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Abstract. This paper attempts to provide a better understanding of the facial structure of
polyhedra previously investigated separately. It introduces the notion of transitive packing and the
transitive packing polytope. Polytopes that turn out to be special cases of the transitive packing
polytope include the node packing, acyclic subdigraph, bipartite subgraph, planar subgraph, clique
partitioning, partition, transitive acyclic subdigraph, interval order, and relatively transitive sub-
graph polytopes. We give cutting plane proofs for several rich classes of valid inequalities of the
transitive packing polytope, thereby introducing generalized cycle, generalized clique, generalized
antihole, generalized antiweb, and odd partition inequalities. On the one hand, these classes sub-
sume several known classes of valid inequalities for several special cases; on the other hand, they
yield many new inequalities for several other special cases. For some of the classes we also prove a
lower bound on their Gomory–Chvátal rank. Finally, we relate the concept of transitive packing to
generalized (set) packing and covering, as well as to balanced and ideal matrices.
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1. Introduction. Various types of packing problems and related polyhedra play
a central role in combinatorial optimization. Due to both a large variety of practical
applications and their interesting structural properties, they have received consider-
able attention in the literature; see, e.g., [3, 43] for an overview. One of the classic
examples is the node packing problem in graphs and the associated node packing
polytope. (Alternative names are vertex packing, stable set, coclique, anticlique, or
independent set problem and polytope, respectively.) The node packing problem on
a finite, undirected, loopless graph G with node weights is the problem of finding a
subset of mutually nonadjacent nodes such that the total weight of the selected subset
is maximal. If we denote by A the edge-node incidence matrix of the graph G, it can
be formulated as

maximize cx

subject to Ax � 1l,(1.1)

xu ∈ {0, 1},
where c is an arbitrary vector of weights and 1l denotes (here and henceforth) the
all-one vector of compatible dimension. The node packing polytope is defined as the
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convex hull of feasible solutions to (1.1) and has been studied in, among other works,
[26, 37, 42, 52].

The node packing problem can be extended to hypergraphs, where it reads

maximize cx

subject to Ax � pA − 1l,(1.2)

xu ∈ {0, 1},

and A is now an arbitrary 0/1 matrix (the edge-node incidence matrix of the hyper-
graph), and the ith component of the vector pA gives the number of positive entries
in row i of the matrix A. If A does not contain a zero row, the undominated rows of A
can be interpreted as the incidence vectors of the circuits of an independence system.
Hence, problem (1.2) can be seen as the problem of finding an independent set of
maximal weight. The convex hull of incidence vectors of independent sets (solutions
to (1.2)) is known as the independence system polytope. Substantial work has been
done to find classes of valid inequalities for the independence system polytope, mainly
based on the study of special configurations of the family of circuits. Among these
are, to name a few, the acyclic subdigraph polytope [25, 29], the bipartite subgraph
polytope [4], and the planar subgraph polytope [30]. We refer the reader to [20, 32]
and [1, 2, 16, 39, 45] for the study of the facial structure of the independence system
polytope in general.

In section 2, we introduce an extension of the node packing problem in hyper-
graphs, called transitive packing, by taking transitive elements into account. The
problems we consider can be described as

maximize cx

subject to Ax � pA − 1l,(1.3)

xu ∈ {0, 1},

where A is now an arbitrary 0/±1 matrix, and the ith component of the vector pA
gives the number of positive entries in row i of the matrix A. Many combinatorial
optimization problems can be modeled as transitive packing problems. We do not
(and cannot) list all problems that fit with this novel framework, but we name a
few of them that we are going to revisit later. Indeed, besides those that can be
interpreted as finding an independent set of maximal weight, there are the clique
partitioning problem [27, 28, 41], the partition problem [10], the transitive acyclic
subdigraph problem [34], the interval graph completion problem [35, 49], and the
relatively transitive subgraph problem [31, 50, 51].

One of our main purposes is to derive broad classes of valid inequalities for the
transitive packing polytope, the convex hull of feasible solutions to (1.3). In section 4,
we present generalized cycle, generalized clique, generalized antihole, generalized anti-
web, and odd partition inequalities, which are valid for the transitive packing polytope.
These classes explain and classify many known inequalities for polytopes that fit with
this general framework. Thereby, we emphasize the relations between, and the com-
mon structure of (inequalities for), different polyhedra, formerly independently stud-
ied, and we provide new insights as well as new inequalities for some of the special
polytopes that arise from certain hypergraphs and choices of transitive elements. We
show how the knowledge of structural properties of the transitive packing polytope
makes it possible to derive results for these special problems.
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We derive most of the inequalities for the transitive packing polytope by integer
rounding. This provides cutting plane proofs for many of the known inequalities
for special polytopes that have not been observed before. It may also be seen as a
guide for using certain patterns of the (initial) constraint matrix A to obtain new
inequalities in a systematic way. The latter property might be of some importance
for solving general 0/1 integer programs. Moreover, the derivation of the inequalities
may be seen as a guideline for generalizing each valid inequality for the node packing
polytope whose cutting plane proof is known.

Section 5 is concerned with an interesting subclass of the transitive packing poly-
topes, formed by those whose corresponding hypergraph is actually a graph. In sec-
tion 6, we discuss the separation problem associated with the classes of inequalities
introduced before. Finally, in section 8 we recall the strong relation between set cov-
ering and independence system polytopes, point out its extension to generalized set
covering and transitive packing polytopes, translate our results into this context, and
briefly discuss the relation of our work to 0/±1 matrices that are balanced or ideal.

Subsequent to the original introduction of transitive packing [49, 36], Borndörfer
and Weismantel [7, 8] introduced another scheme that also helps to explain and classify
inequalities within the context of a packing polytope and to get cutting plane proofs.
We refer to [48] for a discussion of similarities and differences between this scheme
and transitive packing.

2. The transitive packing polytope. A hypergraph is an ordered pair (N,H),
where N is a finite ground set, the set of nodes, and H is a collection of distinct subsets
of N , the set of (hyper)edges. We only deal with hypergraphs without loops, i.e., we
always assume that |H| � 2 for all H ∈ H. We refer to [6] for a thorough introduction
to hypergraphs. Here, we are interested in hypergraphs with additional node subsets
associated with each edge.

Definition 2.1. Let (N,H) be a hypergraph, and let tr : H → 2N be a mapping
from the set of edges to the powerset of N , with the property that tr(H) ⊆ N \ H.
We call the ordered triple (N,H, tr) an extended hypergraph, and tr(H) the set of
transitive elements associated with the edge H.

In the special case that tr(H) = ∅ for all H ∈ H, we often simply write (N,H)
instead of (N,H, tr). We are interested in packing nodes of an extended hypergraph
whereby the restrictions imposed by the edges may be compensated by picking tran-
sitive elements. This is made precise by the following definition.

Definition 2.2. Let (N,H, tr) be an extended hypergraph. A subset S of the
nodes is a transitive packing (in (N,H, tr)) if, for every H ∈ H such that H ⊆ S,
there exists a node u ∈ S ∩ tr(H).

In other words, a transitive packing S is a set of nodes that contains an edge
only if S contains at least one node from the set of transitive elements associated
with that edge. Given, in addition to (N,H, tr), a weight function c : N → Q, the
(maximum weight) transitive packing problem consists of finding a transitive packing
S ⊆ N of maximal weight c(S). As indicated in the introduction, the maximum
weight transitive packing problem is equivalent to the integer linear programming
problem

maximize cx

subject to x(H) − x(tr(H)) � |H| − 1 for all H ∈ H,(2.1)

x � 1l,(2.2)

x � 0,(2.3)

x ∈ ZN .(2.4)
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Note that the constraint matrix of the inequalities (2.1) is the edge-node incidence
matrix of the hypergraph (N,H), with additional −1’s for the transitive elements of
the edge represented by the particular row. We call the inequalities (2.1) transitivity
constraints.

In the following, we study the transitive packing polytope PTP(N,H, tr) of the
extended hypergraph (N,H, tr), which is defined as the convex hull of the incidence
vectors of transitive packings in (N,H, tr), i.e.,

PTP(N,H, tr) := conv{χS ∈ RN : S transitive packing in (N,H, tr)}.

In other words, PTP(N,H, tr) is equal to the integer hull of the feasible solutions to
(2.1)–(2.3). At this point, it seems reasonable to introduce a few examples to illustrate
the applicability of the results to be presented. Of course, if tr(H) = ∅ and |H| = 2
for all edges H ∈ H, a transitive packing reduces to an ordinary node packing in the
graph (N,H). However, to motivate hypergraphs and transitive elements, we show
now that the acyclic subdigraph polytope as well as the clique partitioning polytope
and the partition polytope can be obtained by special choices of the hypergraph and
the transitive elements. Other examples will be discussed in section 7.

The acyclic subdigraph polytope. An instance of the acyclic subdigraph problem
consists of a directed graph D = (V,A) and a weight function c : A → Q. The
objective is to determine a set of arcs B ⊆ A such that the digraph (V,B) is acyclic,
i.e., does not contain a directed cycle, and such that c(B) is as large as possible.
The acyclic subdigraph polytope is the convex hull of incidence vectors of acyclic arc
subsets of A. It was studied by Grötschel, Jünger, and Reinelt (see [24, 25, 29]) and
Goemans and Hall [23]. If we choose the arc set A of the digraph D as the node set of
the hypergraph, if we declare the directed cycles in D as the edges of this hypergraph,
and if we let tr(H) = ∅ for all H ∈ H, the acyclic subdigraph polytope appears as a
special transitive packing polytope.

The clique partitioning polytope. An instance of the clique partitioning problem
consists of an undirected graph G = (V,E) and a weight function c : E → Q. A
set F ⊆ E of edges is called a clique partitioning of G if there is a partition of V
into nonempty, disjoint sets W1,W2, . . . ,Wk such that the subgraph induced by each
Wi is a clique and such that F =

⋃k
i=1{{u, v} : u, v ∈ Wi, u 
= v}. Equivalently, a

clique partitioning is a subrelation of the symmetric relation represented by G that
is an equivalence relation, i.e., in particular transitive. The weight of such a clique
partitioning F is c(F ). The task is to determine a clique partitioning of minimal
weight. (Of course, since we do not restrict the objective function, we could have
written that we want to find a clique partitioning of maximal weight as we always
do in the context of transitive packing. However, for historical reasons we chose this
variant.) The clique partitioning polytope is the convex hull of the incidence vectors
of all clique partitionings in G. It was introduced and studied by Grötschel and
Wakabayashi [27, 28] and has recently been further investigated by Oosten, Rutten,
and Spieksma [41]. To show that it is an instance of a transitive packing polytope,
it is sufficient to deal with a graph instead of a hypergraph. Indeed, we take as the
set N of nodes the edges of G, and two nodes are adjacent (form a hyperedge) if and
only if the associated edges are incident in the original graph G. That is, the extended
hypergraph we consider is precisely the line graph of G, and the transitive element
that we attach to a pair of incident edges {u, v}, {v, w} in G is the edge {u,w} if it
exists.
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The partition polytope. An instance of the graph partitioning problem consists of
an undirected, connected graph G = (V,E), a weight function c : E → Q, and an in-
teger r � |V |. An r-partition of the node set V is a set of node subsets N1, N2, . . . , Nr

such that Ni∩Nj = ∅ (for all i 
= j) and ∪r
i=1Ni = V . Some of the subsets Ni may be

empty. The weight of an r-partition is the total weight of the edges with end points
in two different subsets. The goal is to determine an r-partition of minimal weight.
Chopra and Rao [10] have studied polytopes for several variations of this problem. We
consider one of them here. This case arises when r = |V |. For a complete graph G,
this problem is equivalent to the clique partitioning problem. For arbitrary graphs G,
Chopra and Rao define the partition polytope as the convex hull of the incidence vec-
tors of all sets of edges in G which are not cut by an r-partition. It follows from
[10, Lemma 2.2] that the partition polytope arises as a transitive packing polytope by
taking the edges of G as the set N and by letting every (|C|− 1)-cardinality subset of
edges of a cycle C in G be the edges of the hypergraph H. The transitive set related
to such a hyperedge contains exactly the missing edge from the cycle C.

Before studying the transitive packing polytope, we shall discuss an algorithmic
aspect of the concept of transitive packings. How is (N,H, tr) given? Having in mind
problems like the acyclic subdigraph problem, it does not seem to be satisfactory to
assume that it is given as a list of hyperedges and their transitive elements. Indeed,
the number of directed cycles in a digraph can be exponential in the number of nodes.
From the point of view of polyhedral combinatorics, it rather seems to be reasonable
to assume that the linear programming problem arising from (2.1)–(2.4) by dropping
the integrality constraint (2.4) is solvable in time polynomially bounded in |N | and
the input size of c. This means, given a point x ∈ QN contained in the unit hypercube,
we assume that the separation problem formed by x and the class of inequalities (2.1)
is solvable in polynomial time. In particular, this guarantees that the decision version
of the transitive packing problem belongs to the class NP. Since the node packing
problem on graphs is NP-hard, the same holds for the transitive packing problem.

Let us continue with the study of the transitive packing polytope. Since the empty
set as well as all singletons of N are transitive packings, we immediately obtain the
following result.

Proposition 2.3. Let (N,H, tr) be an extended hypergraph.

(i) The transitive packing polytope PTP(N,H, tr) ⊆ RN is full dimensional, i.e.,
dim(PTP(N,H, tr)) = |N |.

(ii) The nonnegativity constraint xu � 0 defines a facet of PTP(N,H, tr) for
each node u ∈ N .

Because of the transitive elements, it is more difficult to characterize the facet
defining inequalities of type xu � 1 for u ∈ N . Clearly, all these inequalities are facet
defining if |H| � 3 for all edges H ∈ H. But as soon as {u, v} ∈ H and tr({u, v}) = ∅,
for instance, the face induced by xu � 1 is properly contained in the facet defined
by xv � 0. But even if tr({u, v}) 
= ∅, it may happen that whenever u is chosen, we
cannot choose another element. While it is possible to give a concise characterization
in the absence of transitive elements, we are content with a sufficient condition in the
general case.

Lemma 2.4. Let PTP(N,H, tr) be the transitive packing polytope associated with
the extended hypergraph (N,H, tr).

(i) If tr(H) is the empty set for all edges H ∈ H such that |H| = 2, then an
inequality xu � 1 with u ∈ N defines a facet of PTP(N,H, tr) if and only if |H| � 3
for all edges H ∈ H that contain u.
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(ii) Let u ∈ N . If there exists for all edges {u, v} ∈ H a node w ∈ tr({u, v})
such that neither {u,w} ∈ H, {v, w} ∈ H, nor {u, v, w} ∈ H, then the inequality
xu � 1 defines a facet of PTP(N,H, tr).

Proof. In case (i), the incidence vectors of the transitive packings {u} and {u, v}
for all v ∈ N \{u} provide the needed set of linearly independent vectors. In case (ii),
we proceed as follows. Besides {u}, we first choose a set {u,w} such that {u,w} /∈ H.
(Notice that our assumptions imply the existence of such a node w.) Then, by taking
{u, v, w}, we collect all nodes v ∈ N such that {u, v} ∈ H, w ∈ tr({u, v}), {v, w} /∈ H,
and {u, v, w} /∈ H. Now, we may forget these nodes v and the node w and continue
with the remaining nodes in the same manner. Since {u, v} ∈ H for the nodes v above,
they cannot occur in the role of w. Hence, the incidence vectors of the constructed
transitive packings are linearly independent.

We illuminate Lemma 2.4 by applying it to the node packing, the acyclic sub-
digraph, the clique partitioning, and the partition polytopes. For the node packing
polytope of a graph G, (i) says that an inequality xu � 1 is facet defining for a node
u if and only if u is isolated, i.e., if G does not contain an edge incident to u. This
is a special case of the well-known fact that a clique inequality defines a facet if and
only if the clique is maximal [42]. Given a digraph D = (V,A) and an arc (u, v) ∈ A,
Lemma 2.4(i) implies that xuv � 1 defines a facet of the acyclic subdigraph polytope
of D if and only if (v, u) /∈ A. This was shown before by Grötschel, Jünger, and
Reinelt [25]. If G is a graph without isolated edges, the assumption of Lemma 2.4(ii)
is never met by an edge of the clique partitioning polytope of G. Indeed, Grötschel
and Wakabayashi [28] proved that no upper bound constraint defines a facet of this
polytope. Finally, Lemma 2.4(ii) also tells us that xe � 1 defines a facet of the
partition polytope if the edge e does not belong to any cycle of length 3.

We conclude this first section on the transitive packing polytope by observing
that a transitivity constraint x(H ′) − x(tr(H ′)) � |H ′| − 1 is dominated by x(H) −
x(tr(H)) � |H| − 1 if H ⊆ H ′ and tr(H) ⊆ tr(H ′).

3. The independence system polytope. So far we have mentioned only in the
introduction that the transitive packing problem subsumes independent set problems.
This section is intended to recall the needed definitions and to explain the relation in
detail. An independence system is a pair (N, I), with ground set N and a family I
of subsets of N , that contains the empty set and is closed under set inclusion; i.e.,
for any set I ∈ I every subset I ′ ⊆ I belongs also to I. The elements of I are
called independent sets. A subset of N that does not belong to I is called dependent,
and the minimal dependent sets (with respect to set inclusion) are the circuits of the
independence system. The collection of circuits forms a clutter, i.e., a family of sets
such that no two of them are comparable with respect to set inclusion. Since a subset
of N is independent if and only if it does not contain a circuit, an independence system
is fully characterized by the family of its circuits. Conversely, every clutter C ⊆ 2N

determines a unique independence system with ground set N and {I ⊆ N : C 
⊆ I for
all C ∈ C} as the family of its independent sets. The independence system polytope
is defined as the convex hull of all incidence vectors of independent sets. It coincides
with the transitive packing polytope PTP(N,H), where tr(H) = ∅ for all H ∈ H,
and H is the set of circuits. (To be accurate, this is only true when we make the
standard assumption that all singletons are independent. Remember that we have
defined the transitive packing polytope only for hypergraphs without loops.) In the
following we will sometimes speak of independent sets instead of transitive packings, of
circuits instead of edges, and of circuit constraints instead of transitivity (or packing)
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constraints when dealing with the special case formed by transitive packing problem
instances without transitive elements. As an example of an independence system, we
may consider the one defined by the acyclic arc subsets of a digraph. The dicycles
are one-to-one with the circuits, and the independence system polytope is the acyclic
subdigraph polytope.

Given a hypergraph (N,H), we define its upper closure H+ and its reduction H−

as H+ := {H ′ ⊆ N : there exists an H ∈ H such that H ⊆ H ′} and H− := {H ∈ H :
there exists no H ′ ∈ H such that H ′ ⊂ H}, respectively. Notice that PTP(N,H+) =
PTP(N,H) = PTP(N,H−). These notions prove useful for characterizing the facet
defining packing constraints. Observe that for clutters, for instance the circuits of
independence systems, we have H = H−.

Theorem 3.1. Let (N,H) be a hypergraph. For H ∈ H, the inequality x(H) �
|H| − 1 defines a facet of PTP(N,H) if and only if H ∈ H− and for all u ∈ N \ H
there exists an H ′ ⊂ H with |H ′| = |H| − 1 such that H ′ ∪ {u} /∈ H+.

Proof. Necessity of the stated condition is obvious; otherwise, the face under
consideration would be the intersection of some other faces. To show sufficiency we
take first the incidence vectors of all |H| subsets of H of size |H| − 1. According to
the assumption, for each node u ∈ N \H there exists a subset H ′ of H of size |H| − 1
such that H ′∪{u} is independent. Adding the corresponding incidence vectors to our
former set completes the proof.

Theorem 3.1 implies, in particular, that all dicycle inequalities of the acyclic
subdigraph polytope are facet defining. A direct proof of this result is given in [25].

Subclasses of the classes of valid inequalities that we introduce in the next section
for the transitive packing polytope have been presented earlier for the independence
system polytope; generalized cycle, generalized clique, and generalized antihole in-
equalities by Euler, Jünger, and Reinelt [20], and generalized antiweb inequalities by
Laurent [32]. It will turn out that our inequalities are more general, even if we restrict
ourselves to the independence system polytope. Nevertheless, in order to keep the
terminology simple, we will give the new inequalities the same names and point out
the restrictions that lead to the known inequalities, respectively. So far, no cutting
plane proofs have been presented for the formerly known inequalities.

4. Valid inequalities. Let P ⊆ RN be a rational polyhedron, for instance
the initial relaxation of PTP(N,H, tr) defined by (2.1)–(2.3). One way to produce a
characterization of the integer hull PI of P by means of linear inequalities is integer
rounding. For a thorough discussion of this topic, its history, and its applications
to integer programming and combinatorial optimization, we refer the reader to the
textbooks of Cook, Cunningham, Pulleyblank, and Schrijver [15, Chapter 6.7] and of
Nemhauser and Wolsey [38, Chapter II.1] and to Schrijver [47, Chapter 23]. Here, we
briefly review the basic definitions that will be needed later on.

If we set

P ′ := {x ∈ P : ax � β for all a ∈ ZN , β ∈ Z with max{ax : x ∈ P} < β + 1},

then P ′ can be seen as obtained from P by one step of rounding. In particular, if
P = {x ∈ RN : Ax � b} for an integer matrix A and integer right-hand side b, then

P ′ = {x ∈ RN : λAx � �λb� for all vectors λ � 0 with λA ∈ ZN}.

Obviously, the integer hull PI of P , i.e., the convex hull of the integral points in P ,
is contained in P ′. Furthermore P ′ = P if and only if P = PI. If we define P (0) := P
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and, recursively, P (t+1) := (P (t))′ for all nonnegative integers t, then PI ⊆ P (t) for all
nonnegative integers t. Schrijver [46] showed that P ′ is again a polyhedron and that
there is a nonnegative integer t such that P (t) = PI. The (Gomory–Chvátal) rank of
P is the smallest t such that P (t) = PI. Let ax � β be a valid inequality for PI. Its
depth relative to P is the smallest d such that ax � β is valid for P (d). Therefore the
rank of P equals the maximal depth, relative to P , of an inequality valid for PI.

Let Ax � b be a system of linear inequalities, and let cx � δ be an inequality.
Moreover, let c1x � δ1, c2x � δ2, . . . , cmx � δm be a sequence of linear inequalities
such that each vector ci, i = 1, . . . ,m, is integral, cm = c, δm = δ, and for i = 1, . . . ,m
the inequality cix � δ′i is a nonnegative linear combination of the inequalities Ax � b,
c1x � δ1, . . . , ci−1x � δi−1 for some δ′i with �δ′i� � δi. Such a sequence is called a
cutting plane proof of cx � δ from Ax � b, and m is the length of this proof. The
depth of the final inequality cx � δ is the depth of the proof. Every integer solution
of Ax � b satisfies cx � δ. Let P = {x : Ax � b}. Since P (t) = PI for some t, the
converse is true as soon as PI is nonempty. That is, every inequality cx � δ with c
integral and valid for PI has a cutting plane proof from Ax � b. Clearly, the length
of a cutting plane proof of a valid inequality for PI is at least its depth; however, the
length can be significantly bigger (see, e.g., [12]).

The idea of deriving cutting planes by rounding based on the exploitation of prob-
lem structure can, in particular, be used to obtain valid inequalities for the transitive
packing polytope. Thereby, we also show that many inequalities valid for the poly-
topes which arise from PTP(N,H, tr) by certain choices of (N,H, tr) have short and
insightful cutting plane proofs from the initial relaxation (2.1)–(2.3).

4.1. Generalized cycle inequalities. We first use cycles of the hypergraph
(N,H) to obtain a class of valid inequalities for the transitive packing polytope, each
of which has a cutting plane proof from (2.1)–(2.3) of length 1. Recall that a cycle in
a hypergraph is a sequence of vertices and of edges of the form (u1, H1, u2, H2, . . . , uk,
Hk, uk+1) such that the vertices u1, . . . , uk are distinct, uk+1 = u1, the edges H1, . . . ,
Hk are distinct, and for i = 1, . . . , k both ui and ui+1 are contained in Hi. We start,
however, with a few more assumptions.

Definition 4.1. Let (N,H) be a hypergraph, and let q, s, and r be positive
integers such that q � 2 and 1 � r � q − 1. For convenience, we set k := sq + r. Let
N1, . . . , Nk be a sequence of pairwise disjoint nonempty subsets of N . For i = 1, . . . , k,
let Hi ∈ H be an edge such that

⋃i+q−1
j=i Nj ⊆ Hi. (Indices greater than k are taken

modulo k + 1 and shifted by +1.) We denote by C the union of all these edges Hi,

C :=
⋃k

i=1 Hi, and by m(u) the multiplicity of a node u ∈ C in this edge collection,
i.e., m(u) := |{i ∈ {1, . . . , k} : u ∈ Hi}|. We assume that m(u) � q for all nodes
u ∈ C. Then we call the hypergraph (C, {Hi : i = 1, 2, . . . , k}) a generalized (k, q)-
cycle (contained in (N,H)).

To illuminate this definition, Figures 4.1 and 4.2 show a generalized (10, 4)-cycle
and two generalized (5, 2)-cycles, respectively. Observe that every generalized cycle is
a cycle of the hypergraph, but not vice versa. In fact, the name is a concession to the
literature, where already a substructure of the generalized cycles just introduced got
this name; see [20]. We now develop an inequality supported by a generalized cycle
and its set of transitive elements. So let (C, {Hi : i = 1, 2, . . . , k}) be a generalized

(k, q)-cycle in (N,H, tr), and assume that the set tr(C) :=
⋃k

i=1 tr(Hi) of transitive
elements does not interact with C itself, i.e., tr(Hi) ∩ C = ∅ for i = 1, . . . , k. To
simplify the notation, we denote by n(u) := |{i ∈ {1, . . . , k} : u ∈ tr(Hi)}| the
multiplicity of a node u ∈ N \C with respect to the transitive sets of the edges of the
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Fig. 4.1. A generalized (10, 4)-cycle with C =
⋃k

i=1 Ni.

N5

N1

N2

N3

N4

N3

N4N5

N1

N2

Fig. 4.2. Two generalized (5, 2)-cycles. The second one illustrates the case C ⊃ ⋃k
i=1 Ni.

cycle. Furthermore, we let �α�q be the smallest integer that is bigger than or equal
to the scalar α as well as divisible by q.

Adding the transitivity constraints associated with the edges of the generalized
(k, q)-cycle, ∑

u∈Hi

xu −
∑

u∈tr(Hi)

xu � |Hi| − 1 for i = 1, . . . , k,

an appropriate multiple of upper bound constraints,

(q −m(u))xu � q −m(u) for u ∈ C \
k⋃

i=1

Ni,

as well as an appropriate multiple of nonnegativity constraints,

−(�n(u)�q − n(u))xu � 0 for u ∈ tr(C) with n(u) 
≡ 0 mod q,

and dividing the result by q, we obtain∑
u∈C

xu −
∑

u∈tr(C)

�n(u)�q
q

xu � q|C| − k

q
.
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Rounding down the right-hand side completes the proof of the following result.
Theorem 4.2. Let (N,H, tr) be an extended hypergraph, and let, for k > q,

k 
≡ 0 mod q, the hypergraph (C, {Hi : i = 1, 2, . . . , k}) be a generalized (k, q)-cycle in
(N,H) such that tr(Hi) ∩ C = ∅ for i = 1, . . . , k. Then, the generalized (k, q)-cycle
inequality

∑
u∈C

xu −
∑

u∈tr(C)

�n(u)�q
q

xu � |C| −
⌈
k

q

⌉
(4.1)

is valid for the transitive packing polytope PTP(N,H, tr).
We now relate this first class of inequalities for the transitive packing polytope

PTP(N,H, tr) to the four selected examples. For the node packing polytope, we obtain
exactly the odd cycle inequalities introduced by Padberg [42]. This is true because
all edges of the (hyper)graph have size 2, and hence all sets Ni have to be singletons.
If C is the set of nodes of an odd cycle in a graph G, then the associated odd cycle
inequality reads

x(C) � |C| − 1

2
.

The Möbius ladder inequalities form a quite prominent class of facet defining in-
equalities for the acyclic subdigraph polytope. The support of any of these inequalities
is defined as follows.

Definition 4.3 (see [25]). Let C1, C2, . . . , Ck be a sequence of different dicycles
in a digraph D = (V,A) such that the following hold:

(1) k � 3 and k odd.
(2) Ci and Ci+1, i ∈ {1, 2, . . . , k − 1}, have a directed path Pi in common; C1

and Ck have a directed path Pk in common.
(3) Given any dicycle Cj, j ∈ {1, 2, . . . , k}, set Ij := {1, 2, . . . , k} ∩ ({j − 2, j −

4, j−6, . . . }∪{j +1, j +3, j +5, . . . }). (Indices greater than k are taken modulo k+1
and shifted by +1; indices less than 0 are first shifted by −1 and then taken modulo
k + 1.) Then every set (

⋃k
i=1 Ci) \ {ai : i ∈ Ij} contains exactly one dicycle (namely,

Cj), where ai, i ∈ Ij, is any arc contained in the dipath Pi.

(4) The largest acyclic arc set in
⋃k

i=1 Ci has cardinality |⋃k
i=1 Ci| − k+1

2 .

Then the arc set M :=
⋃k

i=1 Ci is called a (k-)Möbius ladder.
From Definition 4.3(4) it follows that for any k-Möbius ladder M contained in a

digraph D the Möbius ladder inequality

x(M) � |M | − k + 1

2
(4.2)

is valid for the acyclic subdigraph polytope of D. Definition 4.3(3)–(4) seem to be
rather unhandy. There exists a large subclass, however, where these conditions are
naturally satisfied. Let C1, C2, . . . , Ck, k � 5, be a sequence of directed cycles satis-
fying (1) and (2). If no two different dicycles Ci and Cj , with j 
= i − 1, i + 1, share
a node, Grötschel, Jünger, and Reinelt [25] observed that the union of these dicycles
forms a Möbius ladder. Such a situation is depicted in Figure 4.3. We now prove
that this subclass is contained in the class of generalized cycle inequalities, as has
essentially been shown in the context of the independence system polytope by Euler,
Jünger, and Reinelt [20].
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Fig. 4.3. A 9-Möbius ladder.

Theorem 4.4. Let D be a digraph, and let, for k � 5, C1, C2, . . . , Ck be a
sequence of different dicycles in D satisfying Definition 4.3(1)–(2). If no two different
dicycles Ci and Cj, with j 
= i − 1, i + 1, have a node in common (i, j = 1, 2, . . . , k),
the Möbius ladder inequality (4.2) is contained in the class of generalized (k, 2)-cycle
inequalities for the acyclic subdigraph polytope of D.

Proof. We make use of the notation introduced in the discussion of the generalized
cycle inequalities. We choose q = 2 and let k be the number of dicycles. The sets Ni,
i = 1, 2, . . . , k, are defined by the arcs forming the dipaths Pi, respectively. For
i = 1, 2, . . . , k, the arc sets Ni and Ni+1 are contained in the hyperedge given by the

dicycle Ci+1. Observe that no arc in M =
⋃k

i=1 Ci occurs in more than two dicycles.
The claim now follows from Theorem 4.2.

Theorem 4.4 throws some light on the Möbius ladder inequalities. The way we
derived the generalized cycle inequalities explains, in particular, why the sequence of
dicycles should be odd, as was already observed by Grötschel, Jünger, and Reinelt:
“For even k, the construction does not give anything interesting” [25, p. 34]. Notice
that Theorem 4.4 remains true for those Möbius ladders where each triple of the
dicycles C1, C2, . . . , Ck does not have a common arc.

In the case of the clique partitioning polytope, we are obviously restricted to
generalized (k, 2)-cycles, as the underlying hypergraph is actually a graph, the line
graph of the given graph G = (V,E). Nevertheless, this class contains two known
classes of valid inequalities. Both are facet defining if G is a complete graph. The
first class is formed by the 2-chorded odd cycle inequalities introduced by Grötschel
and Wakabayashi [28]. Let C = {e1, e2, . . . , ek} be the set of edges of an odd cycle
in G, say ei = {ui, ui+1}, and let tr(C) = {{ui, ui+2} ∈ E : i = 1, 2, . . . , k} be its set
of 2-chords (transitive elements). (As before, indices greater than k are taken modulo
k+1 and shifted by +1.) By observing that C∩tr(C) = ∅, we may apply Theorem 4.2
and obtain the 2-chorded odd cycle inequality

k∑
i=1

x{ui,ui+1} −
k∑

i=1{ui, ui+2}∈E

x{ui,ui+2} � k − 1

2
.

However, even structures that are not cycles in G lead to generalized (k, 2)-cycle
inequalities. For k � 3 odd, assume that G contains the star formed by the sequence
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u5 u5

Fig. 4.4. Generalized (5, 2)-cycles for the clique partitioning polytope. The first is a 2-chorded
odd cycle, the second is an odd wheel. The third is neither a 2-chorded odd cycle nor an odd wheel.
The dotted edges indicate existing transitive edges (i.e., coefficient −1 in the associated inequalities).

{v, ui}, i = 1, 2, . . . , k, of incident edges. Let tr(C) denote the associated set of 2-
chords, i.e., tr(C) = {{ui, ui+1} ∈ E : i = 1, 2, . . . , k}. Again we have tr(C) ∩ C = ∅,
and Theorem 4.2 implies that the odd wheel inequality

k∑
i=1

x{v,ui} −
k∑

i=1{ui, ui+1}∈E

x{ui,ui+1} � k − 1

2

is valid for the clique partitioning polytope. It was introduced and shown to be facet
defining if G is complete by Chopra and Rao [10].

There are other structures that may form generalized (k, 2)-cycles in the line
graph of G; see, for instance, Figure 4.4. We can summarize our observations as
follows.

Theorem 4.5. The class of generalized (k, 2)-cycle inequalities for the clique par-
titioning polytope properly contains all 2-chorded odd cycle inequalities and all odd
wheel inequalities.

The odd wheel inequalities remain valid and facet defining for the partition poly-
tope [10], where they also form a subclass of the generalized (k, 2)-cycle inequalities.
In fact, it is immediate that they can be generalized such that the spokes of the wheel
are paths instead of single edges. Moreover, from the class of generalized cycle in-
equalities we get what we may call q-chorded cycle inequalities, a generalization of
the 2-chorded odd cycle inequalities of the clique partitioning polytope. Consider a
cycle of length k in G, with nodes 1, . . . , k. Assume that G also contains the edges
{i, i + q}, i = 1, . . . , k. Then we define the q-chorded cycle inequality as

k∑
i=1

x{i,i+1} −
k∑

i=1

x{i,i+q} � k −
⌈
k

q

⌉
.

Again, the edges {i, i + 1} may be replaced by paths.
We return to the study of the transitive packing polytope in general. Under

different types of weak assumptions it is possible to show that the generalized cycle
inequality (4.1) has depth 1 relative to (2.1)–(2.3). We present one condition that
turns out to be widely applicable. We still use the notation introduced during the
definition of a generalized cycle.

Lemma 4.6. Let (N,H, tr) be an extended hypergraph; let k > q, k 
≡ 0 mod q;
and let H1, . . . , Hk be the sequence of edges of a generalized (k, q)-cycle with node set
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C in (N,H). Assume that tr(Hi) ∩ C = ∅ for i = 1, 2, . . . , k. If one of the following
two conditions is satisfied, then the depth of the generalized (k, q)-cycle inequality (4.1)
relative to (2.1)–(2.3) is 1.

(i) Every edge H ∈ H \ {H1, . . . , Hk} with H ⊆ C satisfies |tr(H) ∩ C| � 2.

(ii) The generalized cycle satisfies C =
⋃k

i=1 Ni and |Ni| = 1 for i = 1, 2, . . . , k,
and every edge H ∈ H \ {H1, . . . , Hk} with H ⊆ C satisfies |H| = q.

Proof. The same proof works for both cases. For i = 1, . . . , k we let ui be an
arbitrary representative of the node subset Ni, i.e., ui ∈ Ni. We define the point
x ∈ RN as follows:

xu :=




(q − 1)/q if u ∈ {u1, . . . , uk},
1 if u ∈ C \ {u1, . . . , uk},
0 otherwise.

Whereas x belongs to the initial linear relaxation of PTP(N,H, tr), i.e., satisfies the
inequalities (2.1)–(2.3), it violates inequality (4.1). Hence this inequality is not implied
by the initial system.

Notice that Lemma 4.6(ii) is satisfied in the case of the node packing and the
clique partitioning polytopes.

Euler, Jünger, and Reinelt [20] introduced generalized cycle inequalities for the
independence system polytope and showed that they are facet defining for the inde-
pendence system induced by the edges of the generalized cycle. The generalized cycles
presented here, restricted to independence systems, extend theirs, since they assumed
that the nodes of C \ ⋃k

i=1 Ni are arranged in a certain sequence corresponding to
that of the sets Ni.

Finally, we introduce a class of inequalities also supported by generalized cycles,
which are in general weaker than the generalized cycle inequalities. This class arises
from the class of generalized cycle inequalities when we pay no attention to repetitions
of transitive elements. We call this class of valid inequalities weak generalized cycle
inequalities. For ease of referencing, we state this as a lemma.

Lemma 4.7. Let (N,H, tr) be an extended hypergraph, and let, for k > q, k 
≡
0 mod q, the hypergraph (C, {Hi : i = 1, 2, . . . , k}) be a generalized (k, q)-cycle in
(N,H) such that tr(Hi) ∩ C = ∅ for i = 1, . . . , k. Then, the weak generalized (k, q)-
cycle inequality

∑
u∈C

xu −
∑

u∈tr(C)

n(u)xu � |C| −
⌈
k

q

⌉

is valid for the transitive packing polytope PTP(N,H, tr).
Clearly, in the case n(u) � 1 for all nodes u ∈ N , a generalized (k, q)-cycle

inequality and its weak version coincide.

4.2. Generalized clique inequalities. A second well-known class of valid in-
equalities for the node packing polytope are clique inequalities; see, e.g., [42]. Such
an inequality is supported by a clique C in the given graph and is of the form

x(C) � 1.

It defines a facet if and only if the clique is maximal (with respect to set inclusion).
We now describe how the clique inequalities can be extended to the transitive packing
polytope.
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N3

N2N1

N4

Fig. 4.5. A (4, 2)-clique. The points indicate other nodes of the clique.

Definition 4.8. Let (N,H) be a hypergraph, and let N1, . . . , Nk, for integers
k � q � 2, be a collection of mutually disjoint nonempty subsets of the node set N .
For each q-element subset {i1, . . . , iq} ⊆ {1, . . . , k} of indices, we let Hi1,...,iq ∈ H be
an edge such that

⋃q
j=1 Nij ⊆ Hi1,...,iq . We assume that the edges in any collection

of intersecting edges all have one common index. Let C be the union of these edges,
C :=

⋃
1�i1<i2<···<iq�k Hi1,...,iq . Then, we call the hypergraph

(C, {Hi1,...,iq : 1 � i1 < i2 < · · · < iq � k})

a generalized (k, q)-clique (contained in (N,H)).

Figure 4.5 depicts a generalized (4, 2)-clique. Observe that the class of generalized
(3, 2)-cliques coincides with that of generalized (3, 2)-cycles. Whenever we deal with
generalized cliques in the context of extended hypergraphs, we assume that C and
its set tr(C) :=

⋃
1�i1<i2<···<iq�k tr(Hi1,...,iq ) of transitive elements are disjoint, i.e.,

tr(Hi1,...,iq ) ∩ C = ∅ for all 1 � i1 < i2 < · · · < iq � k. We denote by mtr(C) the
multiset that arises from the union of the transitive elements tr(Hi1,...,iq ). In other
words, the multiplicity of a node u ∈ mtr(C) is precisely the number of edges Hi1,...,iq

of which u is a transitive element.

Theorem 4.9. Let (N,H, tr) be an extended hypergraph, and let, for k � q � 2,
the hypergraph (C, {Hi1,...,iq : 1 � i1 < i2 < · · · < iq � k}) be a generalized (k, q)-
clique in (N,H) such that tr(Hi1,...,iq ) ∩ C = ∅ for 1 � i1 < i2 < · · · < iq � k. Then
the generalized (k, q)-clique inequality

x(C) − x(mtr(C)) � |C| − k + q − 1(4.3)

is valid for PTP(N,H, tr).

Proof. The proof is by induction on the size k of the generalized clique. Observe
that for k = q inequality (4.3) coincides with a transitivity constraint. In order to
show its validity for k > q, we consider all

(
k
�

)
generalized (-, q)-cliques that are

induced by the --element subsets of {N1, . . . , Nk} for - := �k(q − 1)/q� + 1. If we
take the sum of their corresponding generalized (-, q)-clique inequalities, we obtain an
inequality whose support coincides with C ∪ tr(C). Due to the assumptions on the
relation of edges, a node u ∈ Ni for some i ∈ {1, . . . , k} has coefficient

(
k−1
�−1

)
. The

coefficient of a node u ∈ C \⋃k
i=1 Ni is less than or equal to

(
k−1
�−1

)
. The coefficient of

each element in the multiset mtr(C) is
(
k−q
�−q

)
. In order to bring these coefficients into

a line, we add suitable multiples of the upper bound inequalities xu � 1 for nodes
u ∈ C \ ⋃k

i=1 Ni, and of the nonnegativity constraints xu � 0 for u ∈ mtr(C). The
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resulting inequality then becomes(
k − 1

-− 1

)(
x(C) − x(mtr(C))

)
�

(
k − 1

-− 1

)
|C| +

(
k

-

)
(q − -− 1).

Dividing this new inequality by
(
k−1
�−1

)
results in

x(C) − x(mtr(C)) � |C| − k + q − 1 +
k − -

-
(q − 1),

and by the choice of - we can truncate the last term of the right-hand side to 0.
Observe that in the case q = 2, the size - of the generalized cliques to be considered

in the proof of Theorem 4.9 is - =
⌈
k+1
2

⌉
. This implies that the depth of the presented

cutting plane proof is at most �log(k − 1)�. After drawing some conclusions from
Theorem 4.9 for the acyclic subdigraph polytope and the clique partitioning polytope,
we show that this bound is almost the best possible.

Again, if we consider the case of independence systems, the definition of gener-
alized cliques given above is slightly more general than that of Euler, Jünger, and
Reinelt [20]. They assumed that a node u ∈ C \⋃k

i=1 Ni cannot be contained in more

than
(
k−1
q−1

) − 1 edges (with common subindex) of the generalized (k, q)-clique. They
showed that the corresponding generalized clique inequalities are facet inducing for
the independence system with ground set C and circuits Hi1,...,iq .

Euler, Jünger, and Reinelt also observed that in the case of the acyclic subdigraph
polytope the simple k-fence inequalities are contained in the class of generalized clique
inequalities. We now show that even the k-fence inequalities (not necessarily simple)
are contained in the class of generalized (k, 2)-clique inequalities.

A simple k-fence (k � 3) is a digraph that is isomorphic to the digraph F =
(U,B1 ∪B2) on 2k nodes U = {u1, u2, . . . , u2k}, where

B1 = {(ui, uk+i) : i = 1, . . . , k} ,

B2 =

k⋃
i=1

{(uk+i, v) : v ∈ {u1, . . . , uk} \ {ui}} .

Adopting the notation of [25], we call the arcs in B1 pales and the arcs in B2 pickets.
A k-fence is a digraph that arises from a simple k-fence by repeated subdivision of
arcs; i.e., an arc (u, v) may be replaced by (u,w) and (w, v), where w is a new node,
and so on. To keep the notation simple, we assume that F = (U,B1 ∪B2) is a k-fence
and call the arcs on the directed paths from ui to uk+i pales and those on the directed
paths from uk+i to v, v 
= ui, pickets as well. If D is a digraph that contains the
k-fence F , the k-fence inequality

x(B1 ∪B2) � |B1 ∪B2| − k + 1(4.4)

defines a facet of the acyclic subdigraph polytope of D; see [25].
Theorem 4.10. Let D be a digraph, and let F = (U,B1 ∪B2) be a k-fence con-

tained in D. Then the k-fence inequality (4.4) is contained in the class of generalized
(k, 2)-clique inequalities for the acyclic subdigraph polytope of D.

Proof. We continue to use the notation introduced when we defined generalized
cliques. We set Ni to be the set of pales on the path from ui to uk+i for i = 1, 2, . . . , k.
Furthermore, for 1 � i < j � k, we define Hij to be the dicycle in F formed by the
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set of pales on the paths from ui to uk+i and from uj to uk+j as well as the pickets on
the paths from uk+i to uj and uk+j to ui. Thus the k-fence F defines a generalized
(k, 2)-clique, and its k-fence inequality coincides with the corresponding generalized
(k, 2)-clique inequality.

Whereas the class of generalized (k, q)-clique inequalities for the acyclic subdi-
graph polytope is richer than the class of k-fence inequalities, the class of generalized
(k, 2)-clique inequalities turns out to be precisely the class of (1, k)-2-partition in-
equalities for the clique partitioning polytope of a graph G = (V,E). (Here, q > 2 is
not possible.) The latter inequalities are due to Grötschel and Wakabayashi [28] and
are of the following form. Let v, u1, u2, . . . , uk ∈ V be a set of k + 1 vertices such that
{ui, v} ∈ E for i = 1, 2, . . . , k. Then the inequality

k∑
i=1

x{ui,v} −
∑

1� i<j�k
{ui, uj}∈E

x{ui,uj} � 1(4.5)

is valid for the clique partitioning polytope. It is facet defining if G is complete;
see [28].

Theorem 4.11. The class of generalized (k, 2)-clique inequalities for the clique
partitioning polytope of a graph G coincides with the class of (1, k)-2-partition inequal-
ities.

Proof. Let us first consider a (1, k)-2-partition inequality (4.5). Since the edges
{ui, v} and {uj , v} for i, j = 1, 2, . . . , k, i 
= j, form a hyperedge and since the
transitive edges of these hyperedges are distinct from the edges {ui, v} ∈ E for
i = 1, 2, . . . , k, this inequality is a generalized (k, 2)-clique inequality. On the other
hand, a generalized (k, 2)-clique of the line graph of G always leads to the support
of a (1, k)-2-partition inequality: since all participating edges in G have to be pair-
wise incident, either they share one common node or we have k = 3. In the former
case they form the support of a (1, k)-2-partition inequality. The latter case contra-
dicts the assumption that the generalized clique and its transitive elements do not
intersect.

For the partition polytope, there can exist generalized (k, q)-clique inequalities
for any q.

We are now about to show that the depth of the generalized (k, 2)-clique inequal-
ities tends to infinity with k.

Theorem 4.12. Let (C, {Hij : 1 � i < j � k}) be a generalized (k, 2)-clique of
the extended hypergraph (N,H, tr). Assume that Ni =

(⋂
i<j�k Hij

)⋂ (⋂
1�j<i Hji

)
,

for i = 1, 2, . . . , k, and that each edge H ∈ H such that H ⊆ C satisfies Ni ∪Nj ⊆ H
for some i, j ∈ {1, 2, . . . , k}, i 
= j. Then the depth of the generalized (k, 2)-clique
inequality (4.3) relative to (2.1)–(2.3) is at least log k − 1.

In order to prove this theorem we make use of the following lemma of Chvátal,
Cook, and Hartmann [12].

Lemma 4.13 (see [12]). Let P be a rational polyhedron in RN . Let y and z
be points in RN , and let µ1, µ2, . . . , µd be positive numbers. Furthermore, for t =
0, 1, . . . , d set

x(t) := y −
t∑

i=1

1

µi
z.

If y ∈ P and if, for all t = 1, . . . , d, every inequality ax � β valid for P ∩ ZN with
a ∈ ZN and az < µt satisfies ax(t) � β, then x(t) ∈ P (t) for all t = 0, 1, . . . , d.
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Proof of Theorem 4.12. For i = 1, . . . , k let ui be an arbitrary representative of the
node subset Ni, i.e., ui ∈ Ni. Let C1 be the union of these nodes ui, C1 :=

⋃k
i=1{ui}.

Moreover, denote by C2 the rest of the generalized (k, 2)-clique C, that is, C2 := C\C1.
For a nonnegative integer t we define

x(t) := χC2 + 2−(t+1)χC1 .

If t < log k − 1, then

x(t)(C)−x(t)(mtr(C)) = χC2χC2 + 2−(t+1)χC1χC1 = |C|−k + 2−(t+1)k > |C|−k + 1,

and so x(t) fails to satisfy the generalized (k, 2)-clique inequality (4.3). It remains to
show that x(t) ∈ P (t) for all t. For this we use Lemma 4.13 with y := χC2 + 1

2χ
C1 ,

z := χC1 , and µt := 2t+1. Observe that y is a solution to (2.1)–(2.3). Now consider
an arbitrary inequality ax � β, valid for PTP(N,H, tr) and such that a ∈ ZN and
aχC1 < µt. We need to verify that ax(t) � β. Whereas this is obvious if aχC1 � 0, in
the case aχC1 > 0 we have

ax(t) = aχC2 +
1

µt
aχC1 < aχC2 + 1 � a(χC2 + χ{ui}) � β

for a representative ui such that aui � 1. The last inequality follows from χC2+χ{ui} ∈
PTP(N,H, tr).

Theorem 4.12 was proved before for the special instances formed by the clique
inequalities of the node packing polytope [11] and by the simple k-fence inequalities
of the acyclic subdigraph polytope [12]. Notice that the assumption of Theorem 4.12
is also satisfied by the k-fence inequalities since each dicycle contained in a fence uses
pales between at least two different pairs of nodes. Moreover, Theorem 4.12 also
applies to the (1, k)-2-partition inequalities of the clique partitioning polytope.

4.3. Generalized antihole inequalities. Another class of valid inequalities
for the node packing polytope is supported by odd antiholes. An odd antihole in
a graph is the complement of an odd cycle of length at least five without a chord.
Let O denote the set of vertices of an odd antihole. Then the odd antihole inequality
associated with O is

x(O) � 2.

Again, it turns out that these inequalities form a special case of a more general
principle.

Definition 4.14. Let (N,H) be a hypergraph, and let q and s be integers such
that s � q � 2. For convenience, we set k := qs + 1. Let N1, N2, . . . , Nk be a
sequence of mutually disjoint nonempty subsets of the node set N . Moreover, for
each - ∈ {1, 2, . . . , k} and for every q-element set of indices {i1, i2, . . . , iq} ⊆ {-, - +
1, . . . , - + s− 1} (where indices greater than k are taken modulo k + 1 and shifted by
+1) we let the set H�

i1,i2,...,iq
be an edge such that

⋃q
j=1 Nij ⊆ H�

i1,i2,...,iq
. In addition,

we assume, for each - ∈ {1, 2, . . . , k}, that the edges in any collection of intersecting
edges of type H�

i1,i2,...,iq
all have one common (sub)index. We denote by O� the union

of these edges, O� :=
⋃

��i1<i2<···<iq��+s−1 H�
i1,i2,...,iq

, and by O the union of all these

edges, O :=
⋃k

�=1 O�. Moreover, let m̃(u) := |{- ∈ {1, 2, . . . , k} : u ∈ O�}| for a node
u ∈ O. We assume that m̃(u) � s for all nodes u ∈ O. Then the hypergraph

(O, {H�
i1,i2,...,iq : - � i1 < i2 < · · · < iq � - + s− 1 for some - ∈ {1, 2, . . . , k}})
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N6

N1 N5

N4

N7

N2

N3

Fig. 4.6. A generalized (3, 2)-antihole (with O =
⋃7

i=1 Ni).

is called a generalized (s, q)-antihole (contained in (N,H)).
Figure 4.6 depicts a generalized (3, 2)-antihole. Notice that it may happen that

the same edge wears different names. For instance, if O =
⋃k

i=1 Ni and q < s, then

H�
�+s−q,...,�+s−1 = H�+1

�+s−q,...,�+s−1. Given a generalized antihole that is contained
in a given extended hypergraph, we define ñ(u) to be the multiplicity of a node u
contained in the transitive sets associated with that generalized antihole, i.e., ñ(u) :=
|{H�

i1,i2,...,iq
: u ∈ tr(H�

i1,i2,...,iq
) for some - ∈ {1, 2, . . . , k}, - � i1 < i2 < · · · < iq �

-+ s− 1}|. Thus, if the same edge occurs more often under different names, we count

the number of names. We set tr(O) :=
⋃k

�=1(
⋃

��i1<i2<···<iq��+s−1 tr(H�
i1,i2,...,iq

)).

Theorem 4.15. Let (N,H, tr) be an extended hypergraph, and let the hypergraph
(O, {H�

i1,i2,...,iq
: - � i1 < i2 < · · · < iq � - + s − 1 for some - ∈ {1, 2, . . . , k}}) be a

generalized (s, q)-antihole in (N,H) such that tr(O) ∩ O = ∅. Then, the generalized
(s, q)-antihole inequality

∑
u∈O

xu −
∑

u∈tr(O)

�ñ(u)�s
s

xu � |O| − q(s− q + 1) − 1(4.6)

is valid for PTP(N,H, tr). It has a cutting plane proof from (2.1)–(2.3) of depth at
most �log(s− 1)� + 1.

Proof. Let N1, N2, . . . , Nk be the sequence of nodes underlying the generalized
(s, q)-antihole. Notice that for every - ∈ {1, 2, . . . , k} the edges {H�

i1,i2,...,iq
: - �

i1 < i2 < · · · < iq � - + s − 1} induce a generalized (s, q)-clique. Each set Ni is
contained in precisely s of these k cliques. By adding up the k associated (s, q)-
clique inequalities, the appropriate number of upper bound constraints xu � 1 for
u ∈ O \ ⋃k

i=1 Ni (namely, s − m̃(u) many), as well as the appropriate number of
nonnegativity constraints for each element u ∈ tr(O) (namely, �ñ(u)�s − ñ(u)), we
obtain that

s
∑
u∈O

xu −
∑

u∈tr(O)

�ñ(u)�sxu � s|O| − k(s− q + 1)
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Fig. 4.7. From left to right: a generalized cycle, a generalized antihole, and a generalized clique
with associated transitive elements in the case of the clique partitioning problem.

is valid for PTP(N,H, tr). Division by s and taking the floor of the right-hand side
gives the desired inequality. The bound on the depth of its cutting plane proof follows
immediately from that for the generalized clique inequalities.

To see that we indeed derive from Theorem 4.15 the usual odd antihole inequalities
for the node packing polytope of a graph G, we proceed as follows. Let O be the node
set of an odd antihole in G, O = {u1, u2, . . . , uk}, and assume that u� and u�+s as
well as u� and u�+s+1 are not adjacent, for - = 1, 2, . . . , k. We now relate this to
a generalized antihole. Clearly, q = 2, and hence |O| = k = 2s + 1. It remains to
identify the edges. For - ∈ {1, 2, . . . , k} we take as edges H�

ij the edges of the clique
induced by the nodes u�, u�+1, . . . , u�+s−1. Notice that several edges in G are taken
more than once but under different names. Finally, observe that the right-hand side
of (4.6) simplifies to 2.

Since line graphs do not contain odd antiholes (with more than five nodes), there
do not exist generalized antihole inequalities for the clique partitioning polytope when
we assume that s � 3 and that u� and u�+s as well as u� and u�+s+1 are not linked
by a hyperedge, for each - = 1, 2, . . . , k. Others may well exist; see, for instance,
Figure 4.7. We record this as a lemma.

Lemma 4.16. Let G = (V,E) be a graph, and let v, u1, u2, . . . , uk ∈ V , be distinct
nodes such that {v, ui} ∈ E, for i = 1, 2, . . . , k, for k = 2s + 1, and s � 2. Define
the set T := {{ui, uj} ∈ E : - � i < j � - + s − 1 for some - ∈ {1, 2, . . . , k}}. The
inequality

k∑
i=1

x{v,ui} −
∑

{ui,uj}∈T
x{ui,uj} � 2

is valid for the clique partitioning polytope of G. (Again, indices greater than k are
taken modulo k + 1 and shifted by +1.)

We note that generalized (2, 2)-antihole inequalities of the transitive packing poly-
tope coincide with generalized (5, 2)-cycle inequalities. So far, antihole inequalities
have not been exploited for the acyclic subdigraph polytope or the partition polytope.

4.4. Generalized antiweb inequalities. The main idea in the derivation of
the generalized antihole inequalities was to combine generalized clique inequalities in a
manner oriented on the cutting plane proof of generalized cycle inequalities. This can
be generalized and leads for the node packing polytope to the antiweb inequalities [52].
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For integers 1 � s � k, a (k, s)-antiweb is a graph with node set W = {u1, u2, . . . , uk}
such that each node ui is adjacent to all other nodes but not to the max{0, k−2s+1}
nodes ui+s, ui+s+1, . . . , ui+k−s. (Again, indices greater than k are taken modulo k+1
and shifted by +1.) The associated antiweb inequality is

x(W ) �
⌊
k

s

⌋
.

We proceed by introducing special hypergraphs that we call generalized antiwebs.
Definition 4.17. Let (N,H) be a hypergraph, and let k, s, and q be integers such

that k � s � q � 2. Let N1, N2, . . . , Nk be a sequence of mutually disjoint nonempty
subsets of the node set N . For each - ∈ {1, 2, . . . , k} and each q-element set of indices
{i1, i2, . . . , iq} ⊆ {-, -+1, . . . , -+s−1} (where indices are taken modulo k+1 and shifted
by +1), we let H�

i1,i2,...,iq
∈ H be an edge such that

⋃q
j=1 Nij ⊆ H�

i1,i2,...,iq
. In addition,

we assume, for each - ∈ {1, 2, . . . , k}, that the edges in any collection of intersecting
edges of type H�

i1,i2,...,iq
all have one common (sub)index. For each -, we denote by W �

the union of the associated edges, W � :=
⋃

��i1<i2<···<iq��+s−1 H�
i1,i2,...,iq

. Moreover,

we let W denote the union of all these edges, W :=
⋃k

�=1 W �. Again, for u ∈ W we
let m̃(u) be the multiplicity of u with respect to its occurrence in W �, - = 1, 2, . . . , k,
i.e., m̃(u) := |{- ∈ {1, 2, . . . , k} : u ∈ W �}|. If m̃(u) � s for all u ∈ W , then we call
the hypergraph

(W, {H�
i1,i2,...,iq : - � i1 < i2 < · · · < iq � - + s− 1 for some - ∈ {1, 2, . . . , k}})

a generalized (k, s, q)-antiweb (contained in (N,H)).
Theorem 4.18. Let (N,H, tr) be an extended hypergraph, and let the hypergraph

(W, {H�
i1,i2,...,iq

: - � i1 < i2 < · · · < iq � - + s − 1 for some - ∈ {1, 2, . . . , k}}) be a

generalized (k, s, q)-antiweb in (N,H) such that tr(W )∩W = ∅. Then, the generalized
(k, s, q)-antiweb inequality

∑
u∈W

xu −
∑

u∈tr(W )

�ñ(u)�s
s

xu �
⌊
s|W | − k(s− q + 1)

s

⌋
(4.7)

is valid for PTP(N,H, tr). It has a cutting plane proof from (2.1)–(2.3) of depth at

most �log(s−1)�+ 1. Here, tr(W ) :=
⋃k

�=1(
⋃

��i1<i2<···<iq��+s−1 tr(H�
i1,i2,...,iq

)) and

ñ(u) := |{H�
i1,i2,...,iq

: u ∈ tr(H�
i1,i2,...,iq

) for some - ∈ {1, 2, . . . , k}, - � i1 < i2 <

· · · < iq � - + s− 1}|.
Proof. The cutting plane proof goes along the line of the proof of the validity of

generalized antihole inequalities (Theorem 4.15) and is therefore omitted.
It follows from their construction that generalized (k, s, q)-antiweb inequalities

subsume all the former classes of inequalities for the transitive packing polytope
PTP(N,H, tr). In fact,

• if q = s and if s does not divide k, we obtain the class of generalized (k, q)-
cycle inequalities;

• if s = k, the class of generalized antiweb inequalities contains the class of
generalized (k, q)-clique inequalities;

• if k = qs + 1, we have the class of generalized (s, q)-antihole inequalities.
Laurent [32] previously extended antiwebs to the independence system polytope;

however, the inequalities (4.7) restricted to this setting are more general. Laurent
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used one-element sets Ni and edges that are precisely the union of q of these. She
showed that such an inequality is facet defining for the polytope associated with the
independence system defined by the circuits of her antiweb.

4.5. Odd partition inequalities. In this section, we introduce another new
class of inequalities for the transitive packing polytope. It is an extension of a class of
inequalities recently proposed by Caprara and Fischetti [9] for the acyclic subdigraph
polytope.

Assume that we are given an extended hypergraph (N,H, tr). Let H1, . . . , Hk be
a collection of distinct edges of H, and let m(u) and n(u) denote the multiplicity of a
node u ∈ N in this collection and the associated set of transitive elements, respectively.
That is, m(u) := |{i ∈ {1, . . . , k} : u ∈ Hi}| and n(u) := |{i ∈ {1, . . . , k} : u ∈
tr(Hi)}|. We denote the difference of these two numbers by d(u), d(u) := m(u)−n(u).

Let W be the union of all the nodes involved, W :=
⋃k

i=1(Hi ∪ tr(Hi)), and let W odd

be the set of those nodes that occur either in an odd number of edges Hi or in an
odd number of transitive sets tr(Hi) but not both, W odd := {u ∈ W : d(u) odd}.

Furthermore, let (W odd
1 ,W odd

2 ) be a partition of W odd such that
∑k

i=1|Hi|+|W odd
1 |−k

is odd. (W odd
1 = ∅ or W odd

2 = ∅ is possible.)
Taking the sum of the constraints∑

u∈Hi

xu −
∑

u∈tr(Hi)

xu � |Hi| − 1 for i = 1, . . . , k,

xu � 1 for u ∈ W odd
1 ,

−xu � 0 for u ∈ W odd
2 ,

and dividing the result by 2, we obtain

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1

d(u) + 1

2
xu

+
∑

u∈W odd
2

d(u) − 1

2
xu �

∑k
i=1|Hi| + |W odd

1 | − k

2
.

(4.8)

Rounding down the right-hand side gives the following inequality that is valid for the
transitive packing polytope PTP(N,H, tr),

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1

d(u) + 1

2
xu

+
∑

u∈W odd
2

d(u) − 1

2
xu �

∑k
i=1|Hi| + |W odd

1 | − k − 1

2
.

(4.9)

We call inequalities of type (4.9) odd partition inequalities. We continue by pointing
out some special cases in which inequality (4.9) is dominated by other inequalities, as
well as some other cases in which it has depth 1 relative to (2.1)–(2.3) and is therefore
interesting.

Lemma 4.19. Let (N,H, tr) be a hypergraph with associated transitive elements,

and let H1, . . . , Hk be a collection of distinct edges of H. If (Hk∪tr(Hk))∩⋃k−1
i=1 (Hi∪

tr(Hi)) = ∅, then the odd partition inequality (4.9) for H1, . . . , Hk is implied by the
initial inequalities (2.1)–(2.3) and inequality (4.9) for H1, . . . , Hk−1.
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Proof. Observe first that Hk ∪ tr(Hk) ⊆ W odd. Thus the left-hand side of in-
equality (4.9) can be expressed as follows:

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1 \(Hk∪tr(Hk))

d(u) + 1

2
xu

+
∑

u∈W odd
2 \(Hk∪tr(Hk))

d(u) − 1

2
xu +

∑
u∈Hk∩W odd

1

xu −
∑

u∈tr(Hk)∩W odd
2

xu.

Notice that the first three terms precisely form the left-hand side of inequal-
ity (4.8) for H1, . . . , Hk−1 (where we use the natural restriction of W odd

1 and W odd
2 ).

We continue by distinguishing three cases, namely,
(i) |(Hk ∩W odd

2 ) ∪ (tr(Hk) ∩W odd
1 )| � 2,

(ii) |(Hk ∩W odd
2 ) ∪ (tr(Hk) ∩W odd

1 )| = 1, and finally,
(iii) |(Hk ∩W odd

2 ) ∪ (tr(Hk) ∩W odd
1 )| = 0.

In case (i), we add to inequality (4.8) for H1, . . . , Hk−1 the inequalities

xu � 1 for u ∈ Hk ∩W odd
1 and − xu � 0 for u ∈ tr(Hk) ∩W odd

2 .

Then the left-hand side of the resulting inequality coincides with that of inequal-
ity (4.9). The numerator of the right-hand side is

k−1∑
i=1

|Hi| + |W odd
1 \ (Hk ∪ tr(Hk))| − k + 1 + 2|Hk ∩W odd

1 |

=

k∑
i=1

|Hi| + |W odd
1 | − k + 1 − (|Hk ∩W odd

2 | + |tr(Hk) ∩W odd
1 |),

which is, because of assumption (i), less than or equal to

k∑
i=1

|Hi| + |W odd
1 | − k − 1,

which is the numerator of the right-hand side of inequality (4.9) for H1, . . . , Hk. Hence
in this case inequality (4.9) has depth 0 relative to (2.1)–(2.3).

Since we assumed
∑k

i=1|Hi| + |W odd
1 | − k to be odd in order to derive inequal-

ity (4.9), the assumption in case (ii) guarantees that the numerator of the right-hand
side of inequality (4.8) for H1, . . . , Hk−1 will be odd, too. Hence, the following in-
equality is valid for PTP(N,H, tr), which is inequality (4.9) for H1, . . . , Hk−1:

∑
u∈W\W odd

d(u)

2
xu +

∑
u∈W odd

1 \(Hk∪tr(Hk))

d(u) + 1

2
xu

+
∑

u∈W odd
2 \(Hk∪tr(Hk))

d(u) − 1

2
xu �

∑k−1
i=1 |Hi| + |W odd

1 \ (Hk ∪ tr(Hk))| − k

2
.

By adding to this inequality the inequalities

xu � 1 for u ∈ Hk ∩W odd
1 and − xu � 0 for u ∈ tr(Hk) ∩W odd

2 ,
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we obtain inequality (4.9), which is therefore implied by (4.9) for H1, . . . , Hk−1 and
the bound constraints (2.2) and (2.3).

In case (iii), we simply add the transitivity constraint (2.1) for Hk to inequal-
ity (4.8) for H1, . . . , Hk−1. It follows that inequality (4.9) again has depth 0 relative
to system (2.1)–(2.3).

Lemma 4.19 reflects, in particular, the trivial fact that we cannot hope to obtain
a stronger inequality by adding inequalities with mutually disjoint support. We now
present a condition that is sufficient to ensure that inequality (4.9) has depth 1, which
leads us back to cycles in the hypergraph (N,H).

Lemma 4.20. Let (N,H, tr) be an extended hypergraph, and let H1, . . . , Hk be
a collection of distinct edges in H, k � 2. Let the sets W odd, W odd

1 , and W odd
2 be

defined as before. Assume that tr(Hj) ∩
⋃k

i=1 Hi = ∅ for j = 1, . . . , k. If
• there exist k distinct nodes u1, . . . , uk ∈ N such that ui ∈ Hi ∩ Hi+1 but

ui /∈ Hj for j 
= i, i + 1,
• the transitive set tr(H) of an edge H 
= Hi (i = 1, . . . , k) that satisfies

H ⊆ ⋃k
i=1 Hi intersects

⋃k
i=1 Hi either in at least one node different from

u1, . . . , uk or in at least two nodes from u1, . . . , uk, and
• W odd

1 ⊆ (⋃k
i=1 Hi

) \ {u1, u2, . . . , uk},
then the depth of the odd partition inequality (4.9) relative to (2.1)–(2.3) is 1.

Proof. Define the point x ∈ RN as follows:

xu :=




1/2 if u ∈ {u1, . . . , uk},
1 if u ∈ (⋃k

i=1 Hi

) \ {u1, . . . , uk},
0 otherwise.

Whereas x belongs to the initial linear relaxation of PTP(N,H, tr), i.e., satisfies in-
equalities (2.1)–(2.3), it violates inequality (4.9). Hence this inequality is not implied
by the initial system.

As mentioned before, Caprara and Fischetti [9] introduced the odd partition
inequalities for the acyclic subdigraph polytope in order to show that a subclass
of the Möbius ladder inequalities can be derived from the initial relaxation by a
cutting plane proof of length 1, where all coefficients used are either 0 or 1

2 . In-
deed, if (C, {Hi : i = 1, 2, . . . , k}) is a generalized (k, 2)-cycle, we obtain the as-
sociated generalized (k, 2)-cycle inequality as an odd partition inequality by setting
W odd

1 := {u ∈ C : m(u) odd} and W odd
2 := {u ∈ tr(C) : n(u) odd}. In section 4.1,

we showed that the subclass of Möbius ladder inequalities where each triple of par-
ticipating dicycles has an empty intersection is contained in the class of generalized
(k, 2)-cycle inequalities for the acyclic subdigraph polytope. This implies Caprara
and Fischetti’s result.

5. Transitive packing in graphs. An important subproblem of the transitive
packing problem is formed by the instances where the given hypergraph is actually
a graph. This section is devoted to discussing the polytopes associated with these
instances in more detail. To avoid confusion, we still use the notation (N,H, tr)
but assume throughout this section that |H| = 2 for all H ∈ H. We call the triple
(N,H, tr) an extended graph. The transitive packing polytope is then given as

PTP(N,H, tr) = conv


x ∈ {0, 1}N : xu + xv −

∑
w∈tr({u,v})

xw � 1 for {u, v} ∈ H

 .



358 RUDOLF MÜLLER AND ANDREAS S. SCHULZ

Recall that both the node packing polytope and the clique partitioning polytope
are of this flavor. For the node packing polytope, it is known that all facet defining
inequalities with right-hand side 1 are clique inequalities; see [42]. This remains true
for the transitive packing polytope of the following extended graphs.

Theorem 5.1. Let (N,H, tr) be an extended graph such that for every clique C
in (N,H) the following condition is satisfied:

Each node u ∈ tr(C) belongs to tr({v, w}) for a unique edge {v, w} induced
by C and satisfies either
– {u, v}, {u,w} /∈ H, or
– {u, v} /∈ H, {u,w} ∈ H, and v ∈ tr({u,w}), or
– {u,w} /∈ H, {u, v} ∈ H, and w ∈ tr({u, v}), or
– {u, v}, {u,w} ∈ H, and v ∈ tr({u,w}) and w ∈ tr({u, v}).

Then, any facet defining inequality cx � 1 (with c integral) of the transitive packing
polytope PTP(N,H, tr) either is of the form xu � 1 or is a generalized (k, 2)-clique
inequality.

Proof. Since every singleton is a transitive packing, the coefficients of the vector c
have value at most 1. If c has exactly one coefficient with value 1, indexed by, say,
u ∈ N , then c = χ{u}. Otherwise, cx � 1 would be dominated by xu � 1. So we may
assume from now on that the number of coefficients of c with value 1 is at least two.
Let C be the set of nodes u such that cu = 1. Since cx � 1 is valid, the nodes in C
have to be pairwise adjacent, i.e., they induce a clique in (N,H). From this validity
it also follows that tr(C) ∩ C = ∅. It remains to be observed that the coefficient cu
of a transitive element u ∈ tr(C) is not zero. This follows from the assumptions with
respect to transitive elements and the validity of cx � 1 for PTP(N,H, tr). We just
need to observe that the node set formed by u and the pair of nodes v, w ∈ C such
that u ∈ tr({v, w}) is a transitive packing in (N,H, tr).

The assumptions made in Theorem 5.1 are satisfied, for instance, by the extended
graphs corresponding to instances of the clique partitioning problem. Hence, if a
graph G has no isolated edges, (1, k)-2-partition inequalities are the only facet defining
inequalities with right-hand side 1 of the clique partitioning polytope of G. The latter
observation was independently made in [41].

Notice that the assumptions of Theorem 4.12 are always satisfied for transitive
packing problems in graphs. Consequently, the generalized (k, 2)-clique inequalities
have depth at least log k − 1, relative to (2.1)–(2.3).

If the transitive elements of a clique C do not interact with C itself, the clique
and its transitive elements form the support of valid inequalities, where the nodes of
the cliques have coefficients greater than one.

Theorem 5.2. Let (N,H, tr) be an extended graph, and let C be the node set of
a generalized (k, 2)-clique in (N,H) such that tr(C) ∩ C = ∅. Moreover, let t � 1 be
an integer. Then, the t-reinforced generalized (k, 2)-clique inequality

tx(C) − x(mtr(C)) � t(t + 1)

2
(5.1)

is valid for the transitive packing polytope PTP(N,H, tr).
Proof. Let x be the incidence vector of a transitive packing in (N,H, tr), and

assume that x(C) = µ. Consequently, x(mtr(C)) � µ(µ − 1)/2. Thus the left-hand
side of inequality (5.1) is less than or equal to tµ− µ(µ− 1)/2. Since

tµ =
µ(µ− 1)

2
+

t(t + 1)

2
− (t− µ)(t− µ + 1)

2
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and the last term is nonnegative, x satisfies inequality (5.1).

The proof of Theorem 5.2 implies immediately that the faces of two nonempty face
defining t-reinforced generalized (k, 2)-clique inequalities with the same support but
different values of t in general contain different sets of incidence vectors of transitive
packings. The proof also implies a range on t in order to ensure that the intersec-
tion of the transitive packing polytope and the hyperplane defined by a t-reinforced
generalized (k, 2)-clique inequality is nonempty.

Corollary 5.3. Let (N,H, tr) be an extended graph, and let C be the node set of
a generalized (k, 2)-clique in (N,H) such that tr(C)∩C = ∅. Let t � 1 be an integer.
If the t-reinforced generalized (k, 2)-clique inequality (5.1) defines a nonempty face of
the transitive packing polytope PTP(N,H, tr), then t � |C|.

The bound on t can be strengthened if we assume that the t-reinforced generalized
(k, 2)-clique inequality is facet defining.

Lemma 5.4. Let (N,H, tr) be an extended graph, and let C be the node set of a
generalized (k, 2)-clique in (N,H) such that tr(C) ∩ C = ∅. Let t � 1 be an inte-
ger. If the t-reinforced generalized (k, 2)-clique inequality (5.1) induces a facet of the
transitive packing polytope PTP(N,H, tr), then t � |C| − 2.

Proof. The proof is by contradiction. Because of Corollary 5.3, we are left with
the cases t = |C| and t = |C| − 1. In the former case each point x contained in
the facet under consideration would satisfy x(C) = |C|. Hence this facet would be
contained in all faces induced by the upper bound constraints xu � 1 for u ∈ C,
a contradiction. In the latter case the (|C| − 1)-reinforced generalized (k, 2)-clique
inequality (5.1) turns out to be the sum of all the transitivity constraints induced by
pairs of nodes of the clique C, again a contradiction.

One might ask whether there exist transitive packing polytopes of extended graphs
such that the t-reinforced generalized (k, 2)-clique inequalities are facet defining. This
is indeed the case. Oosten, Rutten, and Spieksma [41] showed that the t-reinforced
generalized (k, 2)-clique inequalities define facets of the clique partitioning polytope
of a complete graph, for t � k − 2 of course.

One appealing aspect of our suggestion to treat suitable problems in the transitive
packing context is the opportunity to use knowledge that is available, not only for the
transitive packing polytope itself but also for some of its special cases. We ellucidate
this by considering a simple example. Let us assume that the underlying graph G of
a clique partitioning problem is bipartite. This implies for the associated extended
graph (N,H, tr) that tr(H) = ∅ for all edges H ∈ H. In other words, the transitive
packing (clique partitioning) polytope of G coincides with the node packing polytope
of its line graph (N,H). Since node packings in line graphs correspond one-to-one
with matchings in the original graphs, we obtain the following result.

Lemma 5.5. Let G = (V,E) be a bipartite graph. The clique partitioning polytope
of G is completely characterized by the following linear inequalities:

xe � 0 for all edges e ∈ E,

x(C) � 1 for all sets C ⊆ E of pairwise incident edges.

It also follows that the clique partitioning problem on bipartite graphs reduces to
a matching problem and can hence be solved in polynomial time. This example is,
as already indicated, an instance of a more general point of view. Whenever we can
interpret a given problem as a transitive packing problem, and whenever the extended
graph (or even hypergraph) of an instance of this problem does not have transitive
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elements but does have a structure such that the corresponding node packing (inde-
pendence system) polytope can explicitly be described by linear inequalities, the same
holds for the polytope associated with the original problem.

6. Separation. After introducing several classes of valid inequalities for the
transitive packing polytope, one question that arises is whether we can use these
inequalities efficiently in cutting plane algorithms for attacking the transitive packing
problem. This topic is discussed in this section. We concentrate on generalized cycle
and odd partition inequalities.

Given an integer polyhedron PI = conv{x ∈ Zn : Ax � b}, where A ∈ Zm×n

and b ∈ Zm, a {0, 1
2}-Gomory–Chvátal cut is a valid inequality for PI of the form

λAx � �λb�, with λ ∈ {0, 1
2}m and λA ∈ Zn. In other words, a {0, 1

2}-Gomory–
Chvátal cut has a cutting plane proof of length 1 from Ax � b, and the coefficients in
the corresponding linear combination belong to {0, 1

2} only. Caprara and Fischetti [9]
showed that the separation problem for any point y ∈ Qn and the class of {0, 1

2}-
Gomory–Chvátal cuts is solvable in time polynomially bounded in the input size
of A, b, and y, assuming that A has, at most, two odd coefficients in each row.
For 0/1 polytopes PI this remains true for a relaxation {x ∈ Rn : A′x � b′} of
{x ∈ Rn : Ax � b}, where A′x � b′ is obtained from Ax � b by adding systematically
lower bound constraints xu � 0 and upper bound constraints xu � 1 such that A′

has, at most, two odd coefficients in each row. More precisely, we may replace each
inequality

∑
u aiuxu � bi with more than three odd coefficients by

aivxv + aiwxw +
∑

u:aiu even

aiuxu +
∑
u∈Li

(aiu − 1)xu +
∑
u∈Ui

(aiu + 1)xu � bi + |Ui|

for all elements v, w with odd coefficients and for all (including trivial) partitions
(Li, Ui) of {u ∈ {1, 2, . . . , n}\{v, w} : aiu odd} for i = 1, 2, . . . ,m. Although this leads
in general to an exponential number of rows, the separation problem associated with
the {0, 1

2}-Gomory–Chvátal cuts of this relaxation can still be solved in polynomial
time; see [9]. Observe that a weak generalized (k, 2)-cycle inequality can be derived
as a {0, 1

2}-Gomory–Chvátal cut of such a relaxation when |Hi| = 2 for all edges Hi

of the supporting cycle (C, {Hi : i = 1, 2, . . . , k}). (Indeed, we do not need the upper
bound constraints here.)

Theorem 6.1. There exists a polynomial time algorithm that, for any extended
hypergraph (N,H, tr) and for any point y ∈ QN , either asserts that y satisfies all
weak generalized (k, 2)-cycle inequalities supported by cycles (C, {Hi : i = 1, 2, . . . , k})
such that |Hi| = 2, i = 1, 2, . . . , k, or finds an inequality violated by y from a class
of valid inequalities for PTP(N,H, tr) that contains all weak generalized (k, 2)-cycle
inequalities supported by cycles (C, {Hi : i = 1, 2, . . . , k}) such that |Hi| = 2, i =
1, 2, . . . , k.

Notice that this captures, in particular, all transitive packing problems in graphs.
It covers, for instance, the 2-chorded odd cycle inequalities and the odd wheel inequal-
ities for the clique partitioning and the partition polytope. The separation problem
for the former class has previously been solved in [9, 33], the latter one in [17].

For the odd partition inequalities, we make use of both lower and upper bound
constraints. Let us assume that H1, H2, . . . , Hk is the underlying collection of edges
and that d(u) odd implies that either m(u) = 1 and n(u) = 0 or m(u) = 0 and
n(u) = 1 for all nodes u ∈ N . For a given partition (W odd

1 ,W odd
2 ) of W odd the

corresponding odd partition inequality can be obtained as a {0, 1
2}-Gomory–Chvátal
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cut from the relaxed system∑
u∈Hi

xu −
∑

u∈tr(Hi)

xu +
∑

u∈(Hi∪tr(Hi))∩W odd
1

xu −
∑

u∈(Hi∪tr(Hi))∩W odd
2

xu

� |Hi| + |(Hi ∪ tr(Hi)) ∩W odd
1 | − 1

for i = 1, 2, . . . , k. For fixed κ, we denote by Cκ the class of odd partition inequalities
such that |Hi| � κ, such that d(u) odd implies that either m(u) = 1 and n(u) = 0 or
m(u) = 0 and n(u) = 1 for all nodes u ∈ N , and such that |(Hi ∪ tr(Hi)) \W odd| � 2
for i = 1, 2, . . . , k. The next observation follows again from Caprara and Fischetti’s
result.

Theorem 6.2. There exists a polynomial time algorithm that, for any extended
hypergraph (N,H, tr), for any fixed constant κ, and for any point y ∈ QN , either
asserts that y satisfies all odd partition inequalities in Cκ or finds an inequality violated
by y from a class of valid inequalities for PTP(N,H, tr) that contains the class Cκ of
certain odd partition inequalities.

7. Special polytopes. In this section, we discuss two more polytopes that arise
from the transitive packing polytope by special choices of hypergraphs and transitive
elements. The detailed discussion of a third one, the interval order polytope, which
inspired the introduction and the study of the transitive packing polytope, is the
subject of another paper; see [49, Chapter 5]. The insights obtained for the acyclic
subdigraph polytope as well as for the clique partitioning and the partition polytope
have been stated during the treatment above. We will not repeat them here. We
also do not review special independence system polytopes since this model has been
known for years. Instead we concentrate on two recently introduced polytopes that
deal with transitive elements.

7.1. The transitive acyclic subdigraph polytope. An instance of the tran-
sitive acyclic subdigraph problem (or poset problem) consists of a directed graph
D = (V,A) and a weight function c : A → Q. The goal is to determine a set of
arcs B ⊆ A such that the digraph (V,B) is acyclic and transitively closed, i.e., such
that it represents a partially ordered set and such that c(B) is as large as possible. The
transitive acyclic subdigraph polytope (or partial order polytope) of D is the convex
hull of 0/1 incidence vectors of all transitive and acyclic arc sets of D. Equivalently,
it is the integer hull of the polytope defined by

xuv � 0 for all arcs (u, v) ∈ A,(7.1)

xuv � 1 for all arcs (u, v) ∈ A,(7.2)

xuv + xvu � 1 for all pairs (u, v), (v, u) ∈ A,(7.3)

xuv + xvw � 1 for all (u, v), (v, w) ∈ A such that (u,w) /∈ A,(7.4)

xuv + xvw − xuw � 1 for (u, v), (v, w), (u,w) ∈ A.(7.5)

The transitive acyclic subdigraph polytope was introduced by Müller [33]. It arises as
a transitive packing polytope of an extended graph (N,H, tr) defined as follows: the
arc set A of the digraph D forms the node set N , and two nodes (u1, v1), (u2, v2) ∈ A
are said to be adjacent if v1 = u2 or u1 = v2 (or both). The transitive element that
we associate with a pair of adjacent arcs (u, v), (v, w) ∈ A is the arc (u,w), if it exists.

It has already been shown in [33] that the transitive acyclic subdigraph polytope
is full dimensional, that the nonnegativity constraints (7.1) are facet defining, and
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Fig. 7.1. Two digraphs which are generalized (7, 2)-cycles in the extended graphs corresponding
to the transitive acyclic subdigraph problem. The numbers indicate the chosen sequence, respectively.

that an upper bound constraint xuv � 1 defines a facet if and only if for all w ∈ V
with (w, u) ∈ A (or (v, w) ∈ A) also (w, v) ∈ A (respectively, (u,w) ∈ A). The
latter condition is precisely the translation of the assumption made in Lemma 2.4(ii).
The only known nontrivial class of facet defining inequalities is associated with odd
dicycles in D [33]. If (u1, u2), (u2, u3), . . . , (uk−1, uk), (uk, u1) forms an odd dicycle in
D, its cycle inequality is

k∑
i=1

xuiui+1 −
k∑

i=1
(ui, ui+2)∈A

xuiui+2 � k − 1

2
.

These cycle inequalities obviously belong to the class of generalized (k, 2)-cycle in-
equalities. However, there is no reason to restrict ourselves to cycles in the digraph
D. Figure 7.1 shows an arc configuration that defines a generalized cycle in the ex-
tended graph defined above but is no dicycle in D. Hence, we can present a much
larger class of valid inequalities for the transitive acyclic subdigraph polytope.

Lemma 7.1. Let D = (V,A) be a digraph. For k � 3 odd, let a1, a2, . . . , ak be a
sequence of arcs in A such that ai, ai+1 are adjacent, i = 1, 2, . . . , k. The inequalities

k∑
i=1

xai−
∑

a∈tr({ai, ai+1})
for some i

�n(a)�2
2

xa � k − 1

2
and

k∑
i=1

xai−
k∑

i=1

xtr({ai,ai+1}) � k − 1

2

are valid for the transitive acyclic subdigraph polytope of D. Here, n(a) = |{i ∈
{1, 2, . . . , k} : a ∈ tr({ai, ai+1})|. The latter class of inequalities is contained in a
class of valid inequalities for the transitive acyclic subdigraph polytope of D for which
the corresponding separation problem is solvable in polynomial time.

We note that there do not exist generalized (k, 2)-cliques in the case of the tran-
sitive acyclic subdigraph polytope for k � 4. We close this section on the transitive
acyclic subdigraph polytope with the observation that the transitive acyclic subdi-
graph polytope of a digraph D whose underlying graph is bipartite is completely
described by (7.1)–(7.4). We may argue as follows. First observe that there do not
exist transitive arcs. Let black and white be the two color classes of the underlying bi-
partite graph. The extended graph induced by D is also bipartite. Its color classes are
the arcs directed from black to white and the arcs from white to black, respectively.
Since it is known that the node packing polytope of a bipartite graph is completely
described by the nonnegativity, the upper bound, and the edge constraints, our claim
follows.
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7.2. The relatively transitive subdigraph polytope. A digraph D = (V,A)
is said to be transitively closed, or just transitive, whenever the presence of two
arcs (u, v), (v, w) ∈ A implies the presence of the arc (u,w) in A. A subdigraph
(V,B) of a digraph D = (V,A) is called relatively transitive if for every dipath from
u to v in (V,B) either (u, v) ∈ B or (u, v) is not in A. We define the relatively
transitive subdigraph polytope of D as the convex hull of the incidence vectors of
all relatively transitive subdigraphs of D or, equivalently, as the integer hull of the
polytope defined by

xuv � 0 for all arcs (u, v) ∈ A,(7.6)

xuv � 1 for all arcs (u, v) ∈ A,(7.7) ∑
a∈p

xa − xuv � |p| − 1 for all (u, v) ∈ A and for all dipaths p ∈ PD
uv,(7.8)

where PD
uv is the set of dipaths from u to v in D. The size |p| of such a dipath p is the

number of its arcs. Shallcross and Bland [51] (see also [50]) studied the convex hull
of 0/1 points x whose complements x = 1l − x satisfy (7.6)–(7.8). If D is transitively
closed, these points represent the independent sets of the transitivity antimatroid
of D. Shallcross and Bland were motivated by a question raised by Korte and Lovász
[31] of whether the convex hull of these incidence vectors has a (computationally)
nice description. Shallcross and Bland present some conditions on D such that their
polytope, and therefore the relatively transitive subdigraph polytope, is completely
described by (7.6)–(7.8). They also point out that maximizing a linear function over
the relatively transitive subdigraph polytope is NP-hard in general, thereby answering
Korte and Lovász’s question to the negative.

The way we introduced the relatively transitive subdigraph polytope makes it
likely to be a certain transitive packing polytope. To be precise, let the arc set A of the
given digraph D = (V,A) be the node set N of the extended hypergraph to be defined.
The hyperedges are formed by the arcs of dipaths from node u to node v for all u, v ∈ V
such that (u, v) ∈ A. Finally, the transitive element associated with such a hyperedge
is clearly the arc (u, v). Now, we may translate all the inequalities presented for the
transitive packing polytope into this context, thus answering a question of Shallcross
and Bland for other valid inequalities for the (complement of the) relatively transitive
subdigraph polytope.

8. Concluding remarks. Notice that the inequalities presented above remain
valid when we allow for hypergraphs with loops. Then, we cover, for instance, the cut
polytope (see, e.g., [5, 18]) and the Boolean quadric polytope (e.g., [44]) as well.

It is well known (see [19]) that every set packing problem

maximize cx

subject to Ax � 1l,(8.1)

xu ∈ {0, 1},
where A is a matrix of zeros and ones, can be transformed into an equivalent node
packing problem on the intersection graph of A. Every column becomes a node, and
two nodes u and v are joined by an edge if and only if the matrix A contains a row
with entry 1 in columns u and v. In other words, the convex hull of feasible solutions
to (8.1) (the set packing polytope of A) is identical to the node packing polytope of
the intersection graph of A. Hence transitive packing covers set packing as well since
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it subsumes node packing. However, generalized set packing polytopes [13] do not
immediately occur as special instances of transitive packing polytopes. In fact, given
a 0/±1 matrix A and the vector nA whose components count the number of negative
entries in the corresponding rows of A, Conforti and Cornuéjols defined (the integer
hull of) {x : Ax � 1l − nA, 0 � x � 1l} as a generalized set packing polytope.

On the other hand, as already pointed out, the transitive packing polytope of
an extended hypergraph with no transitive elements reduces to an independence sys-
tem polytope. There is a close relation between independence system polytopes and
set covering polytopes (see, e.g., [32, 39]). A set covering polytope is of the form
conv{y ∈ {0, 1}n : Ay � 1l}, where A is a 0/1 matrix. The points y in the set cov-
ering polytope and the points x in the independence system polytope of the circuit
system defined by the undominated rows of A are related by the affine transforma-
tion x = 1l − y. Explicitly, x ∈ conv{x ∈ {0, 1}n : Ax � pA − 1l} if and only if
1l − x ∈ conv{y ∈ {0, 1}n : Ay � 1l}. Consequently, set covering polytopes and in-
dependence system polytopes are equivalent, modulo the above transformation. An
implication of this is that any result stated for the independence system polytope
can be translated to the set covering polytope and vice versa. Thus the work of
Balas and Ng [1, 2], Cornuéjols and Sassano [16], Euler and Mahjoub [21], Nobili and
Sassano [39], and Sassano [45] as well as others on the set covering polytope can be
seen as contributions to the knowledge concerning the independence system polytope.
For instance, the inequalities for the set covering polytope associated with complete
(q, s)-roses of order k [45] turn out to be equivalent to the generalized (k, s, q)-antiweb
inequalities of Laurent [32]. This implies especially that our extension of the class of
antiweb inequalities for the independence system polytope extends the known rose
inequalities for the set covering polytope, too.

If we apply the complementing of variables to the transitive packing polytope
PTP(N,H, tr) = conv{x ∈ {0, 1}N : Ax � pA − 1l}, where the 0/±1 matrix A is the
extended edge-node incidence matrix of the extended hypergraph (N,H, tr), it turns
out to be equivalent (modulo this affine transformation) to the polytope Q(A) :=
conv{x ∈ {0, 1}N : Ax � 1l − nA}. The natural linear relaxation of the polytope
Q(A) has been introduced by Conforti and Cornuéjols [13] in the context of balanced
0/±1 matrices as the (fractional) generalized set covering polytope. Conforti and
Cornuéjols [13] as well as Nobili and Sassano [40] characterize when the fractional
generalized set covering polytope is integral, i.e., when it coincides with the generalized
set covering polytope. Our work can be seen as a contribution to the study of the
generalized set covering polytope when it is properly contained in the corresponding
fractional one. Recall that a 0/±1 matrix is balanced if, in every submatrix with
exactly two nonzero entries per row and per column, the sum of the entries is a
multiple of four [53]. We refer to Conforti, Cornuéjols, Kapoor, Vuskǒvić, and Rao [14]
for a survey of balanced matrices and related concepts. Conforti and Cornuéjols [13]
showed that a 0/±1 matrix A is balanced if and only if the fractional generalized
set covering (or packing) polytope is integral for each submatrix of A. An extension
of the concept of balanced 0/±1 matrices is ideal matrices. A 0/±1 matrix A is
ideal if its fractional generalized set covering polytope is integral or, equivalently, if
its fractional transitive packing polytope is integral. It would be very interesting, for
problems that can be interpreted as transitive packing problems, to characterize when
the extended edge-node incidence matrices of their associated extended hypergraphs
are ideal. Little is known so far about ideal 0/±1 matrices; see [14, 40].

The way we introduced the transitive packing model and the name we gave to
it reflect how we discovered it [49, Chapter 4] but may hide its full generality. To
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highlight and to slightly extend the generality of our model, we finally provide another
presentation. A directed hypergraph is a pair (N,H) consisting of a finite set N of
nodes and of a set of directed hyperedges (hyperarcs). A hyperarc (H+, H−) ∈ H
consists of two (possibly empty) disjoint subsets of N . For a survey of directed
hypergraphs the reader is referred to [22]. Now, consider for x ∈ {0, 1}N the following
“directed hypergraph covering” constraints:

x(H+) + x(H−) � 1 for all hyperarcs (H+, H−) ∈ H,

where x = 1l−x is the complement of the 0/1 vector x. Observe that this is equivalent
to the transitivity constraints (2.1), with H+ = H and H− = tr(H). In particular,
this form emphasizes the symmetry of the role of hyperedges and their associated
transitive sets. For example, reversing the direction of the hyperarcs simply amounts
to exchanging x and x.

Acknowledgment. The authors are grateful to Maurice Queyranne for suggest-
ing the interpretation of transitive packing in terms of directed hypergraphs.
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