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Abstract

Motivated by the need to deal with imprecise data in real-world optimization problems, we introduce two new models for
algorithm design and analysis. The first model, called the L-bit precision model, leads to an alternate concept of polynomial-
time solvability. Expressing numbers in L-bit precision reflects the format in which large numbers are stored in computers today.
The second concept, called ε-optimization, provides an alternative approach to approximation schemes for measuring distance
from optimality. In contrast to the worst-case relative error, the notion of an ε-optimal solution is invariant under subtraction of a
constant from the objective function, and it is properly defined even if the objective function takes on negative values.

Besides discussing the relation between these two models and preexisting concepts, we focus on designing polynomial-
time algorithms for solving NP-hard problems in which some or all data are expressed with L-bit precision, and on designing
fully polynomial-time ε-optimization schemes for NP-hard problems, including some that do not possess fully polynomial-time
approximation schemes (unless P = NP).
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1. Introduction

Our work has its origin in inverse optimization. Let X ⊆ Zn denote the set of feasible solutions to a minimization
problem. Given a solution x∗ ∈ X and an a priori estimated cost vector c ∈ Rn , the inverse optimization problem
is to identify another cost vector d ∈ Rn such that dx∗ ≤ dx for all x ∈ X , and such that the deviation of d from
c is minimal. One rationale for inverse optimization is that the parameters of real-world problems, such as cost or
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capacity, are already approximate. Hence, one might consider x∗ to be a sufficiently good solution if it is optimal with
respect to a modestly perturbed cost vector. We refer to [2] for an overview of inverse optimization applied to linear
and combinatorial optimization problems.

In inverse optimization, x∗ is assumed to be given. In this paper, we determine optimal feasible solutions, but
sometimes we also choose the cost coefficients at the same time. We develop inverse optimization into an alternative
approach for producing near-optimal solutions. In the course of this, we propose an alternative to the worst-case
relative error, which is commonly used in the design of approximation algorithms to measure the distance from
optimality. We also arrive at a different notion of solving a problem in polynomial time, assuming that only a certain
number of bits is known with certainty.

One of the most active areas in the theory of computing is the study of approximation algorithms. An approximation
algorithm for a combinatorial optimization problem is a polynomial-time algorithm that outputs feasible solutions that
are guaranteed to be close to optimal (see, e.g., [3,13,22]). Therein, the distance from optimality is typically measured
by the worst-case relative error. A feasible solution x∗ to an optimization problem min{cx : x ∈ X} has a worst-case
relative error of at most ε if (cx∗ − cx)/cx ≤ ε for all x ∈ X . This way of measuring the quality of an approximate
solution faces some well-known, inherent drawbacks. In particular, if the optimal objective value is non-positive, the
relative error is an inappropriate measure of performance. Moreover, a translation of variables has a dramatic impact
on the relative error. That is, replacing x by x − a will, in general, lead to very different measures of performance. We
propose an alternative that overcomes these difficulties. A vector c′ is an ε-perturbation of the vector c if the following
is true, for some 0 < ε < 1:

c j (1 − ε) ≤ c′
j ≤ c j (1 + ε) if c j ≥ 0, and

−c j (1 − ε) ≤ −c′
j ≤ −c j (1 + ε) if c j < 0.

Note that c′
j = 0 if c j = 0. Consider the optimization problem min{cx : x ∈ X}.1 We say that a solution x ′ is

ε-optimal if there exists an ε-perturbation c′ of c such that x ′ is optimal for the problem min{c′x : x ∈ X}. An
ε-optimization algorithm is an algorithm that produces an ε-optimal solution for every instance of that problem.
Moreover, we say that a family of algorithms (Aε)ε>0 is a polynomial-time ε-optimization scheme (PTEOS) for an
optimization problem if for every fixed ε > 0, and for every instance (c, X) of the problem, the algorithm Aε produces
an ε-optimal solution in time that is polynomial in the size of the instance. We say that (Aε)ε>0 is a fully polynomial-
time ε-optimization scheme (FPTEOS) if given a perturbation ε and given an instance, Aε produces an ε-optimal
solution in time polynomial in the size of the instance and in 1/ε. In other words, the running time behavior of a
PTEOS and an FPTEOS is precisely the same as that of a polynomial-time approximation scheme (PTAS) and a fully
polynomial-time approximation scheme (FPTAS), respectively. However, the manner in which we measure proximity
to the optimum is different.

We now introduce the L-bit precision model. In this model, some or all input numbers of the problem are of the
form a · 2t , where a and t are integers, t ≥ 0, and |a| < 2L . We say that these numbers are expressed with L-bit
precision. The space to store a number expressed with L-bit precision is assumed to be O(L + log t). If T is a tight
upper bound on the exponents t of the integers expressed in L-bit precision, an algorithm is said to run in polynomial
time if its running time is polynomial in n, the number of data items, and log T ; it is strongly polynomial-time if its
running time is polynomial in n, but does not depend on T . Here, we assume either that L is constant or L = O(log n).
In the former case, we speak about the fixed precision model, whereas the latter case is logarithmic precision.

Whenever we refer to a problem as being NP-hard or polynomial-time solvable without explicitly specifying the
way in which numbers are represented, we assume that the input data are encoded in the standard way, i.e., by using
their binary representation. In particular, the input size of a non-zero integer of the form a ·2t under standard encoding
is Θ(log(a · 2t )) = Θ(log a + t). Notice that algorithms that run in polynomial time with respect to the standard
encoding of numbers are not necessarily polynomial for the L-bit precision problem (because they may depend on T
instead of being polynomial in log T ). On the other hand, if a problem is NP-hard in the strong sense, then it is NP-
hard even if all data are of the order O(nk), for some fixed k. Consequently, if there were a polynomial-time algorithm
under logarithmic precision, then P = NP.

1 Although we restrict the following discourse to minimization problems, virtually all results extend in a natural way to the case of maximization
problems.
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Expressing numbers in L-bit precision is realistic because it incorporates the format in which large numbers are
stored in computers today. In fact, one widely used format in the computer industry is the IEEE Standard for Binary
Floating-Point Arithmetic [5,11,16]. Another reason why expressing numbers with L-bit precision seems realistic is
that data are often known to several significant digits only in many practical application scenarios.

Main results

Our results fall into four categories. First, we design algorithms for NP-hard problems in which some or all data
are expressed with L-bit precision. These algorithms run in polynomial time under the logarithmic or fixed precision
regime. Second, we exhibit a connection between the L-bit precision model and ε-optimization algorithms. Third, we
discuss the relation between fully polynomial-time ε-optimization schemes and fully polynomial-time approximation
schemes, and we also provide additional general insights on ε-optimality. Finally, we design (fully) polynomial-time
ε-optimization schemes for various combinatorial optimization problems, including some that do not have an
(F)PTAS. The following overview details some of our findings:

1. For computation in the L-bit precision model, we present the following results:

(a) There is a strongly polynomial-time algorithm for solving the NP-complete knapsack problem under either the
fixed or the logarithmic precision model; see Theorem 2.6.

(b) A simple variant of the knapsack problem is NP-complete even if the costs are expressed with fixed precision
(Theorem 2.7).

(c) The NP-complete scheduling problem of minimizing the makespan of independent jobs on m identical parallel
machines possesses a strongly polynomial-time algorithm under the L-bit precision model when m is fixed and L
is fixed or logarithmic (Theorem 2.12).

(d) It follows from the strong NP-completeness of the 3-partition problem that it remains NP-complete under
logarithmic precision. Nevertheless, there is a strongly polynomial-time algorithm for the 3-partition problem
under the fixed precision model; see Theorem 2.15.

2. ε-optimization schemes can be linked to the L-bit precision model as follows. Suppose that the optimization
problem min{cx : x ∈ X} is handed to us in L-bit precision and we are permitted to specify the next bit of any
cost coefficient. In other words, we first replace every c j = a j · 2t j by 2a j · 2t j . We may then replace 2a j by 2a j + 1
if we want, or we may keep the coefficient as 2a j · 2t j . The bit rounding problem consists of simultaneously choosing
in the indicated way the (L + 1)st bit of precision for every cost coefficient, and finding an optimal solution for the
resulting cost function. We show that, for many combinatorial optimization problems, a given ε-optimization scheme
can be used to produce solutions to the bit rounding problem; see Theorem 3.1.

3. Whenever a combinatorial optimization problem, i.e., a problem min{cx : x ∈ X} with X ⊆ {0, 1}n , has an FPTAS
and is closed under fixing some of the variables to zero or one, then this problem also has an FPTEOS (Theorem 4.2).
A problem that has this property is the knapsack problem, for instance. On the other hand, the existence of an FPTEOS
also implies the existence of an FPTAS, provided that costs are non-negative (see Lemma 4.1).

4. A technique similar to the one used to turn an FPTAS into an FPTEOS also helps to design an FPTEOS for
scheduling with rejection so as to minimize lateness (Theorem 5.1). This problem does not have an FPTAS. In fact,
its objective function value can be non-positive.

Notice that ε-optimal solutions in its pure sense (as defined above) refer to perturbations in the objective function
only. In order to accommodate problems with a different structure, like bin packing or some scheduling problems, we
can extend the notion of ε-optimality by allowing for other input parameters of the problem to be changed as well.
This gives rise to the following results. First, the strongly NP-hard bin packing problem has a PTEOS when we accept
that item sizes may be perturbed; second, the strongly NP-hard scheduling problem of minimizing the makespan on
identical parallel machines also has a PTEOS when job processing times may be slightly altered; see Theorem 5.2 for
both results.

2. L-bit precision

In this section, we demonstrate that looking at problems under fixed or logarithmic precision can dramatically
change their computational complexity. We consider three representative NP-hard combinatorial optimization
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problems – the knapsack problem, a scheduling problem, and the 3-partition problem – and design polynomial-time
algorithms for them under L-bit precision.

2.1. The knapsack problem

An instance of the 0/1-knapsack problem consists of two sets of non-negative integers w1, w2, . . . , wn (the sizes
of the items to be packed) and c1, c2, . . . , cn (their values), and a capacity b. The task is to determine an assignment
of the binary variables x1, x2, . . . , xn to maximize

∑n
j=1 c j x j subject to

∑n
j=1 w j x j ≤ b.

The knapsack problem is NP-hard [20], but it can be solved in pseudopolynomial time using either a dynamic
programming recursion [4,6] or a closely related technique of reducing it to a shortest path problem in an expanded
network G = (N , A). We adopt the shortest path approach here. Let C := max j=1,2,...,n c j . There is a source node,
which we denote as 〈0, 0〉. Moreover, for each k ∈ {1, 2, . . . , n}, and for each v ∈ {0, 1, . . . , nC}, there is a node
〈k, v〉, denoting a knapsack with items from the set {1, 2, . . . , k} only and whose value is v. The network contains
two kinds of arcs: there is an arc from node 〈0, 0〉 to node 〈1, c1〉 of length w1, and there is an arc from node 〈0, 0〉 to
node 〈1, 0〉 with length 0. In general, for each k ∈ {2, 3, . . . , n} and for each v ∈ {0, 1, . . . , nC}, there is an arc from
〈k − 1, v〉 to 〈k, v〉 with length 0, and an arc from 〈k − 1, v〉 to 〈k, v + ck〉 of length wk . The latter arc does not exist
if v + ck > nC . Let sk := max{v : there is a path from node 〈0, 0〉 to node 〈k, v〉 of length at most b}. The following
observations are straightforward, but useful.

Observation 2.1. There is a path from 〈0, 0〉 to 〈k, v〉 of length b′ if and only if there are binary values x1, x2, . . . , xk
such that

∑k
j=1 w j x j = b′ and

∑k
j=1 c j x j = v.

Observation 2.2. The optimal value for the knapsack problem is sn.

The above network is acyclic, and the shortest paths can be computed in O(n2C) time (see, e.g., [1]), which is not
polynomial in the size of the input under the L-bit precision model.

We now show how the computation associated with the above shortest path algorithm can be reduced to
polynomial-time when the costs are represented with logarithmic or fixed precision. Assume that each c j has an
L-bit representation of the form c j = a j · 2t j , with a j < 2L for all 1 ≤ j ≤ n. We first arrange the indices in
non-increasing order of t j ’s such that t1 ≥ t2 ≥ · · · ≥ tn . Let Ck be the sum of the values of the last n − k items; that
is, Ck := ∑n

j=k+1 c j . Let G∗ denote the induced subgraph of G with node set {〈k, v〉 : 1 ≤ k ≤ n and sk − Ck < v ≤
sk} ∪ {〈0, 0〉}. Since no feasible packing of the last n − k items can have a value larger than Ck , we get the following
result.

Observation 2.3. The network G can be replaced by G∗ while maintaining an optimal solution for the knapsack
problem.

It turns out that the shortest path algorithm, if applied to G∗, runs in polynomial time when the cost coefficients
are given in fixed or logarithmic precision. To make this precise, we need two additional observations.

Observation 2.4. If there is a path from node 〈0, 0〉 to node 〈k, v〉 in G∗, then v is an integer multiple of 2tk .

Proof. This is an immediate consequence of the ordering of the indices and Observation 2.1. !

Corollary 2.5. The number of nodes in G∗ that are reachable from node 〈0, 0〉 is at most n22L .

Proof. The number of nodes 〈k, v〉 ∈ G∗ for fixed value of k is at most Ck , which is bounded from above by n2L2tk+1 .
Hence, the number of nodes for which v is an integer multiple of 2tk is at most n2L . The result follows. !

One concern with running the algorithm on G∗ is that G∗ is defined in terms of the values sk for k ∈ {1, 2, . . . , n},
but the values sk are not known a priori. In fact, they are determined in the course of the shortest path algorithm. This
difficulty is overcome as follows: first, we observe that sk ≤ sk+1 ≤ sk + ck+1. So, once the shortest path algorithm
has scanned nodes at level k, it can determine sk+1 in at most 2L steps, since there are at most 2L values of v such
that v ∈ [sk, sk + ck+1] and v is an integer multiple of 2tk+1 . Once sk+1 is determined, one can determine all nodes at
level k + 1 in G∗ that are potentially reachable from node 〈0, 0〉 in O(n2L) additional steps. This yields the following
result.



554 J.B. Orlin et al. / Discrete Optimization 5 (2008) 550–561

Theorem 2.6. The knapsack problem can be solved in O(n22L) time when the objective function coefficients c j are
given in L-bit precision. This is strongly polynomial-time when L is fixed or logarithmic, i.e., under the fixed and
logarithmic precision models.

In contrast, we now present a modest generalization of the knapsack problem, which we call the group knapsack
problem, that remains NP-complete even if profits and weights are expressed with 1-bit precision. In the decision
formulation of the group knapsack problem, we are given non-negative integers w1, w2, . . . , wn , c1, c2, . . . , cn ,
c∗, and b, and a set A of pairs of indices. The question is whether there is an assignment of the binary variables
x1, x2, . . . , xn such that

∑n
j=1 w j x j ≤ b,

∑n
j=1 c j x j ≥ c∗, and xi = xk for all (i, k) ∈ A.

The group knapsack problem is the same as the knapsack problem except that for each pair (i, k) ∈ A, either
elements i and k are both placed in the knapsack or neither element is placed in the knapsack. The group knapsack
problem is easily transformed into the knapsack problem as follows. Construct an undirected graph G = (N , A) with
node set N = {1, 2, . . . , n} and an (undirected) arc set A (this is the same as the set A given in the problem). For each
connected component of G with node set S, create a single item with value

∑
j∈S c j and weight

∑
j∈S w j . These

items form the input for the knapsack problem. Yet, the group knapsack problem remains NP-hard even if profits and
weights are specified with just 1-bit precision. Note that 1-bit precision means that every objective function coefficient
is a power of two.

Theorem 2.7. The 1-bit version of the group knapsack problem is NP-complete.

Proof. The n-bit version of the knapsack problem is known to be NP-complete. (We actually assume that the items
have values between 0 and 2n − 1.) We can transform any n-bit version of the knapsack problem into a 1-bit version
of the group knapsack problem by replacing each element j of the original knapsack problem by a group Group( j) of
at most n elements such that the sum of the values of Group( j) is c j , the sum of the weights of Group( j) is w j , and
each integer weight and value is a power of 2. The values of the elements of Group( j) are derived from the binary
representation of c j , and the weights of the elements of Group( j) are derived from the binary representation of w j .

!

Theorems 2.6 and 2.7 illustrate that two problems of identical behavior under the standard representation of
numbers can display a very different computational complexity in terms of L-bit precision encoding.

2.2. Parallel machine scheduling

In this section, we consider the problem of scheduling n jobs on m identical parallel machines. We address the
following recognition variant of the makespan problem:

Given a set of n independent jobs with integer processing times p1, p2, . . . , pn and m parallel machines with
capacity bi on machine i , is there a way of assigning jobs to machines such that the total processing time on
machine i is at most bi , for all i = 1, 2, . . . , m?

This problem is already NP-hard for m = 2 machines [10]. It can be solved in pseudopolynomial time for a fixed
number of machines by using either a dynamic program or a related shortest path formulation [15]. Here, we take the
shortest path point of view. The nodes of the associated graph are tuples of the form 〈k, w1, . . . , wm〉; they are defined
as follows: there is a source node 〈0, 0, . . . , 0〉. For each k ∈ {1, 2, . . . , n} and 0 ≤ wi ≤ bi for 1 ≤ i ≤ m,
there is a node 〈k, w1, . . . , wm〉 denoting a schedule of the jobs {1, 2, . . . , k} on the m machines such that the
processing time on each machine i is exactly wi . There is an arc from each node 〈k, w1, . . . , wm〉 to every node
〈k + 1, w1, . . . , wi−1, wi + pk+1, wi+1, . . . , wm〉, for i ∈ {1, 2, . . . , m}. The arc does not exist if wi + pk+1 > bi .

Observation 2.8. There is a path from the source node 〈0, 0, . . . , 0〉 to some node 〈n, w1, . . . , wm〉 with wi ≤ bi for
each i if and only if the answer to the scheduling problem is “yes.”

Let B := max{b1, b2, . . . , bm}. The number of nodes and arcs of the network is O(nBm), which is pseudo-
polynomial for fixed value of m. This running time is not polynomial for fixed or logarithmic precision without
further modifications of the algorithm. We now show how the computational effort can be reduced to polynomial-time
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if the processing times are expressed with L-bit precision when L is either fixed or logarithmic. Let p j = a j · 2t j , and
assume that a j < 2L .

We first arrange the p j ’s in non-increasing order of t j ’s such that t1 ≥ t2 ≥ · · · ≥ tn . Let Pk := ∑n
j=k+1 p j . That

is, Pk is the sum of the processing times of jobs k + 1, . . . , n.

Observation 2.9. If 〈k, w1, . . . , wm〉 is reachable from the source node 〈0, 0, . . . , 0〉, then each wi (i = 1, . . . , m) is
an integer multiple of 2tk , for 1 ≤ k ≤ n.

Observation 2.10. If 〈k, w1, . . . , wm〉 is reachable from the source node 〈0, 0, . . . , 0〉 and if wi ≤ bi − Pk for some
i , then the answer to the makespan problem is “yes.”

We refer to a node 〈k, w1, . . . , wm〉 as a terminal node if wi ≤ bi for all i and wi ≤ bi − Pk for some i . We stop the
algorithm at level k whenever it detects a terminal node of the form 〈k, w1, . . . , wm〉 (and we delete all arcs emerging
from such a node).

Lemma 2.11. The number of nodes at level k that are reachable from 〈0, 0, . . . , 0〉 is O(nm−12(m−1)L). The running
time to determine these nodes is also O(nm−12(m−1)L), which is polynomial for fixed or logarithmic precision and a
fixed number m of machines.

Proof. If 〈k, w1, . . . , wm〉 is reachable and not a terminal node, then bi − Pk < wi ≤ bi , and wi is a multiple of
2tk . Therefore, there are at most Pk/2tk such values, and this is bounded from above by n2L . Thus, the number of
reachable non-terminal nodes at level k is at most (n2L)m . This value is improved to (n2L)m−1 by observing that the
value of the last coordinate is uniquely determined by the first m − 1 coordinates. Finally, the number of reachable
terminal nodes at level k is bounded by the number of reachable non-terminal nodes at level k − 1. !

This gives an O(mnm−12(m−1)L) time algorithm for the recognition version of the makespan problem on m identical
parallel machines when the processing times are expressed with L-bit precision. This is strongly polynomial time when
m is fixed and L is fixed or logarithmic, i.e., under the fixed and logarithmic precision models. By using a common
upper bound b on each machine (e.g., the value of Graham’s greedy algorithm [12]) and choosing the reachable
stage-n schedule with the lowest makespan, we obtain the following result.

Theorem 2.12. The problem of minimizing the makespan on m identical parallel machines can be solved in
O(mnm−12(m−1)L) time on m identical parallel machines when the processing times are expressed with L-bit
precision. This is strongly polynomial-time when m is fixed and L is fixed or logarithmic, i.e., under the fixed and
logarithmic precision models.

Corollary 2.13. The problem of partitioning n numbers into k parts of equal size, for a fixed k, is solvable in strongly
polynomial time if the numbers are expressed with fixed or logarithmic precision.

Proof. The problem of partitioning n numbers into k parts whose sum is equal is a special case of the makespan
problem in which k = m and bi = ∑n

j=1 p j/k for all 1 ≤ i ≤ m. !

2.3. The 3-partition problem

The 3-partition problem is defined as follows:

Given 3n non-negative integers c1, c2, . . . , c3n such that
∑3n

i=1 ci = nb, is there a partition of the integers into
n groups S1, S2, . . . , Sn of three elements each, such that

∑
ci ∈S j

ci = b for all j = 1, 2, . . . , n?

This problem is strongly NP-complete [9]. This implies that the 3-partition problem is NP-complete under logarithmic
precision. In this section, we develop a strongly polynomial-time algorithm for this problem under the fixed precision
model.

For fixed L , suppose that the input integers are expressed with L-bit precision. Let c j = a j · 2t j , where a j < 2L .
We first establish an upper bound on the number of triples (z1, z2, z3) whose sum is b, when each zi is expressed with
L-bit precision. Let TL ,b be the set of triples of L-bit precision integers summing to b.
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Lemma 2.14. There are at most (L + 2)222L triples of L-bit precision integers whose sum is b; i.e., the cardinality
of the set TL ,b is constant when L is fixed.

Proof. Let zi = xi · 2yi for 1 ≤ i ≤ 3 with z1 ≥ z2 ≥ z3 and z1 + z2 + z3 = b. Let 2T ≤ b < 2T +1. Clearly, y1 ≤ T .
We also have x1 ·2y1 ≥ b/3. Hence, x1 ·2y1 > 2T −2 since b ≥ 2T . Therefore, 2y1 > 2T −2/2L because x1 < 2L . Thus,
T − 1 − L ≤ y1 ≤ T , and the number of possible values for z1 = x1 · 2y1 is bounded from above by (L + 2)2L . Once
z1 is fixed, it can be shown in a similar manner that there are at most (L +2)2L possible values for z2. The values of z1
and z2 uniquely determine the value of z3. Hence, the number of such triples (z1, z2, z3) is at most (L + 2)222L . !

We now formulate the 3-partition problem under the L-bit precision model as an integer program with a fixed
number of variables and O(n) constraints. In the integer programming formulation, there is a variable x j for each triple
j in TL ,b that can be created from c1, c2, . . . , c3n . Let T be the subset of such triples. The variable x j will denote the
number of times that triple j appears in the solution. Lemma 2.14 shows that the number of variables x j is constant.

Let c′
1, c′

2, . . . , c′
m (m ≤ 3n) denote the distinct integers among c1, c2, . . . , c3n . Let ni be the number of times that

c′
i appears among the input integers for 1 ≤ i ≤ m. Let αi j (0 ≤ αi j ≤ 3) be the number of times that c′

i appears in
triple j . Let Ti be the set of triples from T that contain c′

i . We require a non-negative, feasible solution to an integer
program with the following m constraints:

∑

j∈Ti

αi j x j = ni for 1 ≤ i ≤ m.

Such an integer program can be solved in time polynomial in n due to the fact that the number of variables is constant
and the number of constraints is O(n) [18]. This leads to a strongly polynomial-time algorithm for the 3-partition
problem.

Theorem 2.15. The 3-partition problem can be solved in strongly polynomial time under the fixed precision model,
i.e., when the input integers are expressed with L-bit precision for fixed L.

3. L-bit precision, ε-optimization schemes, and bit rounding

In this section, we make the transition from computing in the L-bit precision model to designing ε-optimization
schemes. One connection is the following. Suppose one wants a solution to min{cx : x ∈ X} that is accurate within a
factor of ε = 1/2L ; i.e., one that is 1/2L -optimal. Then one can round each (integer) cost coefficient c j and express it
using just L + 1 bits of accuracy. If we solve the rounded problem optimally, the optimal solution x∗ for the rounded
problem is ε-optimal. Indeed, consider an arbitrary index j , and assume that 2K ≤ c j < 2K+1. (A similar argument
works for negative coefficients.) We can represent c j as c j = ∑K

i=0 ci
j 2

i with ci
j ∈ {0, 1} for all i = 0, 1, . . . , K . Just

keeping the leading L + 1 bits yields c′
j = ∑K

i=K−L ci
j 2

i ≥ c j − 2K−L ≥ c j (1 − 1/2L). The result follows.
We now consider the relation between ε-optimization and what we called bit rounding in the introduction. Recall

that in the bit rounding problem, the cost coefficients are given with L-bit precision, and we have to determine an
optimal solution, but we are granted the freedom of choosing the (L + 1)st bit.

Theorem 3.1. Let Π be a combinatorial optimization problem such that, for any instance (c, X) of Π , (c′, X) is also
an instance of Π , for any vector c′ of suitable dimension. If Π has an FPTEOS, then the bit rounding version of Π
can be solved in polynomial time under logarithmic precision; if Π has a PTEOS, its bit rounding problem can be
solved in polynomial time under fixed precision.

Proof. Consider an instance of the bit rounding version of Π with costs c j = a j · 2t j and |a j | < 2L for all j . To
simplify the notation, we assume that c j ≥ 0. We need to find a feasible solution x∗ that is optimal with respect to
costs c′ where c′

j = 2a j · 2t j or c′
j = (2a j + 1) · 2t j .

Let c̄ j = (2a j + 1/2) · 2t j for all j . Run the given (F)PTEOS for problem Π for cost vector c̄ and ε = 1/2L+2.
This gives a feasible solution x∗ and a cost vector c̃ such that x∗ is optimal for c̃ and (1 − ε)c̄ j ≤ c̃ j ≤ (1 + ε)c̄ j .
Note that 4a j + 1 ≤ 2L+2 = 1/ε, or ε(2a j + 1/2) ≤ 1/2. Hence, 2a j · 2t j ≤ c̃ j ≤ (2a j + 1) · 2t j .

We obtain the cost vector c′ as follows: if x∗
j = 1, then c′

j = 2a j · 2t j (round down c̃ j ), else if x∗
j = 0, then

c′
j = (2a j + 1) · 2t j (round up c̃ j ). The feasible solution x∗ and the cost vector c′ is the answer to the original bit

rounding version of problem Π .
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Fig. 1. Converting an FPTAS into an FPTEOS.

To prove the optimality of x∗ for cost vector c′, we need to show that c′x∗ ≤ c′x for any feasible solution
x . Because of the way in which c′ is obtained using c̃ and x∗, it is easy to see that (c′

j − c̃ j )(x∗
j − x j ) ≤ 0

for all j , i.e., (c′ − c̃)(x∗ − x) ≤ 0. Also, because x∗ is optimal for c̃, we have c̃(x∗ − x) ≤ 0. Hence,
c′(x∗ − x) = (c′ − c̃)(x∗ − x) + c̃(x∗ − x) ≤ 0.

Finally, note that if (Aε) is an FPTEOS for problem Π , then Aε has running time polynomial in 1/ε, and the above
procedure is polynomial-time under logarithmic precision (1/ε = O(poly(n)) since L = O(log n)). Otherwise, if (Aε)

is a PTEOS for Π , then the above procedure is polynomial-time under fixed precision (1/ε = O(1) since L = O(1)).
!

4. Fully polynomial-time ε-optimization schemes

In this section, we explore the relationship between ordinary fully polynomial-time approximation schemes and
fully polynomial-time ε-optimization schemes. We start by observing that the existence of the latter implies that of
the former:

Lemma 4.1. Let min{cx : x ∈ X} be a minimization problem with non-negative cost coefficients (c ≥ 0) and non-
negative solutions (i.e., x ∈ X implies x ≥ 0). If the solution x ′ ∈ X is ε-optimal for some 0 < ε < 1, then its relative
error is at most 2ε/(1 − ε).

Proof. Let x ∈ X be an arbitrary feasible solution, and let x ′ ∈ X be ε-optimal. There exists an ε-perturbation c′ such
that x ′ is optimal for min{c′x : x ∈ X}. Hence,

cx ′ ≤ 1
1 − ε

c′x ′ ≤ 1
1 − ε

c′x ≤ 1 + ε

1 − ε
cx .

The claim follows. !
We now work towards establishing a partially inverse result. A partial solution for a combinatorial optimization

problem min{cx : x ∈ X} with X ⊆ {0, 1}n is a pair 〈I, J 〉, where I and J are disjoint subsets of indices; i.e.,
I ∪ J ⊆ {1, . . . , n} and I ∩ J = ∅. Let K := {1, . . . , n}\ (I ∪ J ). A completion of a partial solution 〈I, J 〉 is a feasible
solution x such that x j = 0 for j ∈ I , and x j = 1 for j ∈ J . A δ-approximate completion of a partial solution 〈I, J 〉
is a completion x such that for any other completion y we have

∑
j∈K c j x j ≤ (1 + δ)

∑
j∈K c j y j .

Suppose that we have an FPTAS that can also deliver a δ-approximate completion of any partial solution. We claim
that we can use this FPTAS to determine a solution that is ε-optimal in time that is polynomial in the size of the
problem and in 1/ε.

Theorem 4.2. Let Π be a combinatorial optimization problem with non-negative cost coefficients and an FPTAS that
also works for any instance that arises from a given instance of Π by fixing some of the variables. Then, the algorithm
in Fig. 1 is an FPTEOS for Π .
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A prototypical example to which Theorem 4.2 can be applied is the knapsack problem. Indeed, any partial fixing
of variables gives rise to a new knapsack problem.

Proof. Let x∗ be the solution returned by the algorithm. Let c∗
j = (1 + ε)c j if x∗

j = 0, and let c∗
j = (1 − ε)c j if

x∗
j = 1. We claim that x∗ is optimal for the original problem if c is replaced by c∗.

Let x be any feasible solution, x .= x∗. We will show that c∗x∗ ≤ c∗x . Among all indices k such that x∗
k .= xk , let

r be the one for which cr is maximum. Let 〈I, J 〉 be the partial solution at the beginning of the main loop prior to x∗
r

being fixed. Let K = {1, . . . , n} \ (I ∪ J ).
Note that x∗ is a δ-approximate completion of 〈I, J 〉. Moreover, xk = x∗

k for all k ∈ I ∪ J , i.e., x is a completion
of 〈I, J 〉, too. For if not, then xs .= x∗

s for some s ∈ I ∪ J . Since x∗
s was fixed in an iteration earlier than x∗

r , it follows
that cs > cr . This contradicts the maximality of cr . Hence,

∑

j∈K

c j (x∗
j − x j ) ≤ δ

∑

j∈K

c j ≤ δ|K |2cr ≤ εcr .

Moreover, by the definition of c∗ we have (c∗
j − c j )(x∗

j − x j ) ≤ 0 for each j ∈ K , and (c∗
r − cr )(x∗

r − xr ) = −εcr .
Therefore,

c∗(x∗ − x) =
∑

j∈K

c∗
j (x∗

j − x j ) =
∑

j∈K

c j (x∗
j − x j ) +

∑

j∈K

(c∗
j − c j )(x∗

j − x j ) ≤ 0. !

5. (Fully) polynomial-time ε-optimization schemes for specific combinatorial optimization problems

We now turn to the design of ε-optimization schemes for specific problems. We present two techniques to obtain
such schemes. We illustrate them with the help of a scheduling with rejection problem and the bin packing problem,
respectively.

5.1. Single-machine scheduling with rejection

The first technique resembles the previously presented way of turning an FPTAS into an FPTEOS. But let us first
describe the problem setting. In most scheduling problems in the literature, one ignores the possibility of outsourcing
a task. However, in practice, it is often possible to outsource a task, and have it completed by another manufacturer.
One can model this as scheduling with rejection, see, e.g., [8,21]. If a job j is rejected, it means that we do not need
to process it, but we incur a cost e j for rejecting it. The cost e j reflects the cost of having to outsource task j . Suppose
that job j has a processing time of p j and a due date d j . Let C j denote the completion time of the j th job, assuming
that it is not rejected. Let L j denote the lateness of the j th job. Then L j = C j − d j , and it may be negative. Let S
denote the set of jobs that are scheduled. Let R denote the set of jobs that are rejected. The objective function is to
minimize f (R, S) := ∑

k∈R ek +maxk∈S Lk , which can be negative. An NP-completeness proof can be found in [21].
We can represent a solution as (R, S) with the understanding that jobs in S are scheduled in non-decreasing order
of their due dates, which is optimal for single-machine scheduling to minimize maximum lateness [17]. Of course,
R ∩ S = ∅ and R ∪ S = {1, 2, . . . , n}.

We let SCHEDULE (p, e, d, R∗, S∗) be a subroutine that finds the optimal schedule if the jobs have processing times
p j , rejection costs e j , due dates d j , the jobs in R∗ must be rejected, and the jobs in S∗ must be scheduled (R∗∩S∗ = ∅
and R∗ ∪ S∗ ⊆ {1, 2, . . . , n}). In fact, [21] contains an algorithm that is pseudopolynomial in

∑n
j=1 e j and does just

that. We repeat it here for completeness. For simplicity, we assume that R∗ = S∗ = ∅; the extension to general
sets is straightforward. In a first step, we design a dynamic program that produces a schedule which minimizes the
maximum lateness when the total rejection penalty γ of the rejected jobs is prescribed. In a second step, we iteratively
call this dynamic program for all possible values of γ . For the dynamic program, we assume that jobs are numbered
in non-decreasing order of their dues dates d j ; i.e., d1 ≤ d2 ≤ · · · ≤ dn . Let φ j (γ ) be the minimum value of the
maximum lateness objective when the jobs in consideration are j, j + 1, . . . , n. Then,

φ j (γ ) =






max{φ j+1(γ ) + p j , p j − d j } if j < n and γ < e j ,

min{φ j+1(γ − e j ), max{φ j+1(γ ) + p j , p j − d j }} if j < n and γ ≥ e j ,

−∞ if j = n and γ = en,

pn − dn if j = n and γ = 0,

∞ otherwise.
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Fig. 2. An FPTEOS for scheduling with rejection.

Eventually, we find a schedule that minimizes f (R, S) by calling this dynamic program
∑n

j=1 e j + 1 times:

min

{

φ1(γ ) + γ : 0 ≤ γ ≤
n∑

j=1

e j

}

.

We will write (R, S) := SCHEDULE (p, e, d, R∗, S∗) to indicate that S is the set of scheduled jobs output by the
subroutine SCHEDULE, and R is the set of rejected jobs. Obviously, S∗ ⊆ S and R∗ ⊆ R. The algorithm described in
Fig. 2 produces an ε-optimal solution.

Theorem 5.1. Let (R∗, S∗) and e∗ be the output of the algorithm presented in Fig. 2. Then, (R∗, S∗) is an optimal
solution with respect to processing times p j , due dates d j , and rejection costs e∗

j . The total running time of the
algorithm is O(n4/ε), and hence it is an FPTEOS for scheduling with rejection to minimize maximum lateness.

Proof. As in the algorithm, we assume that e1 ≥ e2 ≥ · · · ≥ en . We denote by (R′
j , S′

j ) the output (R′, S′)
of SCHEDULE in the j th iteration of the for-loop. Let (R j , S j ) be the schedule (R, S) after the j th iteration of
the for-loop. Because (R, S) is not changed if the objective value of the new schedule (R′, S′) is worse, we have
f (R∗, S∗) = f (Rn, Sn) ≤ f (Rn−1, Sn−1) ≤ · · · ≤ f (R1, S1). Moreover, f (R∗, S∗) ≤ f (R′

j , S′
j ) for all j .

Let f ∗ denote the objective function when the rejection cost vector is replaced by e∗. Similarly, we will use f ′

when the rejection cost vector is e′. Let (R, S) be an arbitrary feasible solution that is different from (R∗, S∗). We
have to show that f ∗(R∗, S∗) ≤ f ∗(R, S).

Let r be the smallest index for which (R∗, S∗) differs from (R, S). We claim that

f ∗(R∗, S∗) − f ∗(R, S) ≤ f (R∗, S∗) − f (R, S) − εer . (5.1)

In fact, let us rewrite this inequality as f ∗(R∗, S∗)− f (R∗, S∗) ≤ f ∗(R, S)− f (R, S)− εer . We consider two cases.
If r ∈ R ∩ S∗, then the perturbation e∗ increases the cost of rejecting job r in (R, S), which implies the inequality. On
the other hand, if r ∈ S ∩ R∗, the perturbation e∗ decreases the cost of rejecting job r in (R∗, S∗); again, the inequality
follows.

Let e′ be the rejection cost vector used for the call of SCHEDULE in iteration r . We have

f (R∗, S∗) ≤ f (R′
r , S′

r ) ≤ f ′(R′
r , S′

r ) ≤ f ′(R, S) ≤ f (R, S) + εer . (5.2)

Here, the first inequality follows from prior observations. The second one is implied by the definition of e′. The third
inequality holds because R′

r ∩{1, 2, . . . , r −1} = R ∩{1, 2, . . . , r −1}, S′
r ∩{1, 2, . . . , r −1} = S ∩{1, 2, . . . , r −1},

and (R′
r , S′

r ) is optimal with respect to e′ when the assignment of jobs {1, 2, . . . , r−1} is fixed accordingly. Eventually,
the last inequality follows from the definition of e′ and q in the r th iteration of the algorithm. Adding up inequalities
(5.1) and (5.2) yields f ∗(R∗, S∗) − f ∗(R, S) ≤ 0.
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Let us finally analyze the running time of this algorithm. Any time SCHEDULE is called with an objective function
e′, each coefficient of e′ is a multiple of q . Hence, we only need to compute table entries φ j (γ ) for γ being a multiple
of q . There are at most O(n3/ε) entries of this kind, each of which can be computed itself in O(1) time. Hence the
overall running time of the FPTEOS is O(n4/ε). !

5.2. Bin packing

The second technique to produce an ε-optimization scheme is somewhat more problem-specific. Moreover, instead
of changing the objective function coefficients, we modify other parameters of the problem. We consider the bin
packing problem, which does not have an ordinary PTAS (unless P = NP). Asymptotic approximation schemes were
proposed in [7,19]. We are given n items for packing; each bin has size 1, and we want to minimize the number of
bins needed to fit all items. In our context, we are also given 0 < ε ≤ 1/2.

In the first step of the algorithm, we partition the items into two groups, group A with items of size smaller than
ε/3, and the remaining items are in group B. In the second step, we round the elements in group B so that their sizes
are an element of the set R := {ε/3 · (1 + ε/2)k : for some integer k}. This creates a rounding in which items are
rounded by at most a factor of (1 + ε/2). Let q(ε) be the number of different values in R smaller than 1; for fixed ε,
the value of q(ε) is a constant.

In the third step, we find the optimum packing of the rounded elements in group B. For this, we use integer
programming. There are at most 3/ε elements in any bin. Furthermore, there are at most q(ε) different sizes in R.
Consequently, for a fixed value of ε, there is just a constant number of different ways of packing a bin. Let P be the set
of all such packing patterns, and let x p be the number of bins packed according to pattern p ∈ P . One then formulates
this part of the bin packing problem as an integer program with variables x p. The objective function is

∑
p∈P x p and

there is one constraint for each item size in R. This integer program is solvable in O(L) time, where L is the number
of bits in the largest integer [18]. Suppose that the optimal solution for the integer program uses K bins.

In the fourth and final step, we greedily pack the items from group A. We either end up with a packing with K bins
(in which case we are optimal for the perturbed problem) or else we need more than K bins. In the latter case, we can
round the sizes again so that all but one bin is full, in which case we are optimal for the reperturbed problem. In fact,
consider a bin that is not full, but cannot fit any of the remaining items in A. In particular, the total size of the items
already contained in this bin is at least 1 − ε/3. Hence, we need to multiply each item size by at most 1 + ε/(3 − ε)

to obtain a full bin. Note that while small items were not rounded before, we have (1 + ε/2)(1 + ε/(3 − ε)) ≤ 1 + ε

for big items.
A similar reasoning can be applied to the strongly NP-hard problem of scheduling jobs on identical parallel

machines so as to minimize the makespan. Adapting the PTAS of Hochbaum and Shmoys [14] accordingly, we obtain
a PTEOS by perturbing job processing times. Hence, we have the following theorem.

Theorem 5.2. Both the bin packing problem and the identical parallel machine scheduling problem to minimize the
makespan have a PTEOS.

More generally, one can observe that whenever an FPTAS or a PTAS is obtained by the technique of “rounding
the input” [23], then there is a good chance that this technique can also be used to generate an FPTEOS or a PTEOS,
respectively.

6. Concluding remarks

The standard notion of measuring the complexity of an algorithm or problem can fail in situations in which some
or all of the input data may consist of numbers of different orders of magnitude, each of which has relatively few
relevant bits only. The L-bit precision model that we propose here attempts to address this issue. Several otherwise
NP-hard problems have algorithms that run in polynomial time, assuming a compact encoding of the data that are
given to us with L bits of accuracy only. Here, L is fixed or logarithmic in the number of data items.

Similarly, if the objective function coefficients of a combinatorial optimization problem differ drastically from one
another in terms of magnitude, conventional approximation schemes essentially “round” small integer coefficients to
zero. In situations in which this effect is unwanted, ε-optimization schemes provide an alternative. Instead of relying
on the concept of relative error, they measure the distance from optimality in terms of the amount of perturbation
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to the objective function that is needed to make the resulting solution optimal. As a consequence, they also apply to
situations in which no ordinary approximation schemes can exist, such as for the 3-partition problem as well as to
problems in which the objective can take on positive or negative values.

In situations in which the cost data are only known approximately (as is common), the ε-optimization schemes
make practical sense. They find an optimal solution for a problem that has the same feasible region and approximately
the same costs as the original problem.

We hope that the concepts and algorithmic schemes proposed here may enhance the toolbox of the algorithm
designer when it comes to addressing certain situations in which some of the more conventional methods may fall
short.
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