = ∅ might help
to derive better upper and lower bounds for the general case. In
this paper, we characterize all polytopes P ⊆ [0, 1]n with PI = ∅

and rk(P) = n. In particular, we show that after applying the
Gomory–Chvátal procedure once, one always obtains the same
polytope. Furthermore, we show that P ⊆ [0, 1]n with PI = ∅

has rk(P) = n if and only if P ∩F ≠ ∅ for all one-dimensional faces
F of the 0/1-cube [0, 1]n.

The paper is organized as follows. In Section 2, we introduce
our notation and recall some basic facts about the Gomory–Chvátal
procedure. Afterwards, in Section 3, we derive the characterization
of all polytopes P ⊆ [0, 1]n with PI = ∅ and rk(P) = n. In parti-
cular, in Section 3.2, we relate the rank of a polytope P ⊆ [0, 1]n
with PI = ∅ to the rank of its faces. We then prove the charac-
terization for the two-dimensional case in Section 3.3, which is an
essential ingredient for the subsequent generalization to arbitrary
dimension in Section 3.4.
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2. Preliminaries

Let P = {x ∈ Rn
| Ax ≤ b} be a polytope with A ∈ Zm×n and

b ∈ Zm. The Gomory–Chvátal closure of P is defined as

P ′
:=


λ∈Rm

+
,λA∈Zn

{x : λAx ≤ ⌊λb⌋}.

The result P ′ is again a polytope (see [2]), and one can apply the
operator iteratively. We let P (i+1)

:= (P (i))′ for i ≥ 0 and P (0)
:= P .

The resulting sequence {P (i)
}i≥0 becomes stationary after finitely

many steps [2], and the smallest k such that P (k+1)
= P (k) is

the Gomory–Chvátal rank of P (in the following often rank of P),
denoted by rk(P). In particular, P (rk(P))

= PI , where PI := conv(P ∩

Zn) denotes the integral hull of P .
We will make repeated use of the following well-known

lemma:

Lemma 2.1 ([4, Lemma 6.33]). Let P be a rational polytope and let F
be a face of P. Then F ′

= P ′
∩ F .

If P ⊆ [0, 1]n and PI = ∅, Lemma 2.1 can be used to derive an
upper bound on rk(P).

Lemma 2.2 ([1, Lemma 3]). Let P ⊆ [0, 1]n be a polytope with
PI = ∅. Then rk(P) ≤ n.

This bound is actually tight; a family of polytopes An ⊆ [0, 1]n with
(An)I = ∅ and rk(An) = nwas described in [3, p. 481].

For i ∈ [n], the i-th coordinate flipmaps xi → 1−xi and xj → xj
for i ≠ j. Another property that we will extensively use is that
the Gomory–Chvátal operator is commutative with unimodular
transformations, in particular, coordinate flips.

Lemma 2.3 ([5, Lemma 4.3]). Let P ⊆ [0, 1]n be a polytope and let
u be a coordinate flip. Then (u(P))′ = u(P ′).

Given polytopes P ⊆ [0, 1]n,Q ⊆ [0, 1]k, and a k-dimensional
face F of [0, 1]n, we say that P ∩ F ∼= Q if the canonical projection
of P ∩ F onto [0, 1]k is equal to Q . We denote the interior of P
by Int(P) and, with P, F , and Q as before, the relative interior of
P with respect to F is defined as RIntF (P) := Int(Q ). We use e to
denote the all-one vector, and 1

2 e to denote the all-one-half vector.
If I ⊆ [n]×{0, 1}, 1

2 e
I has coordinates 1

2 e
l
i =

1
2 whenever (i, l) ∉ I ,

and 1
2 e

I
i = l for (i, l) ∈ I . Similarly, if F is a face of [0, 1]n, we define

1
2 e

F
∈ F to be 1

2 in those coordinates not fixed by F . Moreover, we
define Fk to be the set of all vectors x ∈


0, 1

2 , 1
n

such that exactly
k coordinates are equal to 1

2 , and the remaining coordinates are in
{0, 1}. For convenience, we use [n] := {1, . . . , n} for n ∈ N.

3. Polytopes P ⊆ [0, 1]n with PI = ∅ and maximal rank

For n ∈ N, we define the polytope Bn ⊆ [0, 1]n by

Bn :=


x ∈ [0, 1]n

−
i∈S

xi +
−

i∈[n]\S

(1 − xi) ≥ 1 for all S ⊆ [n]


.

Note that, (Bn)I = ∅. This family of polytopes will be essential to
our subsequent discussion.

3.1. Properties of Bn

In the following section, we will characterize B(k)
n and show,

specifically, that B(n−2)
n =

 1
2 e


. Moreover, we will show that

0, 1
2


-cuts, i.e., Gomory–Chvátal cuts with λ ∈


0, 1

2

m
, suffice
to deduce (Bn)I = ∅, and the rank with respect to the classical
Gomory–Chvátal procedure coincides with the rank if one were
to use


0, 1

2


-cuts only. Clearly, with Bn as above and F being a

k-dimensional face of [0, 1]n, we have Bn ∩ F ∼= Bk. As a direct
consequence of the proof of [3, Lemma 7.2] one obtains:

Lemma 3.1. Let P ⊆ [0, 1]n be a polytope with Fk ⊆ P for some
k < n. Then Fk+1 ⊆ P ′.

Proof. We include a proof for completeness. Let P as above and let
ax < b + 1 with a ∈ Zn and b ∈ Z be valid for P . We have to show
that ap ≤ b for every p ∈ Fk+1. Let p ∈ Fk+1 be arbitrary. If ap ∈ Z,
we are done. So assume that ap ∉ Z. Then there exists i ∈ [n] such
that ai ≠ 0 and pi =

1
2 . We define the points p0, p1 by setting p0j =

p1j = pj for all j ≠ i, p0i = 0, and p1i = 1. Hence, p =
1
2p

0
+

1
2p

1.
Note that, p0, p1 ∈ Fk ⊆ P and, therefore, apl < b + 1 holds for
l ∈ {0, 1}. We derive ap +

1
2 ≤ max{ap0, ap1} < b + 1 and thus

ap < b+
1
2 . Since ap ∈

1
2Z, it follows that ap ≤ b, hence p ∈ P ′. As

the choice of p ∈ Fk+1 was arbitrary, we obtain Fk+1 ⊆ P ′. �

Note that, F2 ⊆ Bn. Thus, by Lemma 3.1, we have:

Corollary 3.2. Fk ⊆ B(k−2)
n .

The following theorem specifies a family of valid inequalities for
B(k)
n .

Theorem 3.3. Let Bn be defined as above and k ≤ n. Then−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) ≥ 1

is valid for B(k)
n for all I ⊆ Ĩ ⊆ [n] with |Ĩ| = n − k. Moreover, these

inequalities can be derived as iterated

0, 1

2


-cuts.

Proof. The proof is by induction on k. First, let us look at the case
k = 0. By definition,

∑
i∈I xi +

∑
i∈Ĩ\I(1 − xi) ≥ 1 with Ĩ = [n] is

valid for Bn. Now consider 0 < k ≤ n, and assume that the claim
holds for k − 1. Let Ĩ ⊆ [n] with |Ĩ| = n − k be arbitrary. We have
to prove that

∑
i∈I xi +

∑
i∈Ĩ\I(1 − xi) ≥ 1 with I ⊆ Ĩ is valid for

B(k)
n . Let I0 = Ĩ ∪ {h} for some h ∉ Ĩ . Note that, such an h exists as

k > 0. Then

xh +

−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) =

−
i∈I∪{h}

xi +
−

i∈I0\(I∪{h})

(1 − xi) ≥ 1

and

(1 − xh) +

−
i∈I

xi +
−
i∈Ĩ\I

(1 − xi) =

−
i∈I

xi +
−
i∈I0\I

(1 − xi) ≥ 1

are valid for B(k−1)
n , by induction hypothesis. By adding the two

inequalities, we obtain

2
−
i∈I

xi + 2
−
i∈Ĩ\I

(1 − xi) ≥ 1

and, therefore,
∑

i∈I xi +
∑

i∈Ĩ\I(1 − xi) ≥
 1

2


= 1 is valid for

B(k)
n . �

We immediately obtain the following corollary.

Corollary 3.4. B(n−2)
n =

 1
2 e


.

Proof. First note that, 1
2 e ∈ B(n−2)

n by Corollary 3.2. By Theorem 3.3
we know that

∑
i∈I xi +

∑
i∈Ĩ\I(1− xi) ≥ 1 with I ⊆ Ĩ = {u, v} ⊆ I

is valid for B(n−2)
n , for any pair u, v ∈ [n], u ≠ v. Therefore xu+xv ≥

1, xu + (1−xv) ≥ 1, (1−xu)+xv ≥ 1, and (1−xu)+ (1−xv) ≥ 1
are valid for B(n−2)

n , which implies xu = xv =
1
2 . �
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The following lemma characterizes the vertices of Bn.

Lemma 3.5. Bn = conv(F2).
Proof. Note that, conv(F2) ⊆ Bn. We will show that every vertex x̃
of Bn belongs to F2, which would complete the proof. So let x̃ be an
arbitrary vertex of Bn.

First, we prove that x̃ is half-integral. Suppose not. Let D =
i ∈ [n] | x̃i ∉


0, 1

2 , 1


. By applying appropriate coordinate flips,
we may assume, without loss of generality, that x̃i < 1

2 for all
i ∈ D. Since x̃ is a vertex of Bn, there exists an index set I ⊆

[n] such that
∑

i∈I x̃i +
∑

i∈[n]\I(1 − x̃i) = 1. Note that this
implies D ⊆ I . If there exists d ∈ D such that d ∉ I , then∑

i∈I∪{d} x̃i +
∑

i∈[n]\(I∪{d})(1 − x̃i) < 1—a contradiction. We also
obtain |D| > 1; otherwise the inequality cannot hold at equality.
Let sI =

∑
i∈I x̃i +

∑
i∈[n]\I(1 − x̃i) − 1 for all I ⊆ [n]. As |D| ≥ 2,

there exists I ⊆ [n] with sI > 0. (Just choose any I with I ∩D = ∅).
Let s = minI⊆[n],sI>0 sI , and let j, k ∈ D, j ≠ k. For some sufficiently
small 0 < δ < 1

2 s, we define y, z ∈ [0, 1]n with yi = x̃i = zi
for all j ≠ i ≠ k and yj = x̃j + δ, yk = x̃k − δ, zj = x̃j − δ,
and zk = x̃k + δ. Note that x̃ =

1
2 (y + z). It remains to show that

y, z ∈ Bn, which would contradict that x̃ is a vertex of Bn. We have
earlier seen that whenever

∑
i∈I x̃i +

∑
i∈[n]\I(1− x̃i) = 1 holds for

some I ⊆ [n], then D ⊆ I . Therefore,
∑

i∈I yi +
∑

i∈[n]\I(1 − yi) =∑
i∈I x̃i+

∑
i∈[n]\I(1− x̃i)+δ−δ = 1 asD ⊆ I . Moreover, whenever∑

i∈I x̃i +
∑

i∈[n]\I(1 − x̃i) > 1 holds for I ⊆ [n], then−
i∈I

yi +
−
i∈[n]\I

(1 − yi) ≥

−
i∈I

x̃i +
−
i∈[n]\I

(1 − x̃i) − 2δ

≥

−
i∈I

x̃i +
−
i∈[n]\I

(1 − x̃i) − s ≥ 1.

Thus, y ∈ Bn, and z ∈ Bn follows similarly. Consequently, x̃ is half-
integral.

To finish the proof, we show that x̃ has exactly two coordinates
that are equal to 1

2 . Suppose that there are more than two entries
equal to 1

2 . Then
∑

i∈I x̃i +
∑

i∈[n]\I(1 − x̃i) ≥
3
2 for all I ⊆ [n].

Similarly, less than two entries equal to 1
2 is not possible as we

would obtain
∑

i∈I x̃i +
∑

i∈[n]\I(1 − x̃i) =
1
2 < 1 for I = {i ∈

[n] | x̃i = 0}. Hence, x̃ ∈ F2. �

We conclude this section by relating Bn to arbitrary polytopes
P ⊆ [0, 1]n with PI = ∅.

Theorem 3.6. Let P ⊆ [0, 1]n with PI = ∅. Then P (l)
⊆ B(l−1)

n .
Proof. Let p ∈ {0, 1}n be arbitrary, and let I := {i ∈ [n] | pi = 0}.
As PI = ∅, we can find ϵp > 0 such that

∑
i∈I xi +

∑
i∈[n]\I(1 −

xi) ≥ ϵp is valid for P , whereas
∑

i∈I pi +
∑

i∈[n]\I(1 − pi) = 0;
the inequality separates p from P . In particular, we know that∑

i∈I xi +
∑

i∈[n]\I(1 − xi) ≥ 1 is valid for P ′. Since p ∈ {0, 1}n was
chosen arbitrarily, we obtain that

∑
i∈I xi +

∑
i∈[n]\I(1 − xi) ≥ 1

is valid for P ′ for every I ⊆ [n], which implies P ′
⊆ Bn. The

claim follows from the fact that the Gomory–Chvátal procedure
maintains inclusions. �

3.2. The sandwich theorem

In this section, we will derive bounds on the growth of the rank
of a polytope P ⊆ [0, 1]n with PI = ∅.

Theorem 3.7 (Sandwich Theorem). Let P ⊆ [0, 1]n with PI = ∅.
Then

k ≤ rk(P) ≤ k + 1

where k = max(i,l)∈[n]×{0,1} rk(P ∩ {xi = l}). Moreover, if there exist
i ∈ [n] and l ∈ {0, 1} such that rk(P ∩{xi = l}) < k, then rk(P) = k.
Proof. Clearly, k ≤ rk(P) as there exists (i, l) ∈ [n] × {0, 1} such
that rk(P ∩ {xi = l}) = k. For the other inequality, observe that
P (k)

∩ {xi = l} = (P ∩ {xi = l})(k) = ∅, by Lemma 2.1. It follows
that xi < 1 and xi > 0 are valid for P (k) for all i ∈ [n]. Hence
xi ≤ 0 and xi ≥ 1 are valid for P (k+1) for all i ∈ [n], and, therefore,
P (k+1)

= ∅, i.e., rk(P) ≤ k + 1.
It remains to show that rk(P) = k if there exist i ∈ [n] and

l ∈ {0, 1} such that m := rk(P ∩ {xi = l}) < k. Without loss of
generality, we may assume that l = 1; otherwise we can apply the
corresponding coordinate flip. Then P (m)

∩ {xi = l} = ∅ and thus
xi < 1 is valid for P (m). Hence, xi ≤ 0 is valid for P (k). It follows that
P (k)

= P (k)
∩ {xi = 0} = (P ∩ {xi = 0})(k) = ∅, which implies

rk(P) ≤ k. �

The upper bound in Theorem 3.7 is tight, as can be seen by
considering the polytope An, introduced in [3, p. 481], whose
definition is identical to that of Bn except for the right-hand side,
which is 1

2 . Then rk(An) = n and An satisfies the assumptions of
the theorem. As An ∩ {xi = l} ∼= An−1, we obtain that rk(An ∩ {xi =

l}) = n − 1 for all i ∈ [n] and l ∈ {0, 1}.
However, it is important to note that rk(P ∩{xi = l}) = k for all

(i, l) ∈ [n]×{0, 1} is not sufficient for rk(P) = k+1. By induction,
we immediately obtain a necessary condition for rk(P) = n.

Corollary 3.8. Let P ⊆ [0, 1]n be a polytope with PI = ∅ and
rk(P) = n. Then

rk(P ∩ F) = k

for all k-dimensional faces F of [0, 1]n, 1 ≤ k ≤ n.

For the special case of k = 1, Corollary 3.8 was known before
[5, Proof of Proposition 2.4].

3.3. The two-dimensional case

In this section, we will provide a full characterization of
polytopes P ⊆ [0, 1]2 with PI = ∅ and rk(P) = 2. We will prove
that P ⊆ [0, 1]2 with PI = ∅has rank2 if andonly if P∩{xi = l} ≠ ∅

for all (i, l) ∈ [2] × {0, 1}, which happens if and only if 1
2 e ∈ P ′. In

case P is a half-integral polytope, the latter condition is equivalent
to 1

2 e ∈ Int(P). The following theorem establishes the first part.

Theorem 3.9. Let P ⊆ [0, 1]2 be a polytope with PI = ∅. Then
P ∩ {xi = l} ≠ ∅ for all (i, l) ∈ [2] × {0, 1} if and only if rk(P) = 2.

Proof. First, we assume that P contains points x0 = (c0, 0), x1 =

(0, c1), x2 = (c2, 1), and x3 = (1, c3). As the rank is monotone,
we may assume that these are the only intersections of P with the
boundary of the unit cube. Note that, ci ∈ (0, 1) for 0 ≤ i ≤ 3. Let
ax < b + 1 with a ∈ Z2 and b ∈ Z be valid for P . It is sufficient
to prove that a

 1
2 e


≤ b as this implies that 1

2 e ∈ P ′
≠ ∅. By

using coordinate flips if necessary, we may assume that a ≥ 0.
Consequently, either x2 or x3 is maximizing a over P . We claim that
axm − a

 1
2 e


≥

1
2 for some m ∈ {2, 3}. This is sufficient to prove

our hypothesis as a
 1
2 e


≤ axm −

1
2 < b + 1 −

1
2 = b +

1
2

and as a
 1
2 e


∈

1
2Z, we obtain a

 1
2 e


≤ b. We distinguish three

cases.
Case a2 = a1. We obtain that a

 1
2 e


∈ Z and, therefore,

a
 1
2 e


≤ b.

Case a2 ≥ a1 + 1. It suffices to show that

ax2 − a

1
2
e


≥
1
2

⇔ a1c2 + a2 −
1
2
a1 −

1
2
a2 ≥

1
2

⇔


c2 −

1
2


a1 +

1
2
a2 ≥

1
2
.
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This is true because

c2 −

1
2


a1 +

1
2a2 ≥ (c2 −

1
2 )a1 +

1
2 (a1 +1) =

c2a1 −
1
2a1 +

1
2a1 +

1
2 = c2a1 +

1
2 ≥

1
2 .

Case a1 ≥ a2 + 1. It suffices to show that ax3 − a
 1
2 e


≥

1
2 ,

which follows similarly.
For the other direction, observe that if there exists (i, l) ∈ [2]×

{0, 1} such that P ∩ {xi = l} = ∅, then rk(P) ≤ 1 follows with
Corollary 3.8. �

The following theorem is our main result for the two-
dimensional case:

Theorem 3.10. Let P ⊆ [0, 1]2 be a polytope with PI = ∅. Then the
following are equivalent:

(a) rk(P) = 2;
(b) P ∩ {xi = l} ≠ ∅ for all (i, l) ∈ [2] × {0, 1};
(c) P ′

=
 1
2 e


.

Proof. By Theorem 3.9, (a) ⇔ (b). Clearly, if P ′
=

 1
2 e


, then

rk(P) = 2. For the other direction, observe that, by Theorem 3.6,
P ′

⊆ B2 =
 1
2 e


and thus, if rk(P) = 2, it follows that P ′

= 1
2 e


. �

We conclude this section with the following lemma showing
that whenever rk(P) = 2, then 1

2 e ∈ Int(P).

Lemma 3.11. If P ⊆ [0, 1]2 is a polytope with PI = ∅ and 1
2 e ∉

Int(P), then there exists (i, l) ∈ [2]×{0, 1} such that P∩{xi = l} = ∅.
In particular, if rk(P) = 2 then 1

2 e ∈ Int(P).

Proof. The proof of the first part is by contradiction. So let P ⊆

[0, 1]2 be a polytope with PI = ∅ and 1
2 e ∉ Int(P). Suppose

P ∩ {xi = l} ≠ ∅ for all (i, l) ∈ [2] × {0, 1}. Then there exists
x̃ ∈ P ∩ {xĩ = l̃} with (ĩ, l̃) ∈ [2] × {0, 1} and a ∈ R2 such
that ax ≤ a

 1
2 e


is valid for P and ax̃ = a

 1
2 e


(i.e., ax = a

 1
2 e


is the hyperplane defined by the points x̃ and 1

2 e). Without loss
of generality, we may assume that ĩ = 1 and l̃ = 0; otherwise
we can apply coordinate permutations and flips. Then x̃ is of the
form x̃ = (0, c) with c ∈ (0, 1), as PI = ∅. It is easy to see
that the hyperplanes ax = a

 1
2 e


and x1 = 1 intersect in the

point ỹ = (1, 1 − c). Note that, ỹ is not necessarily in P . Let Q =

[0, 1]2 ∩

ax ≤ a

 1
2 e


, and note that P ⊆ Q . If we maximize x2

over P , we getmaxx∈P x2 ≤ maxx∈Q x2 = maxx∈{(1,1−c),(0,c)} x2 < 1,
contradicting our assumption that P ∩ {xi = l} ≠ ∅ for all (i, l) ∈

[2] × {0, 1}. The second claim follows from Theorem 3.10. �

Clearly, whenever P is half-integral, then 1
2 e ∈ Int(P) if and

only if P ∩ {xi = l} ≠ ∅ for all (i, l) ∈ [2] × {0, 1}. In this case,
we therefore obtain 1

2 e ∈ Int(P) if and only if rk(P) = 2. If P is not
half-integral, however, then thismay not be true. Namely, consider
P with |P ∩ {xi = l}| = 1 for all (i, l) ∈ [2] × {0, 1}, and move the
vertex of the form (p, 1) inwards to (p, 1 − ϵ), for some ϵ > 0.
It is easy to see that ϵ can be chosen such that 1

2 e remains in the
interior, however the rank of the resulting polytope is 1.

3.4. The general case

In this section, we provide a complete characterization of all
polytopes P ⊆ [0, 1]n with PI = ∅ and rk(P) = n. The following is
the main theorem of this paper.
Theorem 3.12. Let P ⊆ [0, 1]n be a polytope with PI = ∅. Then the
following statements are equivalent:

(a) rk(P) = n;
(b) P ′

= Bn;
(c) F ∩ P ≠ ∅ for all one-dimensional faces F of [0, 1]n;
(d) rk(P ∩ F) = k for all k-dimensional faces F of [0, 1]n.

Proof. First, we show that (c) implies (b). So let us assume that
H ∩ P ≠ ∅ for all one-dimensional faces H of [0, 1]n. Consider
Q = P ∩ F for some arbitrary two-dimensional face F of [0, 1]n.
Then F =


(i,l)∈I{xi = l} for some I ⊆ [n]×{0, 1}with |I| = n−2.

Let J = [n] \ I . Then Q ∩ {xi = l} ≠ ∅ for all (i, l) ∈ J × {0, 1}
as F ∩ {xi = l} is a one-dimensional face of [0, 1]n. Theorem 3.10
implies that Q̃ ′

=
 1
2 e


, where Q̃ ∼= Q and Q̃ ⊆ [0, 1]2. Thus,

Q ′
=

 1
2 e

I

. As the choice of I was arbitrary, we get F2 ⊆ P ′. By

Lemma 3.5, Bn ⊆ P ′ follows. Theorem 3.6 yields P ′
⊆ Bn, which

completes the proof of (b).
Now assume that P ′

= Bn. Corollary 3.4 gives
 1
2 e


= B(n−2)

n =

P (n−1). Together with Lemma 2.2, we obtain that rk(P) = n. So (b)
implies (a).

By Corollary 3.8, rk(P) = n implies F ∩ P ≠ ∅ for all k-
dimensional faces F of [0, 1]n. That is, (d) follows from (a).

The missing implication, (d) to (c), is trivial. �

It is a direct consequence of Theorem 3.12 that, for any n ∈ N,
the only half-integral polytope P ⊆ [0, 1]n with maximal rank and
PI = ∅ is An. Theorem 3.12 also implies that optimizing a linear
function c over P ′ can be done in polynomial time for polytopes
P ⊆ [0, 1]n with PI = ∅ and rk(P) = n. It suffices to apply
coordinate flips so that c ≥ 0, to then permute the coordinates
such that c1 ≥ c2 ≥ · · · ≥ cn, and to finally choose the optimal
vertex from F2.
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