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Abstract. We consider the problem to minimize the total weighted completion time of a set of jobs
with individual release dates which have to be scheduled on identical parallel machines. Job
processing times are not known in advance, they are realized on-line according to given probability
distributions. The aim is to find a scheduling policy that minimizes the objective in expectation.
Motivated by the success of LP-based approaches to deterministic scheduling, we present a
polyhedral relaxation of the performance space of stochastic parallel machine scheduling. This
relaxation extends earlier relaxations that have been used, among others, by Hall et al. [1997] in the
deterministic setting. We then derive constant performance guarantees for priority policies which are
guided by optimum LP solutions, and thereby generalize previous results from deterministic
scheduling. In the absence of release dates, the LP-based analysis also yields an additive performance
guarantee for the WSEPT rule which implies both a worst-case performance ratio and a result on its
asymptotic optimality, thus complementing previous work by Weiss [1990]. The corresponding LP
lower bound generalizes a previous lower bound from deterministic scheduling due to Eastman et al.
[1964], and exhibits a relation between parallel machine problems and corresponding problems with
only one fast single machine. Finally, we show that all employed LPs can be solved in polynomial time
by purely combinatorial algorithms.
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1. Introduction

In the past years, LP-based approximation techniques have evolved impressively.
These methods have been successfully applied to a variety of combinatorial
optimization problems, including scheduling problems. Most efforts have concen-
trated on deterministic models, and quite often results on their stochastic
counterparts involve very specialized techniques. With this work, we intend to
show that, to a certain extent, polyhedral methods also carry over to the
algorithm design and analysis of stochastic scheduling problems.

1.1. THE MODEL. Let J 5 {1, . . . , n} be a set of jobs that have to be
nonpreemptively scheduled on m identical parallel machines so as to minimize
the total weighted completion time. That is, each job has a nonnegative weight wj

and one wants to minimize ( j[J wjCj, where Cj denotes the completion time of
job j. Any machine can process at most one job at a time, and every job has to be
processed on one of the m machines. We consider scenarios where jobs may, or
may not have individual release dates rj $ 0. The crucial assumption is that
processing times of jobs are not known in advance, but are instead given by a
random variable p 5 (p1, . . . , pn). Here, pj denotes the random variable for the
processing time of job j. (All random variables are typeset in bold face.)
Throughout the paper, job durations are supposed to be stochastically indepen-
dent, and first as well as second moments are finite. It is usually assumed that
these distributions are known from the outset, but for our approach it suffices
that the expected processing times (and an upper bound on their coefficients of
variation) are given. Using the well-known classification scheme for scheduling
problems introduced by Graham et al. [1979], the problem under consideration
may be written as P u pj ; stoch, rjuE[(wjCj].

Due to the lack of beforehand information on processing times, the jobs have
to be allocated to machines “on-line”. This dynamic allocation of jobs to
machines is the task of a scheduling policy. It specifies which job(s) should be
started at any given time t. The decisions of such a policy may only depend on
the “past up to time t”, which is given by the sets of jobs already finished or being
performed at t, their start times, and the conditional distribution of remaining
processing times of jobs. In other words, it is required that a policy does not
anticipate future information. Within the framework of stochastic dynamic
optimization this is known as the nonanticipative character of policies. For a
detailed account of the theoretical foundations of the stochastic model consid-
ered in this paper, particularly the characterization of policies, we refer the
reader to Möhring et al. [1984; 1985]. Of special importance for our work is the
class of priority policies, which implement a given priority order on the set of jobs;
they will be formally defined in Section 4.
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A given policy P eventually results in a feasible schedule for any vector of “a
posteriori” realized processing times. Hence, it associates with every vector p of
possible processing times a vector SP( p) of feasible start times:

R1
n ] ~ p1, . . . , pn! 5 p °

P
SP~ p! 5 ~S1

P~ p! , . . . , Sn
P~ p!! [ R1

n .

Simple examples show that in general one cannot expect to find a nonanticipative
scheduling policy that minimizes the objective point-wise for any realization of
processing times. Therefore, one aims to minimize the objective in expectation. If
E[Cj

P] denotes the expected completion time of job j when scheduling according
to policy P, one can formulate the problem as

minimize H O
j[J

wj E@Cj
P# U P policyJ .

Furthermore, we let

ZOPT ;5 inf H O
j[J

wj E@Cj
P# U P policyJ .

denote the corresponding optimum value. It follows from Möhring et al. [1984,
Sect. 4] that in the present setting there exists an optimum policy with expected
performance ZOPT. Note that an optimum policy is not necessarily work
conserving. It may involve deliberate idling of machines, even in the absence of
job release dates.

The model considered in this paper is somewhat related to certain on-line
scenarios, which recently have received quite some attention. These scenarios are
also based on the assumption that the scheduler does not have access to the
whole instance at once, but rather learns the input piece by piece over time and
has to make decisions based on partial knowledge only. When carried to an
extreme, there is both a lack of knowledge of jobs arriving in the future and the
running time of every job is unknown until it completes. In contrast to the
stochastic model introduced above, on-line algorithms are usually analyzed with
respect to optimum off-line solutions. We refer to Sgall [1998] for an overview of
recent achievements in this direction. Note that stochastic scheduling is also
more moderate than on-line scheduling in the sense that one supposes that the
number of jobs to be scheduled as well as (at least) their expected job processing
times are known in advance. Our approach also differs from the probabilistic
analysis of parallel machine scheduling problems as considered, for example, by
Spaccamela et al. [1992] or Chan et al. [1998], where it is assumed that the whole
instance, including processing times of jobs, is known in advance.

1.2. RELATED WORK. Stochastic machine scheduling problems have been
considered, among others, by Glazebrook [1979], Weiss and Pinedo [1980],
Bruno et al. [1981], Möhring et al. [1984; 1985], Weber et al. [1986], Kämpke
[1987], and Weiss [1990; 1992]. For a survey and more bibliographic references,
we refer to Section 16 of the survey by Lawler et al. [1993]. Except for the
mentioned work of Möhring et al. [1984; 1985] and Weiss [1990; 1992], research
mainly concentrated on identifying conditions that guarantee optimality of
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simple priority policies such as SEPT, LEPT (shortest/longest expected process-
ing times first), or WSEPT (schedule jobs with highest ratio of weight to
expected processing time first). Already for the deterministic case without
release dates, the problem under consideration is NP-hard, even for fixed m $ 2
[Bruno et al. 1974], and the WSPT rule (weighted shortest processing time first)
is known to achieve a worst-case performance ratio of (=2 1 1)/2 [Kawaguchi
and Kyan 1986]. For the special case of a single machine, WSPT is known to be
optimal [Smith 1956], and this result easily generalizes to stochastic processing
times [Rothkopf 1966]. However, results for parallel machines are more complex.
For unit weights, the SEPT rule is optimal whenever job processing times are
exponentially distributed [Weiss and Pinedo 1980] or, more generally, whenever
the processing time distributions of the jobs are stochastically comparable in
pairs [Weber et al. 1986], but it fails to be optimal in general. For arbitrary
weights, the WSEPT rule is optimal whenever processing times are exponentially
distributed and additionally the job weights are compliant with the ratios of
weight to expected processing time [Kämpke 1987]. In the general case, Weiss
[1990; 1992] has analyzed the optimality gap of WSEPT, and he proved that
WSEPT is asymptotically optimal under mild assumptions on the input parame-
ters of the problem. To the best of our knowledge, no results were previously
known for problems where jobs are released over time. Our work also relates to
recent developments in the optimal control of stochastic systems [Bertsimas and
Niño-Mora 1996; Glazebrook and Niño-Mora 1997; Dacre et al. 1999], and we
will discuss similarities and differences in Section 4.4.

1.3. RESULTS. Our approach to stochastic machine scheduling is LP-based,
and motivated by the success of polyhedral approaches to deterministic schedul-
ing problems. The driving idea is to exploit a polynomially solvable LP-relaxation
of the performance space of the problem in order to get both a lower bound on
the performance of an optimum policy as well as some guidance to design a
corresponding LP-based priority policy with provably good performance. Most
relevant for our work in this respect is the paper by Hall et al. [1997], where
several approximation algorithms are derived on the basis of LP-relaxations in
completion time variables. For related and previous work in deterministic
scheduling, we refer to the bibliographic references therein. We extend this
methodology to the stochastic setting, and obtain constant performance guaran-
tees for both the models with and without job release dates. For the model with
release dates, we derive an LP-based priority policy with a performance guaran-
tee of 3 2 (1/m) 1 max{1, ((m 2 1)/m)D}, where D is an upper bound on the
squared coefficients of variation of the occurring probability distributions. The
underlying polyhedral relaxations of the performance space generalize previous
relaxations that have been used in the deterministic setting. Borrowing a
technique from Queyranne [1993], we further show that all employed LP-
relaxations can be solved in polynomial time by purely combinatorial algorithms.

Apart from priority policies which are guided by optimum LP-solutions, we
also analyze the performance of the WSEPT rule for the model without
non-trivial job release dates, and we derive a worst-case performance guarantee
of 1 1 (D 1 1)(m 2 1)/ 2m. Examples show that the performance ratio of
(=2 1 1)/2 of the WSPT rule in deterministic scheduling does not generalize to
the stochastic setting. Furthermore, the LP-based analysis yields in fact an
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additive bound for the performance of WSEPT which implies its asymptotic
optimality, thus complementing previous results by Weiss [1990]. The LP lower
bound also generalizes a previous lower bound on the cost of any deterministic
schedule by Eastman et al. [1964]. One thus obtains a lower bound on the
expected cost of any scheduling policy in terms of the optimum cost for a
corresponding problem with only one fast single machine.

1.4. ORGANIZATION OF THE PAPER. Section 2 introduces the basic concept of
LP-based priority policies in stochastic scheduling, while in Section 3 a new class
of valid inequalities for the performance space in stochastic parallel machine
scheduling is presented. In Section 4.1, this polyhedral relaxation is used to prove
a constant performance guarantee for an LP-based priority policy within the
model where jobs may have non-trivial release dates. The analysis of the
performance of WSEPT for the model without release dates is presented in
Section 4.2. We conclude with some remarks in Section 5. The appendix provides
purely combinatorial algorithms to solve the LP-relaxations used in Section 4.

2. LP-Based Approximation in Stochastic Scheduling

A policy is called an a-approximation if its expected performance is within a
factor of a of the optimum expected value, and if it can be determined and
executed in polynomial time with respect to the input size of the problem. To
cope with the input size of a stochastic scheduling problem, which includes
non-discrete data in general, we assume that the input is specified by the number
of jobs, the number of machines, and the encoding lengths of weights wj, release
dates rj, expected processing times E[pj], and, as the sole stochastic information,
an upper bound on the coefficients of variation of all processing time distribu-
tions pj, j 5 1, . . . , n. The coefficient of variation of a given random variable X
is the ratio =Var[X]/E[X]. For instance, it is sufficient if all second moments
E[pj

2] are given. This notion of input size is motivated by the fact that from a
practitioner’s point of view the expected processing times of jobs together with
the assumption of some typical distribution “around them” is realistic and usually
suffices to describe a stochastic scheduling problem. Note, however, that the
performance guarantees we derive actually hold with respect to optimal policies
that make use of the complete knowledge of the distributions of processing times.

In most cases, optimal policies and the corresponding optimum value ZOPT are
unknown. Hence, in order to prove performance guarantees for simple priority
policies, we use lower bounds on the optimum value ZOPT. The problem we
consider can be written as

minimize H O
j[J

wjCj U C [ #J ,

where # ;5 {(E[C1
P], . . . , E[Cn

P]) uP policy} # R1
n denotes the performance

space. Since one cannot hope to completely characterize the performance space
in general, we approximate # by a polyhedron 3 which is defined by valid
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inequalities for #. Thus, # # 3. We then solve the LP relaxation

minimize H O
j[J

wjCj U C [ 3J ,

and denote by CLP 5 (C1
LP, . . . , Cn

LP) some optimal solution to this relaxation.
If the LP captures sufficient structure of the original problem, the ordering of
jobs according to nondecreasing values of Cj

LP is a promising candidate for a
priority policy (see Section 4 for a formal definition). If P denotes such a policy,
clearly

O
j[J

wjCj
LP # ZOPT # O

j[J

wj E@Cj
P# ,

and the goal is to prove ( j[Jwj E[Cj
P] # a ( j[J wjCj

LP, for some a $ 1. This
leads to a performance guarantee of a for the priority policy P and also to a
(dual) guarantee for the quality of the LP lower bound:

O
j[J

wj E@Cj
P# # aZOPT and O

j[J

wjCj
LP $

1

a
ZOPT.

3. Valid Inequalities for Stochastic Parallel Machine Scheduling

In deterministic scheduling, Schulz [1996, Lemma 7] proved that for any feasible
schedule on m machines the following inequalities are valid:

O
j[A

pjCj $
1

2mS O
j[A

pjD 2

1
1

2
O
j[A

pj
2 for all A # J. (1)

Here, pj and Cj denote the deterministic processing and completion times of
jobs, respectively. The following class of valid inequalities extends (1) to stochas-
tic parallel machine scheduling. They are crucial for all our subsequent results.

O
j[A

E@pj#E@Cj
P# $

1

2mS O
j[A

E@pj#D 2

1
1

2
O
j[A

E@pj#
2

2
m 2 1

2m
O
j[A

Var@pj# for all A # J. (2)

THEOREM 3.1. Let P be any policy for stochastic parallel machine scheduling.
Then inequalities (2) are valid for the corresponding vector of expected completion
times E[CP].

PROOF. Consider any policy P and any fixed realization p of processing times.
Let Sj ;5 Sj

P( p) denote the start time of job j subject to policy P and p. Since
(S1, . . . , Sn) defines a feasible (deterministic) schedule for the given job
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durations ( p1, . . . , pn), we may rewrite (1) to obtain

O
j[A

pjSj $
1

2mS O
i, j[A ,iÞj

p i pjD 2
m 2 1

2m
O
j[A

pj
2, (3)

for any A # J. Now recall the connection between the distributions for processing,
start, and completion times. Due to the nonanticipative character of policies and
since processing times are independent, the random variables for the processing time
pj and the start time Sj

P of any job j are stochastically independent. This yields in
particular E[pjSj

P] 5 E[pj]E[Sj
P] for all j [ J and all policies P. Furthermore,

recalling that Var[pj] 5 E[pj
2] 2 E[pj]

2 and taking expectations in (3) yields:

O
j[A

E@pj#E@Sj
P# $

1

2mS O
i , j[A ,iÞj

E@pi pj#D 2
m 2 1

2m
O
j[A

E@pj
2#

5
1

2mS O
i , j[A ,iÞj

E@pi#E@pj#D 2
m 2 1

2m
O
j[A

E@pj
2#

5
1

2mS O
j[A

E@pj#D 2

2
1

2
O
j[A

E@pj#
2

2
m 2 1

2m
O
j[A

Var@pj# for all A # J.

Now, E[Cj
P] 5 E[Sj

P] 1 E[pj] concludes the proof. e

G. Weiss (personal communication) has communicated to us that an alternate
proof of the validity of inequalities (2) can be obtained on the basis of Weiss
[1990], where an exact formula for the left-hand side of (2) is derived for
nonidling (i.e., work conserving) policies.

With an additional assumption on the second moments of all processing time
distributions, one can rewrite (2) more conveniently. Therefore, assume that the
squared coefficients of variation of all processing times pj are bounded by some
constant D, that is,

Var@pj#

E@pj#
2

# D for all jobs j [ J. (4)

Then, the following inequalities are valid for the performance space #:

O
j[A

E@pj#E@Cj
P# $

1

2mS S O
j[A

E@pj#D 2

1 O
j[A

E@pj#
2D

2
~m 2 1!~D 2 1!

2m S O
j[A

E@pj#
2D for all A # J. (5)
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COROLLARY 3.1. Let P be any policy for stochastic parallel machine scheduling.
If Var[pj]/E[pj]

2 # D for all processing time distributions pj, then inequalities (5) are
valid for the corresponding vector of expected completion times E[CP].

Note that an upper bound on the coefficients of variation of the pj is a quite
natural assumption for scheduling problems. For instance, if job processing times
follow NBUE distributions (i.e., the expected remaining processing time of a job
in process never exceeds its total expected processing time), it follows from Hall
and Wellner [1981] that Var[pj]/E[pj]

2 # 1.

4. Constant Performance Guarantees for (LP-Based) Priority Policies in Stochastic
Machine Scheduling

In this section, we derive constant worst-case performance guarantees for
LP-based priority policies in stochastic machine scheduling.

Let us first give a formal definition of priority policies. A job j is called
available at time t if rj # t, and if all its predecessors have already been
completed by time t (in the case that precedence constraints are also given). A
policy is called a priority policy or priority rule or list scheduling policy if at any
time t a maximal number of available jobs is scheduled according to a given
priority order on the set of jobs. More precisely, we are given a linear order on J,
and when a machine is or becomes idle at time t, the available job with highest
priority is started at t. Widely used priority policies are, for example, LEPT and
SEPT as well as WSEPT.

In the presence of release dates or precedence constraints, a priority policy
may schedule jobs with low priority prior to jobs with higher priority. If this is not
desired, we additionally enforce that jobs with low priority are scheduled only if
all jobs with higher priority have already been started. In this case, we call a job
j available at time t if rj # t and all its predecessors with respect to the given
priority order have already been started. The corresponding priority policy is
then called job-based. Note that this may yield idling of machines although there
are jobs waiting that in principle could have been started.

4.1. PARALLEL MACHINE SCHEDULING WITH RELEASE DATES. We now con-
sider the problem P u pj ; stoch, rj u E[(wjCj]. The first ingredient in our
development of a near-optimal policy is an upper bound on the expected
completion times whenever the jobs are scheduled according to a (job-based)
priority policy. The following lemma is a generalization of a corresponding
bound for the deterministic case [Phillips et al. 1998; Hall et al. 1997]. For the
deterministic case without release dates, a similar bound already appears in
Eastman et al. [1964].

LEMMA 4.1. Let P be a job-based priority policy that schedules the jobs in the
order 1 , . . . , n. Then,

E@Cj
P# # max

k51, . . . , j
rk 1

1
m S O

k51

j21

E@pk#D 1 E@pj# for all j [ J. (6)

PROOF. Consider any job j, and a corresponding policy P j that starts the first
job at time maxk51, . . . , j rk and proceeds in the same order as P. Then jobs 1,
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. . . , j 2 1 are scheduled without any inserted idle time in the order 1 , 2 , . . .
, j 2 1, and j starts as soon as a machine becomes available. Now let p be any
realization of processing times. Policy P j does not involve idle times between
time maxk51, . . . , j rk and the start of job j. Thus, job j starts not later than
maxk51, . . . , j rk 1 ((k51

j21 pk)/m under policy P j, since at maxk51, . . . , j rk the
first job is started, and ((k51

j21 pk)/m is the average load per machine with respect
to jobs 1, . . . , j 2 1. Thus, we have Cj maxk51, . . . , j rk 1 ((k51

j21 pk)/m 1 pj,
where Cj 5 Cj

P( p) is the completion time of j subject to P j and p. Now, if the
jobs are scheduled according to P, job j is scheduled at least as early as under
policy P j, and this holds for any realization of processing times. Thus, Eq. (6)
even holds point-wise for P, and taking expectations completes the proof. e

Note that, in the above proof, we crucially need to consider job-based priority
policies instead of ordinary priority policies if release dates are present. In the
absence of release dates, clearly maxk51, . . . , j rk 5 0, and the claim also holds
for ordinary priority policies.

The second ingredient establishes the critical linkage between the LP solution
and the value obtained from an LP-based priority policy; it is again a generaliza-
tion of a corresponding result in deterministic scheduling [Hall et al. 1997;
Schulz 1996].

LEMMA 4.2. Let m $ 1 and C [ Rn be any point that satisfies Cj $ E[pj] for all
j [ J as well as inequalities (5) for some D $ 0. Assume without loss of generality
that C1 # . . . # Cn, then

1
m O

k51

j

E@pk# # S 1 1 maxH 1,
m 2 1

m DJ DCj for all j 5 1, . . . , n .

PROOF. Consider any set {1, . . . , j}, j [ J. Then, due to inequalities (5) and
due to the fact that Cj $ . . . $ C1,

Cj O
k51

j

E@pk# $ O
k51

j

E@pk#Ck $
1

2mS O
k51

j

E@pk#D 2

1
m 2 D~m 2 1!

2m O
k51

j

E@pk#
2.

We divide by (k51
j E[pk] to obtain

Cj $
1

2m O
k51

j

E@pk# 1
m 2 D~m 2 1!

2m z
Ok51

j E@pk#
2

Ok51
j E@pk#

.

Now consider the case D # m/(m 2 1). Then the last term is nonnegative, and
thus (k51

j E[pk]/m # 2Cj. For the case D $ m/(m 2 1) the last term is
nonpositive. But since

Cj $ max
k51, . . . , j

E@pk# $
Ok51

j E@pk#
2

Ok51
j E@pk#

,

we obtain Cj $ (k51
j E[pk]/ 2m 1 ((m 2 D(m 2 1))/ 2m)Cj. The claim follows.

e
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We are now ready to analyze the following LP-based approximation algorithm
for stochastic parallel machine scheduling with release dates. Suppose that the
squared coefficient of variation of processing times is bounded from above by
some D $ 0. Then inequalities (5) are valid for any scheduling policy P.
Moreover, every vector of expected completion times corresponding to P
additionally fulfills

E@Cj
P# $ r j 1 E@pj# for all j [ J. (7)

We thus consider the linear programming relaxation

min H O
j[J

wjCj U ~5! and ~7!J , (8)

and let CLP denote an optimum solution to (8). Define P to be a job-based
priority policy according to the order given by nondecreasing values of Cj

LP.

THEOREM 4.1. Let Var[pj]/E[pj]
2 # D for all jobs j and some D $ 0, and let P

be the job-based priority policy corresponding to an optimal solution to the linear
programming relaxation (8). Then P is a (3 2 (1/m) 1 max{1, ((m 2 1)/m)D})-
approximation.

In Appendix B, we show that linear program (8) can be solved in O(n2) time
by purely combinatorial methods. This implies that the corresponding priority
order can be computed efficiently.

PROOF. First assume, without loss of generality, that C1
LP # C2

LP # . . . #
Cn

LP. We apply Lemma 4.1 to P, and observe that maxk51, . . . , j rk # Cj
LP for all

j 5 1, . . . , n. This holds, since from inequalities (7) we get Ck
LP $ rk, and

because Cj
LP $ Cj21

LP $ . . . $ C1
LP. Moreover, E[pj] # Cj

LP; thus, Lemma 4.1
yields

E@Cj
P# # 1 2 2

1

m2Cj
LP 1

1

m1 O
k51

j

E@pk#2
for all jobs j [ J. Since CLP fulfills the conditions of Lemma 4.2, we now obtain

E@Cj
P# # S 3 2

1

m
1 maxH 1,

m 2 1

m
DJ DCj

LP

for all jobs j [ J. The fact that linear program (8) is a relaxation of the
scheduling problem concludes the proof. e

Theorem 4.1 particularly yields a worst-case performance guarantee of (4 2
(1/m)) whenever Var[pj]/E[p] j

2 # m/(m 2 1) for the given processing time
distributions. This bound is already known for deterministic scheduling [Hall et
al. 1997].

4.2. PARALLEL MACHINE SCHEDULING WITHOUT RELEASE DATES. We now
consider the problem P u pj ; stochuE[(wjCj]. Using the framework of the
preceding section, one easily obtains an LP-based priority policy which has a
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performance guarantee of 2 2 (1/m) 1 max{1, ((m 2 1)/m)D}. However, for this
case we can improve the result by considering the WSEPT rule and a different
LP-relaxation which allows us to explicitly exploit the structure of an optimum LP
solution within the analysis. Recall that WSEPT works as follows: When a machine
becomes available, schedule the job(s) with highest ratio wj/E[pj] among the jobs not
yet started.

THEOREM 4.2. Let Var[pj]/E[pj]
2 # D for all jobs j and some D $ 0. Then the

WSEPT priority policy is a (1 1 ((D 1 1)(m 2 1)/2m)-approximation.

PROOF. First assume, without loss of generality, that w1/E[p1] $ w2/E[p2] $
. . . $ wn/E[pn]. Now consider the linear programming relaxation

min H O
j[J

wjCj U ~5!J , (9)

and let CLP denote an optimum solution with optimum value ZLP. Since
inequalities (5) define a supermodular polyhedron, the solution to the LP-
relaxation (9) is given by Edmonds’ greedy algorithm for supermodular polyhe-
dra (see Appendix A for details). Hence,

Cj
LP 5

1

m
O

k51

j

E@pk# 2
~D 2 1!~m 2 1!

2m
E@pj# for j 5 1, . . . , n .

We now apply Lemma 4.1 to the WSEPT priority policy to obtain

E@Cj
WSEPT# #

1

m
O

k51

j

E@pk# 1 S 1 2
1

mDE@pj#

5 Cj
LP 1

~D 1 1!~m 2 1!

2m
E@pj# .

Since linear program (9) is a relaxation for the scheduling problem, and since
( j[JwjE[pj] is a lower bound on the optimum value ZOPT, we get

ZWSEPT 5 O
j[J

wj E@Cj
WSEPT#

# O
j[J

wjCj
LP 1

~D 1 1!~m 2 1!

2m
O
j[J

wj E@ pj#

# ZLP 1
~D 1 1!~m 2 1!

2m
ZOPT

# S 1 1
~D 1 1!~m 2 1!

2m DZOPT.
e
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It is clear from the proof of Theorem 4.2 that apart from the above worst-case
ratio an additive performance guarantee for WSEPT can be derived as well.

COROLLARY 4.1. Let Var[pj]/E[pj]
2 # D for all jobs j and some D $ 0, then

ZWSEPT 2 ZOPT #
~D 1 1!~m 2 1!

2m
O
j[J

wj E@ pj# .

Moreover, with some additional conditions on weights and expected processing
times of the jobs, we obtain asymptotic optimality for the performance of the
WSEPT rule.

COROLLARY 4.2. If Var[pj]/E[pj]
2 # D for all jobs j and some 0 # D , `, and

if there exists some « . 0 such that « # wj # 1/« and « # E[ pj] # 1/« for all j, and

if m/nO¡
n3`

0, then

~ZWSEPT 2 ZOPT!

ZOPT
O¡
n3`

0.

PROOF. First, suppose without loss of generality that w1/E[p1] $ w2/E[p2] $
. . . $ wn/E[pn]. Now let Zn

OPT ;5 ( j[JwjE[ pj], and Z1
OPT ;5

( j51
n wj(k51

j E[ pk]. Note that Z1
OPT is the optimum value for a single machine

problem, since the optimum policy on a single machine is WSEPT [Rothkopf
1966]; Zn

OPT is the optimum value on n machines. Corollary 4.1 together with
ZOPT $ ZLP now yields

~ZWSEPT 2 ZOPT!

ZOPT
#

~D 1 1!~m 2 1!

2m
z

Zn
OPT

ZLP
.

But ZLP 5 (1/m) Z1
OPT 2 ((D 2 1)(m 2 1)/ 2m) Zn

OPT, thus the asymptotic
behavior depends on the ratio mZn

OPT/Z1
OPT. Under the condition that weights

and expected processing times are bounded, this ratio is of order m/n. e

Similar considerations show that, subject to the same conditions, the LP-
relaxation (9) is also asymptotically tight.

Corollary 4.1 complements a previous result by Weiss [1990; 1992], who
showed that

ZWSEPT 2 ZOPT #
m 2 1

2
z max

j51, . . . , n

wj

E@pj#
z V.

Here, V is an upper bound on the second moment of the remaining processing
time of any uncompleted job at any given point in time. With assumptions on the
input parameters of the problem which assure that the right-hand side remains
bounded, Weiss [1990] has thus proved asymptotic optimality of WSEPT for a
wide class of processing time distributions. In fact, since one can construct
examples which show that neither of the two above additive bounds dominates
the other, Corollary 4.1 complements Weiss’ analysis of the quality of the
WSEPT rule in stochastic machine scheduling.
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Theorem 4.2 also implies a performance guarantee of (3/ 2) 2 (1/ 2m) for the
WSPT rule in deterministic scheduling. This result can alternatively be derived
using the bounds by Eastman et al. [1964]. They have proved that the cost of any
schedule in deterministic scheduling is bounded from below as Zm

OPT $
(1/m) Z1

OPT 1 ((m 2 1)/ 2m)( j51
n wj pj, where Zm

OPT denotes the optimum
value on m parallel machines and Z1

OPT is the optimum value for the
same jobs on a single machine (which is induced by WSPT [Smith 1956]).
Moreover, they have derived a matching upper bound for WSPT, namely
Zm

OPT # ZWSPT # (1/m) Z1
OPT 1 ((m 2 1)/m)( j51

n wj pj, which yields that
WSPT has a worst-case performance guarantee of (3/ 2) 2 (1/ 2m). However,
their lower bound as well as the corresponding performance guarantee does
not hold in the stochastic setting, as will become clear in Example 4.1 below.
Kawaguchi and Kyan [1986] showed that the worst-case performance ratio of
WSPT in the deterministic setting is exactly (=2 1 1)/2. Again, their
techniques do not apply if processing times are stochastic, and Example 4.1
reveals that their worst-case bound does not hold in this case either.

Example 4.1. Consider a set of four jobs J 5 {1, . . . , 4} which have to be
scheduled on m 5 2 machines. All jobs have weight 1, that is, the objective is the
total expected completion time ( j51

4 E[Cj]. Let 0 , « , 1. Jobs 1 and 2 have
processing time « with probability 1 2 « and processing time 1/« with probability
«, independent of each other. Then the expected processing time of these jobs is
1 1 « 2 «2, which we choose to be the deterministic processing time of jobs 3 and 4.

Since all jobs have the same expected processing time, the expected total
completion time on a single machine is Z1

OPT 5 10 for « 3 0 for any priority
policy. For the parallel (two) machine case, elementary calculations show that
the optimum policy is to schedule according to the priority list 1 , 2 , 3 , 4 if
« is small enough, and we obtain an expected total completion time of Zm

OPT 5 4
for « 3 0. Thus, in sharp contrast to the deterministic model and the above
mentioned bound by Eastman et al. [1964], we obtain (1/m) Z1

OPT . Zm
OPT for

this example.
Moreover, since all jobs have identical expected processing times, any priority

policy is SEPT (or WSEPT) in this example. Scheduling according to the priority
list 3 , 4 , 1 , 2 yields an expected total completion time of 6 for « 3 0. This
shows that SEPT (or WSEPT) may differ from the optimum value by a factor
arbitrarily close to 3/2, and the deterministic worst case bounds (3/ 2) 2 (1/ 2m)
and, a fortiori, (=2 1 1)/2 for WSPT do not hold in the stochastic setting.

However, the proof of Theorem 4.2 yields the following generalization of the
lower bound by Eastman et al. [1964] to stochastic machine scheduling.

COROLLARY 4.3. If Var[pj]/E[pj]
2 # D for all processing times pj, then

Zm
OPT $

1
m Z1

OPT 2
~D 2 1!~m 2 1!

2m O
j51

n

wjE@pj# , (10)

where Zm
OPT denotes the optimum value for a parallel machine problem on m

machines, and Z1
OPT is the optimum value of the same instance on a single machine.

PROOF. Again, let without loss of generality w1/E[p1] $ w2/E[p2] $ . . . $
wn/E[pn]. Since Z1

OPT 5 ( j51
n wj(k51

j E[ pk], the right-hand side of (10) is
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precisely the value of an optimal solution to the LP-relaxation (9), and this a
lower bound on Zm

OPT. e

This particularly shows that for D # 1 the optimum value for a single machine
problem with an m-fold faster machine is a relaxation for the corresponding
problem on m parallel machines. Moreover, Example 4.1 not only reveals that
the condition D # 1 is necessary for the validity of the fast single-machine
relaxation, but it also shows that—in contrast to the deterministic case—a
negative term in the right-hand side of inequalities (2) is necessary as well.

4.3. THE SINGLE MACHINE CASE. In the single machine case, the proof of
optimality for WSEPT dates back to 1966. It was presented by Rothkopf [1966],
and the corresponding result in deterministic scheduling is due to Smith [1956].
Moreover, Queyranne [1993] has shown that in the deterministic case inequali-
ties (1), for m 5 1, provide a complete description of the convex hull of the
performance space. Bertsimas and Niño-Mora [1996] extended this result to
stochastic processing times. We note that for m 5 1 both the optimality of
WSEPT and the complete polyhedral description of the performance space by
inequalities (2) also follow from the analysis of the previous section.

We conclude this section with a remark on the approximability of more general
stochastic single machine problems which also involve arbitrary precedence
relations. Since for m 5 1 inequalities (2) exactly correspond to the analogue in
deterministic scheduling, we may use the same LP relaxations and arguments as
in Hall et al. [1997] to obtain the same performance guarantees for stochastic
single machine problems. More precisely, the natural generalization of the
techniques presented in Hall et al. [1997]; or Schulz [1996] yields a priority policy
that is a 2-approximation for 1 u pj ; stoch, prec u E[(wjCj] and a job-based
priority policy that is a 3-approximation for 1 u pj ; stoch, rj, prec u E[(wjCj].
These results hold for arbitrary, independent processing time distributions.

4.4. LP-BASED PRIORITY POLICIES AND THE ACHIEVABLE REGION APPROACH TO

STOCHASTIC SYSTEMS. The LP-based approach presented in this paper is closely
related to recent developments in the optimal control of stochastic systems via
characterizing or approximating “achievable regions”. For instance, Bertsimas
and Niño-Mora [1996] show that previous results on the optimality of Gittins
indexing rules can alternatively be derived by a polyhedral characterization of
corresponding performance spaces as (extended) polymatroids. Subsequently,
Glazebrook and Niño-Mora [1997] have proved approximate optimality of
Klimov’s index rule in multiclass queueing networks with parallel servers. Their
work is based on approximate conservation laws for the performance of Klimov’s
index rule (which corresponds to the WSEPT rule for the model we consider
here). Since from the bounds (10) and (6) one can obtain an approximate
conservation law for the performance of WSEPT, Theorem 4.2 (respectively,
Corollary 4.1) of the present paper can also be derived within their framework.

There is, however, an interesting difference between the techniques employed
in their work and those of the present paper. For the case with nontrivial release
dates (Section 4.1), we explicitly make use of an optimum primal solution of
LP-relaxation (8) in order to obtain a priority policy with provably good
performance. (Note that in this case the performance of WSEPT can be
arbitrarily bad.) While the achievable region approach as proposed in Glaze-

937Approximation in Stochastic Scheduling



brook and Niño-Mora [1997] and Dacre et al. [1999, Section 3] is also based on
the concept of LP-relaxations, the dual of the corresponding LP-relaxation is
solved in order to derive Klimov’s index rule and to analyze its performance for
the case of parallel servers. Primal and dual solutions, however, can in fact lead
to substantially different priority policies.

5. Concluding Remarks

With this work, we extend the concept of LP-based approximation algorithms
from deterministic scheduling to a more general stochastic setting. Several
previous deterministic results, including LP-relaxations for parallel machine
scheduling and corresponding LP-based performance guarantees occur as special
cases. For the model without release dates, our work complements previous work
on the performance of the WSEPT rule, and extends a previous lower bound on
the value of optimum schedules to the stochastic setting.

More generally, LP relaxations of scheduling problems are shown to be a quite
powerful tool for producing not only good lower bounds, but also high-quality
priority policies. It is one of the outcomes of our studies that successful
combinatorial methods from deterministic machine scheduling also bear on
algorithm design and analysis for stochastic machine scheduling problems.
Moreover, another advantage of using LP relaxations is that one not only obtains
“a priori” worst-case bounds, but also “a posteriori” guarantees (by comparing
the actual objective value and the LP bound) depending on the particular
instance. This aspect adds to the practical appeal of this approach.

Altogether, the presented results underline the potential of the polyhedral
approach to scheduling problems—in both the deterministic and the stochastic
setting, and we hope that this methodology may also lead to progress in other
stochastic systems besides scheduling.

Appendixes

Appendix A first provides the necessary details on supermodular polyhedra and
Edmonds’ greedy algorithm. We then show in Appendix B that LP relaxation (8)
can be solved in polynomial time. This already follows from the supermodularity
of the right-hand side of inequalities (5) via the ellipsoid method [Grötschel et al.
1988]. However, we give a purely combinatorial algorithm with running time
O(n2). Notice that this algorithm is of interest in the deterministic case as well,
since it turns some approximation algorithms presented in Hall et al. [1997]
(which so far relied on the ellipsoid method) into combinatorial algorithms.

Appendix A. Supermodular Polyhedra and the Greedy Algorithm

A set function f: 2J 3 R is called supermodular, if

f~ A ù B! 1 f~ A ø B! $ f~ A! 1 f~B! for all A, B # J.

For a supermodular set function f with f(À) 5 0, the polyhedron

3~ f ! ;5 $ x [ Rn u x~ A! $ f~ A! for all A # J%
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is called a supermodular polyhedron. Here, as usual x( A) ;5 (j[Axj for x [ Rn. If we
let a [ Rn be strictly positive and f: 2J 3 R be supermodular with f(À) 5 0, then

3a~ f ! ;5 $ x [ Rnu O
j[A

aj xj $ f~ A! for all A # J% (A1)

is a linear transformation of a supermodular polyhedron which we also call a
supermodular polyhedron, for convenience. If we let wj $ 0 for j [ J, it is well
known that linear optimization problems

minH O
j[J

wj xjU x [ 3a~ f !J (A2)

are solved by Edmonds’ greedy algorithm [Edmonds 1970]. An optimal solution
for (A2) is then given by

x*j 5
f~$1, . . . , j%! 2 f~$1, . . . , j 2 1%!

aj

for j 5 1, . . . , n ,

where we assumed that w1/a1 $ w2/a2 $ . . . $ wn/an, and we also used that
f({1, . . . , 0}) 5 f(À) 5 0. Consequently, linear program (9) can in fact be
solved in time O(n log n). We refer to the monograph of Fujishige [1991] for
more details on supermodular polyhedra and their extensions.

Appendix B. Analysis of Linear Program (8)

To see that linear program (8) also fits into the framework of supermodular
polyhedra, we need some preliminaries. We write linear program (8) as:

minH O
j[J

wj xjU O
j[A

E@pj# xj $ f~ A!@A # J and xj $ , j@j [ JJ , (B1)

where

f~ A! 5
1

2mS O
j[A

E@pj#D 2

1
m 2 D~m 2 1!

2m O
j[A

E@pj#
2

is the right-hand side of (5), and , j $ 0 are some nonnegative lower bounds on
xj, j [ J. For instance, in linear program (8) we have , j 5 rj 1 E[pj].

Observe first that f is supermodular. According to the notation from definition
(A1) let 3E[p]( f ) denote the polyhedron defined by inequalities ( j[AE[pj] xj $
f( A), A # J. Then, following Fujishige [1991, Section II.3.1], the polyhedron
given by (B1) is called the reduction of 3E[p]( f ) by the vector (,1, . . . , ,n).
Define the auxiliary set function

f̂ ~ A! ;5 max
B#A

H f~B! 1 O
j[A2B

E@pj#, jJ for all A # J. (B2)
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LEMMA B1. The set function f̂ : 2J 3 R is supermodular. Furthermore, the
reduction of 3E[p]( f ) by vector , is exactly given by 3E[p]( f̂ ) and is therefore again
a supermodular polyhedron.

For a proof, we refer to Fujishige [1991, Theorem 3.3].
Thus, we may apply Edmonds’ greedy algorithm to solve linear program (B1).

That is, if we assume without loss of generality that w1/E[p1] $ w2/E[p2] $ . . .
$ wn/E[pn], an optimal solution to (B1) is given by

x*k 5 ~ f̂ ~$1, . . . , k%! 2 f̂ ~$1, . . . , k 2 1%!!/E@pk# for k 5 1, . . . , n ,

where f̂({1, . . . , 0}) 5 f̂(À) 5 0. Consequently, the only remaining task is the
computation of the values f̂({1}), f̂({1, 2}), . . . , f̂( J). To this end, note that

f̂ ~ A! 5 O
j[A

E@pj#, j 1 max
B#A

H f~B! 2 O
j[B

E@pj#, jJ , A # J.

Ç

5; ĝ ~B!

Hence, the evaluation of f̂( A) for some A # J results in a maximization problem
of the set function ĝ over the ground set A. Since ĝ is again supermodular, its
maximum can be determined in polynomial time with the help of the ellipsoid
method [Grötschel et al. 1988]. However, in the remainder of this section we
show how to compute the maximum in time O(n log n) by exploiting the special
structure of ĝ. The ideas below are adapted from Queyranne [1993, Section 5].

LEMMA B2. Let A* be a set maximizing ĝ(B), B # A, and let without loss of
generality A* be #-minimal. Then:

k [ A* N
1

m
O

j[A*

E@pj# .
~D 2 1!~m 2 1!

2m
E@pk# 1 ,k.

PROOF. Let k [ A*, then ĝ( A*) . ĝ( A*\{k}) due to the definition of A*.
Elementary calculations yield:

E@pk#S 1

m
O

j[A*

E@pj# 2
~D 2 1!~m 2 1!

2m
E@pk# 2 ,kD 5 ĝ ~ A*! 2 ĝ ~ A*\$k%! . 0,

and since E[pk] . 0, the first claim follows.
For the reverse direction, let (( j[A*E[pj])/m . ((D 2 1)(m 2 1)/ 2m) E[pk]

1 ,k and suppose k [y A*. But since

ĝ ~ A* ø $k%! 2 ĝ ~ A*!

5 E@pk#S 1

m
O

j[A*

E@pj# 2
~D 2 1!~m 2 1!

2m
E@pk# 2 ,k 1

1

m
E@pk#D . 0,

we have ĝ( A* ø {k}) . ĝ( A*), a contradiction to the definition of A*. e

Therefore, we obtain the following result:
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COROLLARY B1. Let A* be a set maximizing ĝ(B), for B # A. If i [ A* for
some i [ A, we have j [ A* for every j [ A with

~D 2 1!~m 2 1!

2m
E@pj# 1 , j #

~D 2 1!~m 2 1!

2m
E@pi# 1 , i.

Thus, in order to maximize ĝ over some ground set A, we just sort the jobs j [
A in nondecreasing order of ((D 2 1)(m 2 1)/ 2m) E[pj] 1 , j. Assume this
order is given by 1, 2, . . . , uA u, then A* must be one of the nested sets À, {1},
{1, 2}, . . . , A. Consequently, the maximization problem for ĝ can be solved in
O(n log n) time. In fact, for A 5 J this algorithm is an O(n log n) time
separation algorithm for the polyhedron 3E[p]( f ) and a given point , [ Rn,
since the calculation of maxB#Jĝ(B) exactly corresponds to the problem of
finding the most violated inequality from ( j[BE[pj], j $ f(B), B # J.

Now recall that in order to solve linear program (13) we have to calculate a
sequence of values f̂({1}), f̂({1, 2}), . . . , f̂( J). By virtue of Corollary B1, it is
not hard to see that this can be done in O(n2) total time, and thus we get the
following result:

THEOREM B1. Linear program (8) can be solved in O(n2) time.
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GLAZEBROOK, K. D., AND NIÑO-MORA, J. 1997. Scheduling multiclass queueing networks on
parallel servers: Approximate and heavy-traffic optimality of Klimov’s rule. In Proceedings of the
5th Annual European Symposium on Algorithms (ESA ’97) (Graz, Austria). R. Burkard and G.
Woeginger, eds., Lecture Notes in Computer Science, vol. 1284, Springer-Verlag, New York, pp.
232–245.

941Approximation in Stochastic Scheduling



GRAHAM, R. L., LAWLER, E. L., LENSTRA, J. K., AND RINNOOY KAN, A. H. G. 1979. Optimization
and approximation in deterministic sequencing and scheduling: A survey. Ann. Disc. Math. 5,
287–326.
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942 R. H. MÖHRING ET AL.


