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1. Introduction

In many combinatorial optimization problems, the objective
function is a combination of more than one function, or it
can be interpreted in this way. For example, consider the
problem of finding a spanning tree in a graph G = (V, E)
with edge weights ¢;: E— Z_ and ¢,: E — Z_, where c,
may correspond to the failure probability of the edges, and
¢, to the cost of the edges. The goal is to find a spanning
tree T of the graph for which ¢,(7T) - ¢,(T) is minimized
(Kuno 1999, Kern and Woeginger 2007). In this problem,
the objective function is a combination of two linear objec-
tive functions combined together using the product function.

Another example of a problem whose objective function
subsumes more than one function is the max-min resource
allocation problem (Asadpour and Saberi 2007). Here, there
are several resources that have to be distributed among
agents. The utility of each agent is the sum of the utilities
of the resources assigned to the agent. The objective is to
maximize the utility of the agent with the lowest utility.
In this problem, one can look at the utility of each agent as
a separate objective function. Thus, the objective function
of the problem is a combination of the objective functions
of the individual agents using the minimum function.

This paper presents a unified approach for solving com-
binatorial optimization problems in which the objective
function is a combination of more than one (but a fixed
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number) of objective functions. Usually, these problems
turn out to be NP-hard. We show that under very general
conditions, we can obtain a fully polynomial-time approxi-
mation scheme (FPTAS) for such problems. An FPTAS for
a minimization (respectively, maximization) problem is a
family of algorithms parametrized by e such that for all
€ > 0, there is an algorithm A, that for any instance of the
problem returns a solution whose objective function value
is no more then (1 4 €) (respectively, no less than (1 — €))
times that of the optimal solution, and whose running time
is polynomial in the input size of the problem as well as
in 1/e. On the other hand, if the running time of A, for
each € > 0 is polynomial in the input size of the problem
but not necessarily in 1/¢€, then the family of algorithms A,
is called a polynomial-time approximation scheme (PTAS).
For an NP-hard problem, the existence of an FPTAS is typi-
cally the best possible approximation result one can obtain.
Our technique turns out be surprisingly versatile: it can
be applied to a variety of scheduling problems (e.g., unre-
lated parallel machine scheduling and vector scheduling),
combinatorial optimization problems with nonlinear objec-
tive functions such as a product or a ratio of two linear
functions, robust versions of weighted multiobjective opti-
mization problems, and assortment optimization problems
with logit choice models. We first give examples of some
of the problems for which we can get FPTASes using our
framework.
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1.1. Examples of Problems

1.1.1. Combinatorial Optimization Problems with a
Rational Objective. Consider a combinatorial optimiza-
tion problem in which the objective function is a ratio of
discrete linear functions:
fi(x) Gy tax; +--+agx,

LX) by4byx;+-- -+ byx,’ (1)
s.t. xe X <{o,1}4.

minimize g(x)=

We assume that f;(x) >0, f,(x) >0 for all x € X. In this
case, there are two linear objective functions that have
been combined by using the quotient function. A well-
known example is the computation of a minimum mean
cost circulation in graphs. It is a well-known result that
any polynomial-time algorithm for the corresponding linear
objective problem can be used to obtain a polynomial-time
algorithm for the same problem with a rational objective
function (see, e.g., Megiddo 1979 and Radzik 1992). Exten-
sions of this result have been given by Hashizume et al.
(1987), Billionnet (2002), and Correa et al. (2010) to obtain
approximation algorithms for the case where the corre-
sponding linear objective problem is NP-hard. The main
idea behind all these approaches is to convert the problem
with a rational objective function to a parametric combina-
torial optimization problem with a linear objective function,
and then perform a binary search on the parameter to get
an approximate solution for the problem. The main draw-
back of parametric methods is that they do not generalize
in a straightforward way to the case where we have a sum
of ratios of linear functions.

In §7, we give a fairly general sufficient condition for
the existence of an FPTAS for this problem. It can be
used to obtain an FPTAS, for example, for the knapsack
problem with a rational objective function. In contrast to
the methods described, our algorithm uses a nonparametric
approach to find an approximate solution. One advantage
of our technique is that it easily generalizes to more general
rational functions as well, for example the sum of a fixed
number of ratios of linear functions. Such a form often
arises in assortment optimization in the context of retail
management. In §7.1, we show how to obtain FPTASes
using our framework for assortment optimization problems
under two different choice models.

1.1.2. Resource Allocation and Scheduling Problems.
The best-known approximation algorithm for the general
max-min resource allocation problem has an approxima-
tion ratio of Q(1/(y/mlog®m)), where m is the number of
agents (Asadpour and Saberi 2007). In §4.1, we obtain the
first FPTAS for this problem when the number of agents
is fixed.

Scheduling problems can be thought of as an inverse of
the resource allocation problem, where we want to assign
jobs to machines and attempt to minimize the load on indi-
vidual machines. Corresponding to the max-min resource
allocation problem, we have the problem of scheduling jobs

on unrelated parallel machines to minimize the makespan
(i.e., the time at which the last job finishes its execution).
When the number of machines m is fixed, this problem
is referred to as the Rm||C,,, problem (Graham et al.
1979). Another objective function that has been consid-
ered in the literature is the one in which the total load
on different machines are combined together using an /,
norm (Azar et al. 2004). In §4.1, we give FPTASes for
both of these scheduling problems. It should be noted that
approximation schemes for the Rm||C,,,, problem already
exist in the literature (e.g., Horowitz and Sahni 1976 and
Lenstra et al. 1990).

A generalization of the Rm||C,,,, problem is the vector
scheduling problem. In this problem, a job uses multiple
resources on each machine, and the objective is to assign
the jobs to the machines so as to minimize the maximum
load over all the resources of the machines. A practical sit-
uation where such a problem arises is query optimization in
parallel database systems (Garofalakis and Ioannidis 1996).
In this case, a job is a database query, which uses multiple
resources on a computer—for example, multiple cores of a
processor, memory, hard disk, etc. A query can be assigned
to any one of the multiple servers in the database system.
Because the overall performance of a system is governed
by the resource with the maximum load, the objective is
to minimize the maximum load over all resources. Chekuri
and Khanna (2004) give a PTAS for the problem when the
number of resources on each machine is fixed. Moreover,
they only consider the case where each job has the same
requirement for a particular resource on all the machines.
In §4.2, we show that when both the number of machines
and resources are fixed, we can get an FPTAS for the prob-
lem, even when each job can use different amounts of a
resource on different machines.

1.1.3. Combinatorial Optimization Problems with a
Product Objective. For the product versions of the mini-
mum spanning tree problem and the shortest s-f path prob-
lem, Kern and Woeginger (2007) and Goyal et al. (2011)
give an FPTAS. Both these methods are based on linear
programming techniques, and do not generalize to the case
where we have more than two functions in the product.
Moreover, their techniques do not extend to the case where
the corresponding problem with a linear objective function
is NP-hard (§6).

In §5.3 of this paper, we give FPTASes for the product
version of the s-f path problem and the spanning tree prob-
lem using our framework. One advantage of our method
is that it easily generalizes to the case where the objective
function is a product of a fixed number of linear functions.
It can also be used to design approximation schemes for
the product version of certain NP-hard problems, such as
the knapsack problem.

1.1.4. Robust Weighted Multiobjective Optimization
Problems. Consider once again the spanning tree prob-
lem with two cost functions ¢, and ¢, on the edges, as given
in the introduction. Another way to combine the two costs
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is to find a spanning tree 7 that minimizes the weighted
sum w,¢,(T) + w,c,(T) for some positive weights w,
and w,. However, in many cases it is not clear a priori
which weights should be used to combine the two objec-
tives. An alternative is to allow the weights w = (w,, w,)
to take values in a set W, and find a spanning tree that
minimizes the cost of the weighted objective for the worst-
case scenario weight in the set W € R%. More generally,
we consider the following robust version of a weighted
multiobjective optimization problem:

minimize g(x) = max w’ f(x), xeXc{o,1}". (2)
we

Here, f(x) = (f;(x),..., f,,(x)) is a vector of m function
values and W € R™ is a compact convex weight set. For
the spanning tree problem and the shortest path problem,
this robust version is NP-hard even for the case of two
objectives (§6).

The robust version of weighted multiobjective optimiza-
tion problems has been studied by Hu and Mehrotra (2010)
for the case when each f; is a continuous function. For
discrete optimization problems, this formulation is a gener-
alization of the robust discrete optimization model with a
fixed number of scenarios (see, e.g., Kouvelis and Yu 1997)
and with interval data (see, e.g., Kasperski and Zielinski
2007). This problem is NP-hard but admits an FPTAS for
the robust version of many problems when the number of
scenarios is fixed (Aissi et al. 2007). In §6, we generalize
this result and show that we can get FPTASes for the robust
version of weighted multiobjective optimization problems
when the number of objectives is fixed, for the case of the
spanning tree problem, the shortest path problem, and the
knapsack problem.

1.2. Related Work

There are two well-known general methods for obtain-
ing approximation schemes for combinatorial optimization
problems. In the first method, the input parameters of the
problem are rounded and then dynamic programming is
applied on the modified instance to find an approximate
solution for the original problem. This idea has been exten-
sively used to find approximation schemes for a number of
machine scheduling problems (e.g., Sahni 1976, Horowitz
and Sahni 1976, Hochbaum and Shmoys 1987, Lenstra
et al. 1990). The other method is shrinking the state space
of the dynamic programs that solve the problem in pseudo-
polynomial time. This idea was first used by Ibarra and
Kim (1975) to obtain an approximation scheme for the
knapsack problem. Woeginger (2000) gives a very gen-
eral framework where such dynamic programs can be con-
verted to an FPTAS, and using this framework he derives
FPTASes for several scheduling problems. Another exam-
ple is the work of Halman et al. (2009), who adopt the
same methodology to get FPTASes for inventory manage-
ment problems.

Approximate Pareto-optimal frontiers have previously
been used in the design of approximation algorithms for

concrete combinatorial optimization problems. For exam-
ple, Koltun and Papadimitriou (2007) use this approach to
find approximate answers to database queries, in which the
objective is to retrieve an object that is simultaneously good
with respect to more than one criterion. Another example
is the work of Ackermann et al. (2007), who use a simi-
lar approach to design approximation schemes for the short-
est path and the spanning tree problem, where the objective
function is a combination of more than one linear objective
function that are combined together using a well-behaved
monotone function. However, the idea of using approximate
Pareto-optimal frontiers to design approximation schemes
turns out to be a much more general approach, and in this
paper we present a unified approach for solving a diverse
category of combinatorial optimization problems using this
technique.

Several methods exist for designing approximations
schemes for combinatorial optimization problems with
multiple objectives. Safer and Orlin (1995a) give neces-
sary and sufficient conditions for the existence of fully
polynomial-time approximation schemes in multicriteria
combinatorial optimization and then use it for designing
fast approximation schemes for multicriteria flow, knap-
sack, and scheduling problems (Safer and Orlin 1995b,
Safer et al. 2004). Papadimitriou and Yannakakis (2000)
propose an efficient procedure to construct an approximate
Pareto-optimal frontier for discrete multiobjective optimiza-
tion problems, and we use their procedure in designing
approximation schemes for the previously mentioned prob-
lems, as explained in the next section.

1.3. Overview of Our Framework

We present a general framework that we use to design
FPTASes for the problems given in §1.1. The main idea
behind this framework is to identify the individual functions
that constitute the given objective function and then com-
pute an approximate Pareto-optimal frontier correspond-
ing to these individual functions. It is possible to get an
approximate Pareto-optimal frontier for many combinato-
rial optimization problems under the general condition that
the corresponding “exact” problem is solvable in pseudo-
polynomial time. The exact problem, for example, for the
spanning tree problem is, given a vector of nonnegative inte-
ger edge weights ¢ and a nonnegative integer K, does there
exist a spanning tree 7 such that ¢(7) = K? For many
combinatorial optimization problems (e.g., the spanning tree
problem, the shortest path problem, and the knapsack prob-
lem) the exact problem can indeed be solved in pseudo-
polynomial time. For the resource allocation and schedul-
ing problems, the exact problem is a variant of the partition
problem, and we show that it is also solvable in pseudo-
polynomial time.

Our framework works in the following three stages:

1. Show that the optimal solution of the problem lies on
the Pareto-optimal front of the corresponding multiobjective
optimization problem.
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2. Show that there is at least one solution in the approxi-
mate Pareto-optimal front that is an approximate solution of
the given optimization problem.

3. Construct an approximate Pareto-optimal frontier. (To
do so, in many cases it is sufficient to be able to solve the
exact problem corresponding to the original single-objective
optimization problem in polynomial time.)

In §2, we formally introduce the concept of Pareto-
optimal frontier and approximate Pareto-optimal frontier
and also revisit previous results on constructing an approxi-
mate Pareto-optimal frontier for multiobjective optimization
problems, which we use in the later sections for designing
our approximation schemes. We then give our general frame-
work for designing FPTASes for combinatorial optimization
problems in which several objective functions are combined
into one and state the conditions needed for the framework to
work in the main theorem of this paper in §3. Subsequently,
we derive FPTASes for the problems mentioned in §1.1 as
corollaries to the main theorem.

2. Preliminaries on Multiobjective
Optimization

An instance 7 of a multiobjective optimization problem II
is given by a set of m functions fi, ..., f,,. Each fi: X - R_
is defined over the same set of feasible solutions, X. Let | 7|
denote the binary-encoding size of the instance 7. Assume
that each f; takes values in the range [277(7), 27(7D] for
some polynomial p. We first define the Pareto-optimal fron-
tier for multiobjective minimization problems.

DEFINITION 2.1. Let 7 be an instance of a multiobjective
minimization problem. A Pareto-optimal frontier, denoted
by P(m), is a set of solutions x € X, such that there is no
x' € X such that f;(x") < f;(x) for all i, with strict inequality
for at least one i.

In other words, P(7r) consists of all undominated solu-
tions. In many cases, it may not be tractable to compute
P(m) (e.g., determining whether a point belongs to the
Pareto-optimal frontier for the two-objective shortest path
problem is NP-hard (Papadimitriou and Yannakakis 2000)),
or the number of undominated solutions can be exponen-
tial in || (e.g., for the two-objective shortest path problem).
One way of getting around this problem is to look at an
approximate Pareto-optimal frontier, which is defined next.

DEFINITION 2.2. Let 7 be an instance of a multiobjective
minimization problem. For € > 0, an e-approximate Pareto-
optimal frontier, denoted by P_ (1), is a set of solutions, such
that for all x € X, there is x" € P.(r) such that f;(x") < (1 +
€) f:(x), for all i.

In the rest of the paper, whenever we refer to an (approx-
imate) Pareto-optimal frontier, we mutually refer to both its
set of solutions and their vectors of objective function values.

Even though P(7) may contain exponentially many
points, it is possible to construct an approximate Pareto-
optimal frontier P, () for all € > O that has a polynomial

number of points. The following theorem gives one possible
way to construct such an approximate Pareto-optimal fron-
tier in polynomial time.

THEOREM 2.3 (PAPADIMITRIOU AND YANNAKAKIS 2000). Let
m be fixed and € > 0. One can determine a P.(7) in time
polynomial in || and 1/€ if the following “gap problem”
can be solved in polynomial time: Given an m-vector of val-
ues (vy,...,v,,), either

(i) return a solution x € X such that f;(x) < v, forall i =
1,...,m;or

(ii) assert that there is no x € X such that f,(x) <
(1 =€), foralli=1,...,m, where (1 —€)(1+¢€)/>=1.

We sketch the proof because our approximation schemes
are based on it.

PROOF. Suppose we can solve the gap problem in polyno-
mial time. An approximate Pareto-optimal frontier can then
be constructed as follows. Consider the box in R™ of pos-
sible function values given by {(v,, ..., v,,): 2-r(7l) v; <
2707 for all i }. We divide this box into smaller boxes, such
that in each dimension, the ratio of successive divisions is
equal to 1 + €”, where €’ = (1 + €)'/? — 1. For each cor-
ner point of all such smaller boxes, we call the gap problem.
Among all solutions returned by solving the gap problems,
we keep only those solutions that are not Pareto dominated
by any other solution. This is the required P.(7). Because
there are O((p(|7|)/€)™) many smaller boxes, this can be
done in polynomial time. O

Thus, it suffices to solve the gap problem to compute
an approximate Pareto-optimal frontier. We give a pro-
cedure here for solving the gap problem with respect to
minimization problems, but it can be extended to maxi-
mization problems as well (see §7). This procedure is due
to Papadimitriou and Yannakakis (2000).

We restrict our attention to the case when X C {0, 19,
because many combinatorial optimization problems can
be framed as 0/1-integer programming problems. Further,
we consider linear objective functions; that is, fi(x) =
Z;.]:I a;x;, and each a; is a nonnegative integer. Sup-
pose we want to solve the gap problem for the m-vector
(vy,...,v,). Let r = [d/€'], where € satisfies (1 — €’) -
(1+€)'? = 1. We first define a “truncated” objective func-
tion. For all j =1,...,d, if for some i, a; > v;, we set
x; =0, and drop the variable x; from each of the objective
functions. Let V be the index set of the remaining variables.
Thus, the coefficients in each objective function are now less
than or equal to v;. Next, we define a new objective function
f{(x) =3 ey ajjx;, where aj; = [a;r/v;]. In the new objec-
tive function, the maximum value of a coefficient is now r.
For x € X, by Lemma A.1 (see appendix) the following two
statements hold:

o If f/(x) <r, then f(x) < v,

o If f,(x) <v;(1 —¢€), then f/(x) < r.

Therefore, to solve the gap problem, it suffices to find an x €
X suchthat f/(x) <r,fori=1,..., m,orassert that no such
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x exists. Because all the coefficients of f/(x) are nonnega-
tive integers, there are r + 1 possible values that the function
f;(x) can take so that the inequality is satisfied. Hence there
are (r + 1) ways overall in which all inequalities f(x) < r
can be simultaneously satisfied. Suppose we want to find if
there is an x € X such that f/(x) =b; fori=1, ..., m. This
is equivalent to finding an x such that }I" M'~'f/(x) =
>, M7'b,, where M = dr + 1 is a number greater than the
maximum value that f/(x) can take.

Given an instance 7 of a multiobjective linear optimiza-
tion problem over a discrete set X C {0, 119, the exact ver-
sion of the problem is the following: Given a nonnegative
integer C and a vector (cy, ..., c,) € Z4, does there exist a
solution x € X such that 27:1 ¢;x; = C? The following the-
orem establishes the connection between solving the exact
problem and the construction of an approximate Pareto-
optimal frontier.

THEOREM 2.4 (PAPADIMITRIOU AND YANNAKAKIS 2000).
Suppose we can solve the exact version of the problem in
pseudo-polynomial time, then there is an algorithm for com-
puting an approximate Pareto-optimal frontier P,(7) in time
polynomial in the input size of the problem as well as 1/e.

Proor. The gap problem can be solved by making at most
(r 4+ 1) calls to the pseudo-polynomial time algorithm for
the exact problem, and the input to each call has numeri-
cal values of order O((d?/€)"™*). Therefore, all calls to the
algorithm take polynomial time, hence the gap problem can
be solved in polynomial time. The result now follows from
Theorem 2.3. O

3. The General Formulation of the FPTAS

In this section, we present a general formulation of the
FPTAS based on the ideas given in §2. We then show how
this general framework can be adapted to obtain FPTASes
for the problems given in §1.1.

Let f,,..., f,, for m fixed, be functions that satisfy the
conditions given in the beginning of §2. Let 2: R — R, be
any function that satisfies the following two conditions:

1. h(y) < h(y') forall y,y’ € R” such that y, < y; for all
i=1,...,m;and

2. h(Ay) < A°h(y) for all y € R and A > 1, for some

fixed ¢ > 0.
In particular, 4 includes all the /, norms (with ¢ = 1), and the
product of a fixed number (say, k) of linear functions (with
¢ = k). We denote by f(x) the vector (f;(x), ..., f,.(x)).

Consider the following general optimization problem:

minimize g(x) = h(f(x)), xe€X. 3)

We show that if we can solve the corresponding
exact problem (with a singe linear objective function) in
pseudo-polynomial time, then there is an FPTAS to solve
this general optimization problem as well. Also, even though
we state all our results for minimization problems, there is
a straightforward extension of the method to maximization
problems as well.

LEMMA 3.1. There is at least one optimal solution x* to (3)
such that x* € P().

PrOOF. Let X be an optimal solution of (3). Suppose X ¢
P(7). Then there exists x* € P(7r) such that f;(x*) < f;(%)
fori=1,...,m. By Property 1 of &, h(f(x*)) < h(f(%)).
Thus x* minimizes the function g and is in P(7r). O

LEMMA 3.2. Let € = (1 + €)Y — 1. Let X be a solution in
P.(m) that minimizes g(x) over all the points x € P.().
Then X is a (14 €)-approximate solution of (3); that is, g(X)
is at most (1 + €) times the value of an optimal solution
to (3).

PRrOOF. Let x* be an optimal solution of (3) that is in P(77).
By the definition of an e-approximate Pareto-optimal fron-
tier, there exists x’ € P;(7r) such that f;(x) < (1 4 €) f;(x*),
foralli=1, ..., m. Therefore,

g(x)=h(fi(x),.... [, (x))
AT+ fi(x), ..., 1+ 6)f,(x"))
SA+Eh(fi(x), ..., [,(x") = (1 + €)g(x"),

where the first inequality follows from Property 1 and the
second inequality follows from Property 2 of i. Because X is
a minimizer of g(x) over all the solutions in P;(7), g(x) <
g(x)<(I+e)g(x"). O

From these two lemmata and Theorem 2.4, we get the
main theorem of this paper regarding the existence of an
FPTAS for solving (3).

THEOREM 3.3. Suppose the exact problem corresponding
to the functions given in (3) can be solved in pseudo-
polynomial time. Then there is an FPTAS for solving the gen-
eral optimization problem (3) when m is fixed.

The FPTAS can now be summarized as follows.

1. Construct an approximate Pareto-optimal frontier
P:(7) of the m objective functions that constitute the given
objective function, where € = (14 €)'/ — 1.

2. Among all the solutions in P;(7r), return the one with
the minimum function value.

Finally, we establish the running time of the above algo-
rithm, when P;(7) is computed using the procedure given in
§2.

LEMMA 3.4. The running time of the algorithm is polyno-
mial in || and 1/e.

ProOF. There are O((p(|]|)/€)™) corner points for which
we need to solve the gap problem. Solving each gap prob-
lem requires calling the algorithm for solving the exact prob-
lem O(r™) times, which is O((d/€)™). The magnitude of
the largest number input to the algorithm for the exact prob-
lem is O((d?/€)™*!). Hence the running time of the algo-
rithm is O(((p(|7|)d)/€?) - PP((d*/€)"*', m, d)), where
PP(M,m,d) is the running time of the pseudo-polynomial
time algorithm for the exact problem with maximum magni-
tude of an input number equal to M. [
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It should be noted that the algorithm is very generic
and not necessarily the most efficient. For many special
cases, there are more efficient ways to construct an approxi-
mate Pareto-optimal frontier, either by solving the gap prob-
lem more efficiently, or by making fewer queries to the
gap problem solver. For example, Diakonikolas and Yan-
nakakis (2009) and Vassilvitskii and Yannakakis (2005)
give more efficient algorithms for computing approximate
Pareto-optimal curves for multiobjective optimization prob-
lems when the number of objectives is two or three.
Similarly, Warburton (1987) presents an algorithm for com-
puting an approximate Pareto-optimal frontier for the multi-
objective shortest path problem whose running time is better
than that of the algorithm presented in §2. Therefore, even
though the running times of the approximation schemes we
present in this paper may appear to be prohibitively expen-
sive, in many cases it is possible to engineer the algorithm to
obtain approximation schemes with improved running times.

4. FPTAS for Scheduling and
Resource Allocation Problems

Using the framework presented in §3, we give FPTASes
for the max-min resource allocation problem, the Rm||C,,,,
problem, and the vector scheduling problem.

4.1. The Rm||C,,, Problem and the Max-Min
Resource Allocation Problem

Recall the Rm||C,,, scheduling problem defined in the
introduction. There are m machines and » jobs, and the pro-
cessing time of job k on machine i is p;,.. The objective is
to schedule the jobs to minimize the makespan. The max-
min resource allocation problem is similar to this scheduling
problem, except that the objective here is to maximize the
minimum completion time over all the machines. Observe
that this corresponds to 4 being the /_-norm with ¢ =1 in
the formulation given by (3).

We first give an integer programming formulation for the
two problems. Let x;, be the variable that is one if job k is
assigned to machine i, zero otherwise. The m objective func-
tions in this case (corresponding to each agent/machine) are
given by f;(x) = Y_}_, puXu and the set X is given by

inkzl fork=1,...,n, (4a)
i=1

x,€{0,1} fori=1,....,m k=1,...,n. (4b)

The exact version for both problems is the following:
Given an integer C and nonnegative integer coefficients c;;,
does there exist a 0/1-vector x such that > /" > ¢; X =
C, subject to the constraints (4a) and (4b)? The following
lemma establishes that the exact problem can be solved in
pseudo-polynomial time.

LEMMA 4.1. The exact problem for the max-min resource
allocation problem and the Rm||C,,,, problem can be solved
in pseudo-polynomial time.

ProoF. The exact problem can be viewed as a reachability
problem in a directed graph. The graph is an (n + 1)-partite
directed graph; let us denote the partitions of this digraph by
Vos -+, V,. The partition V|, has only one node, labeled as
vy, o (the source node), all other partitions have C + 1 nodes.
The nodes in V| for 1 < k < n are labeled as v, g, ..., v, ¢.
The arcs in the digraph are from nodes in V, to nodesin V,_ |
only, forO<k <n—1.Forallc € {c| 141, Cp 141} there
is an arc from Vg, j 1O Uiy s if j + ¢ < C. Then there is a
solution to the exact version if and only if there is a directed
path from the source node v, , to the node v,, . Finding such
a path can be accomplished by doing a depth-first search
from the node v 4. The corresponding solution for the exact
problem (if it exists) can be obtained using the path found by
the depth-first search algorithm. [

Therefore, we obtain FPTASes for both the Rm||C,,,
problem as well as the max-min resource allocation problem.
For the max-min resource allocation problem with a fixed
number of agents, we give the first FPTAS, though approxi-
mation schemes for the R||C,,,, problem already exist in the
literature (e.g., Horowitz and Sahni 1976 and Lenstra et al.
1990). Further, Theorem 3.3 implies that we get an FPTAS
even when the objectives for different agents/machines are
combined together using a function that satisfies Properties 1
and 2 given in §3. We therefore have the following corollary
to Theorem 3.3.

COROLLARY 4.2. There is an FPTAS for the max-min
resource allocation problem with a fixed number of agents.
Further, we also get an FPTAS for the max-min resource
allocation problem with a fixed number of agents and the
unrelated parallel machine problem when the objectives for
different agents/machines are combined together using a
function that satisfies Properties 1 and 2 given in §3.

4.2. The Vector Scheduling Problem

The vector scheduling problem is a generalization of the
Rm||C,,« problem. In this problem, each job requires d
resources for execution on each machine. Job k consumes
an amount pj, of a resource j on machine i. Suppose J; is
the set of jobs assigned to machine i. Thus the total usage
of resource j on machine i is 3, Pl The objective is to
minimize over all the machines i and all the resources j, the
value 3., pi.. We assume that both d and m are fixed.
Similar to the Rm||C,,, problem, let x, be a variable
that is one if job k is assigned to machine i, zero other-
wise. In this case, we have a total of md functions and
fii(x) :ZZ:Ip{kxik, fori=1,...,mand j=1,...,d. The
md objective functions are combined together using the [
norm in this problem. The underlying set of constraints is the
same as given by (4a)—(4b). Therefore, the exact algorithm
for the Rm||C,,,, problem works for the vector scheduling
problem as well, and because we have a fixed number of
objective functions, we get an FPTAS for the vector schedul-
ing problem as well. Hence we have the following corollary

to Theorem 3.3.
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COROLLARY 4.3. There is an FPTAS for the vector schedul-
ing problem when the number of machines as well as the
number of resources are fixed, even for the case when each
Jjob can use a different amount of a particular resource on
different machines.

5. FPTAS for Minimizing the Product of
Two Linear Objective Functions

In this section, we give a general framework for designing
FPTASes for problems in which the objective is to mini-
mize the product of two linear cost functions. We then apply
this technique to some product combinatorial optimization
problems on graphs and then extend it to the case where the
objective function is a product of a fixed number of linear
functions.

5.1. Formulation of the FPTAS

Consider the following optimization problem:

minimize g(x) = f; (x) - (x), x€eX, 5)
where f;: X — Z, are linear functions and X C {0, 1}.
In our general formulation given by (3), the correspond-
ing function A for this case is h(y;, y,) = y, - »,, and so
¢ = 2. Thus, if we can construct an approximate Pareto-
optimal frontier for f,(x) and f,(x) in polynomial time, we
will be able to design an FPTAS for the product optimiza-
tion problem. Therefore, we get the following corollary to
Theorem 3.3.

COROLLARY 5.1. There is an FPTAS for the problem given
by (5) if the following exact problem can be solved
in pseudo-polynomial time: Given (cy,...,c;) € Z¢ and
K €7, does there exist x € X such that ¥, c;x; = K?

5.2. FPTASes for Some Problems with the Product
Objective Function

Using Corollary 5.1, we now construct FPTASes for several
combinatorial optimization problems involving the product
of two objective functions.

1. Spanning tree problem. In this case, the exact problem
is the following: given a graph G = (V, E) with cost func-
tion ¢: E — Z, and a positive integer K, does there exist a
spanning tree T € E whose cost is equal to exactly K? Bara-
hona and Pulleyblank (1987) give an O((n* + p?)p*log p)
algorithm for solving the exact problem, where # is the num-
ber of vertices in the graph and p = n - max, (c(e)). Thus
we have an FPTAS for the spanning tree problem with the
product of two cost functions as the objective.

2. Shortest s-t path problem. The exact problem in this
case is the following: given a graph G = (V, E), vertices
s,t € V, a distance function d: E — Z_, and an integer
K, is there an s-t path with length equal to exactly K?
Note that for the shortest path problem, the exact problem is
strongly NP-complete, because it includes the Hamiltonian

path problem as a special case. To circumvent this issue, we
relax the original problem to that of finding a walk (in which
a vertex can be visited more than once) between the vertices
s and ¢ that minimizes the product objective. The optimal
solution of the relaxed problem will have the same objective
function value as that of an optimal solution of the original
problem, because any s-¢ walk can be truncated to get an s-7
path. Therefore, it suffices to get an approximate solution for
the relaxed problem.

The corresponding exact s-¢ walk problem is the follow-
ing: Does there exist an s-¢ walk in the graph whose length
is equal to exactly a given number K € Z,? Because we
are dealing with nonnegative weights, this problem can be
solved in O(mnK) time by dynamic programming, where n
is the number of vertices and m is the number of edges in the
graph. If the solution given by the algorithm is a walk instead
of a path, we remove the cycles from the walk to get a path.
Hence we obtain an FPTAS for the shortest s-¢ path problem
with the product of two distance functions as the objective.

3. Knapsack problem. The exact problem for the knap-
sack problem is the following: given a set I of items with
profit p: I — Z_, size s: I — Z, and a given capacity C,
does there exist a subset of / satisfying the capacity con-
straint and having total profit exactly equal to a given integer
K? Again, this exact problem can be solved in O(nK) time
by dynamic programming, where n is the number of objects.
Therefore we get an FPTAS for the product version of the
knapsack problem.

4. Minimum cost flow problem. The problem we have
is the following: given a directed graph G = (V, A), ver-
tices s, € V, an amount of flow d € Z, to send from
s to t, capacities u: A — Z,, and two cost functions
¢, ¢ A— 7, find a feasible s-t flow x of total amount
d such that ¢,(x) - c,(x) is minimized. The minimum cost
flow problem is different from the other three problems,
because it suffices to find fractional solutions instead of
integer solutions. In this case, the gap problem as stated
in Theorem 2.3 can be solved directly using linear pro-
gramming. Therefore we obtain an FPTAS for the mini-
mum cost flow problem with the product objective function
as well.

Note that in this case, the approximate solution that we
obtain may not necessarily be integral. This is because when
we solve the gap problem, we introduce constraints of the
form f;(x) < (1 — €)v; corresponding to each of the two
objectives, in addition to the flow conservation and capac-
ity constraints. This means that the constraint set may not
be totally unimodular, and hence the solution obtained can
possibly be nonintegral.

One advantage of our method is that it can be used to get
an approximation scheme for the product version of an opti-
mization problem even if the original problem is NP-hard,
for example in the case of the knapsack problem, whereas
previously existing methods cannot handle this case.
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5.3. Products of More Than Two
Linear Objective Functions

Another advantage of our technique over existing meth-
ods for designing FPTASes for product optimization prob-
lems (Kern and Woeginger 2007, Goyal et al. 2011) is that it
can be easily extended to the case where the objective func-
tion is a product of more than two linear functions, as long
as the total number of functions involved in the product is a
constant. Consider the following generalization of the prob-
lem given by (5):

minimize g(x) = f,(x) - fo(x) - -+ - £, (%),

where f;: X — Z, are linear functions, for i =1,...,m,
X € {0,1}9 and m is a fixed number. This again fits into
our framework given by (3), with ¢ = m. Thus our technique
yields an FPTAS for the problem given by (6) as well. We
have therefore established the following corollary to Theo-
rem 3.3.

xeX, (6)

COROLLARY 5.2. There is an FPTAS for the problem given
by (6) if m is fixed and if the following exact problem can be
solved in pseudo-polynomial time: Given (cy, ..., c,) € Z4
and K € 7, does there exist x € X such that Y0, ¢;x; = K?

i=1"ii

6. FPTASes for Robust Weighted
Multiobjective Optimization Problems

Consider the following robust version of a weighted multi-
objective optimization problem given by Hu and Mehrotra
(2010):

minimize g(x) = max w’ f(x), xeXc{0,1}". @)
we

Here, f(x) = (fi(x),..., f,(x)) € R} is a vector of m
function values, W C w,, where W, = {we RY:w +---+
w,, = 1} (i.e., the weights are nonnegative and they sum up
to one) and W is a compact convex set. We assume that we
can optimize a linear function over the set W in polynomial
time; this ensures that the function g(x) can be computed
efficiently. Examples of some of the forms that the weight
set W can take are as follows:

1. Simplex weight set: W = W, = {w e R: w; +--- +
w,, = 1}.

2. Ellipsoidal weight set: W = {w € W, (w —
w)TS~(w — ) < y?}, where W,y > 0, and S is am x m
positive semi-definite matrix.

3. Box weight set: W = {w € W,: [|w|, < k}, where k >
0.

In particular, the model with the simplex weight set can be
considered to be a generalization of the robust optimization
model with a fixed number of scenarios. The robust opti-
mization problem with a fixed number of scenarios has the
following form:
minimize h(x) = [max }ch, xeXc{o,1}9. (8)

ce{cy, ..., Cpy
The connection between the problems given by (7) and (8)
is established in the following lemma.

LEMMA 6.1. The problem given by (8) is equivalent to the
problem given by (7) when f,(x) =clx fori=1,...,mand
the weight set is the simplex weight set W,.

ProoF. For a given solution x € X, its objective function
value i(x) in the formulation (8) is given by
h(x) =max{c"x: ce{c,,...,c,}}

- Cnb)}

wxiwe W

m Cﬂl

=max{c’x: c € conv({c,, ..
=max{w,c{x+ - +w
=max{w’ f(x): we W,}

=g(x),

where g(x) is the objective function value in the formulation
given by (7), conv({c,, ..., ¢,,}) denotes the convex hull of
the m points ¢, ..., c,, and f;(x) =c/x fori=1,...,m.
This establishes the equivalence between the optimization
problem given by (7) with the simplex weight set and the
optimization problem given by (8). O

Using this observation, we establish the NP-hardness of
the optimization problem given by (7).

LEMMA 6.2. The optimization problem given by (7) is
NP-hard for the shortest path problem and the spanning tree
problem.

ProoF. The following two-scenario robust optimization
problem is known to be NP-hard for the shortest path prob-
lem and the spanning tree problem (Kouvelis and Yu 1997):

minimize #(x) = max c¢’x, xeXc{0,1}". )

c€{cy, er}

Problem (9) is equivalent to the form given by (7) with
fix) =¢fx, f(x) = c]x and W = {(wy, w,) € R w; +
w, = 1}. Therefore the optimization problem given by (7) is
also NP-hard in general. [

The function £ that combines the functions f;(x),...,
fn(x) in this case is

h(yl’ e ym) :max(wlyl + wmym)‘
weW

It can be easily verified that the function / satisfies Prop-
erties 1 and 2 given in §3, with ¢ = 1. Therefore we get the
following corollary to Theorem 3.3, which establishes the
existence of FPTASes for the robust version of the shortest
path problem, the spanning tree problem, and the knapsack
problem.

COROLLARY 6.3. There is an FPTAS for the problem given
by (7) when m is fixed if the following exact problem can be
solved in pseudo-polynomial time: Given (c,, ..., c,) € Z%
and K € 7, does there exist x € X such that ¥, ¢;x; = K?

i=1 it
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7. FPTASes for Problems with
Rational Objective Functions

In this section, we consider combinatorial optimization
problems involving a ratio of two linear objectives as given
in the introduction:

filx)  agtapx;+--+agx,
f(x)  by+byx 4+ byx, (10)
s.t. xe€X C{0,1}9.

minimize g(x)=

We assume that f,(x) > 0, f,(x) > 0 for all x € X. The sit-
uation here is different from the problems we have consid-
ered previously, because in this case, in some sense, we are
attempting to minimize f;, while simultaneously maximiz-
ing f,. Therefore we cannot use Theorem 3.3 directly for
obtaining an FPTAS. We need to modify the definition of the
Pareto-optimal frontier and the approximate Pareto-optimal
frontier for this problem and restate the gap theorem for the
modified definition. We first give the appropriate definition
of the Pareto-optimal and the approximate Pareto-optimal
frontier for this problem.

DEFINITION 7.1. Consider the problem given by (10). For
this problem, the Pareto-optimal frontier P(1r) is the set of
all points x for which there is no x” such that f,(x") < f,(x)
and f,(x") = f,(x) with strict inequality for at least one
of them.

DEFINITION 7.2. For the problem given by (10), for € > 0,
an approximate Pareto-optimal frontier P.(7) is a set of
solutions such that for all x € X, there is x’ € P.(7r) such that

L) < (A +e)fi(x) and £,(x') = fo(x)/(1 +€).

We now state the modified gap theorem for this prob-
lem, which is a straightforward extension of the gap theorem
of Papadimitriou and Yannakakis (2000). The proof of this
theorem is very similar to the one for Theorem 2.3, so we
omit it.

THEOREM 7.3 (MODIFIED GAP THEOREM). Let € > 0. One
can determine a P.(7) in time polynomial in |7| and 1/€
if the following “gap problem” can be solved in polynomial
time: Given a vector of values (v,, v,), either

(1) return a solution x € X such that f,(x) < v, and
fo(x) Z vy, or

(ii) assert that there is no x € X such that f(x) <
(1 — €)v, and f,(x) = (1+€)v,, where (1 — €)(1 +
€)?=1and (1+€)=(1+¢)"2

It is easy to see that Lemma 3.1 holds in this case, with
the modified definition of the Pareto-optimal frontier. The
analog of Lemma 3.2 is given next.

LEMMA 7.4. Let P.(m) denote the approximate Pareto-
optimal frontier of the functions f, and f, corresponding to
minimizing f, and maximizing f,. Let X be the solution in
P_(7) that minimizes g(x) over all points x € P.(m). Then
% is a (1 + €)2-approximate solution for (10).

PrOOF. Let x* be an optimal solution of (10) that is
in P(7). By the definition of an e-approximate Pareto-
optimal frontier, there exists x' € P.(7) such that f,(x) <
(1+e)fi(x*) and f,(x') = f>(x*)/(1 + €). Therefore,

(I+e)fi(x7)
(I+e)~"fo(x*)
Because X is a minimizer of g(x) over all the solutions in
P(m), 8(%) <g(x) < (1+€)’g(x). O

The following theorem is an analog of Theorem 3.3 for
this case.

g(x) < = (1+€)%g(x").

THEOREM 7.5. There is an FPTAS for the problem given
by (10) if the following exact problem can be solved
in pseudo-polynomial time: Given (cy,...,c;) € 29 and
K e 7, does there exist x € X such that Zd cx;=K?

i=1"~ivi

We give a proof of this theorem here, as it involves both
maximization and minimization of the underlying objective
functions.

Proor. From Theorem 7.3, it suffices to give a polynomial-
time algorithm to solve the gap problem. Suppose we want
to solve the gap problem for the two-vector (v,, v,). Let r, =
[d/€]]. We first define a “truncated” objective function. For
all j=1,...,d, if for some j, a; > vy, we set x; =0, and
drop the variable x; from each of the objective functions.
Let V be the index set of the remaining variables. Thus, the
remaining coefficients in f| are now less than or equal to v,.
Next, we define a new objective function f{(x) =3 ,.y a}x;,
where a; = [a;r;/v,]. In the new objective function, the
maximum value of a coefficient is now r,. For x € X, the
following two statements hold by Lemma A.1:

o If f/(x) < ry, then f;(x) <v,.

o If f(x) <v,(1—¢)), then f(x) < r.

For f,, we do the following. Let r, = | d /€, |. Let f,(x) =
> jev bjx;, where b} = min(r,, |b;r,/v,]). So in f;, all the
coefficients are no more than r,. The following two state-
ments hold by Lemma A.2:

o If f,(x) > r, then f,(x) > v,.

o If £,(x) = (14 €)v, then f,(x) > r,.

Therefore, to solve the gap problem, it suffices to find an
x € X such that f{(x) < r; and f;(x) > r,, or assert that no
such x exists. There are r; 4+ 1 possible values that the func-
tion f/(x) can take to satisfy the inequality f(x) < ry, and
there are at most r,d possible values that the function f;(x)
can take to satisfy the inequality f,(x) > r,. Hence there are
O(r,r,d) ways overall in which both the inequalities can be
simultaneously satisfied. Suppose we want to find if there is
an x € X such that f/(x) = b, for i = 1, 2. This is equiva-
lent to finding an x such that f](x) + Mf,(x) = b, + Mb,,
where M = d - max(r,, r,) + 1 is a number greater than the
maximum value that f/(x) can take, for i = 1, 2. Hence, if
we have a pseudo-polynomial time algorithm for solving the
exact problem, we can solve the gap problem in polynomial
time. O
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This theorem implies than we can use our framework to
get an FPTAS, for example, for the knapsack problem with a
rational objective. In fact, it is not hard to see that the method
can be extended to functions g having the form f, 1,/ f; f., or
filf, + f3/f. as well. As long as the number of functions
f; 1s fixed, we will get an FPTAS for the problem using our
framework.

7.1. FPTAS for Assortment
Optimization Problems

The problem of minimizing a sum-of-ratios form often arises
in assortment optimization in the context of retail manage-
ment. In this section, we obtain FPTASes for two models
of the assortment optimization problem: the mixture of log-
its choice model and the nested logit choice model. For an
introduction to the logit choice models, see the survey paper
by Kok et al. (2009).

In the assortment optimization problem with the mixture
of logits choice model, we have a set of n products indexed
by N ={l1,..., n} and m customer classes indexed by C =
{1, ..., m}. The demand of a customer in a customer class
i € C is modeled using a multinomial logit choice model
with parameters (v, v;y, ..., v;,) € R%". Here, v, denotes
the preference of a customer in class i for purchasing no
item, and v;; is the preference of the customer to purchase
product j € N. If an assortment S C N is offered to a cus-
tomer in the class i € C, the probability that the customer
purchases a product j € N is given by

Yij

— JjE€S,
Vio + D kes Vix

Dij (8)=
0 otherwise.

The profit corresponding to the purchase of an item j is
w;. Therefore the total profit from customer class i € C when
an assortment S € N is offered to the customers in class i is
given by

f:(S)= Zpij(S)wj _ Zjes w;v;

jes Vo + Zjes Vj

Let A; denote the fraction of the customers in class i,
where Y ;.- A; = 1. The optimization problem is to find an
assortment S that maximizes the objective function

8(8) =2 Afi(S).

ieC

Thus, in this case the objective function is a sum of m
ratios. This problem is NP-hard even when there are only
m = 2 customer classes but admits a PTAS if m is fixed (Rus-
mevichientong et al. 2010). Using our framework, we can
get an FPTAS for the case when m is fixed as follows. Let x;
be the variable that is one if product j € N is offered in an

assortment, zero otherwise. The objective function is g(x) =

>y fiu(x)/ fia(x), where
fu(x) = A Z W;V; X,
j=1
fo(x) =v,+ Z UjjX;.
j=1

There are no constraints in this problem. The exact prob-
lem in this case is, given a vector ¢ € Z’, and a nonnegative
integer C, does there exist x € {0, 1}" such that }_, c;x; =
C? This is the subset-sum problem that can be solved in
pseudo-polynomial time by dynamic programming. Hence
we get an FPTAS for the assortment optimization problem
with the mixture of logits choice model. Indeed, we have the

following corollary to Theorem 2.3.

COROLLARY 7.6. The assortment optimization problem with
the mixture of logits choice model admits an FPTAS when
the number of customer classes is fixed.

In the mixture of logits choice model, the likelihood of
choosing between two alternative products is independent of
the assortment offered to the customer. This may not nec-
essarily be true in practice. An alternative model that takes
care of this anomaly is the nested logit choice model. In this
model, there are G partitions of the product set N given by
H,,..., H;, where G is fixed. Assuming that there is only
one class of customers, the probability that a customer pur-
chases a product j € N when offered an assortment S C N is
given by

v; 1
(Xiemns )% 1+ Y (Xrerns vi)'~

Pj(S)= ifjeHngforsome g,

0 otherwise.

Here, 0 < a, < 1 foral g=1,...,G and v, € Z,
for all / € N. In this model, the likelihood of choos-
ing between two products is independent of the assort-
ment offered if they are in the same partition, but depends
on the assortment if they are in different partitions. The
probability of not purchasing any product is py(S) = 1/
(1+30 (Cremns )™ %).

In the capacitated version of this problem, we also have
a constraint ) ;¢ ¢; < K, where ¢; € Z, corresponds to the
capacity taken up by the product i and K € Z__ corresponds
to the total capacity available. The objective is to find an
assortment S that maximizes } . p;(S)w; subject to the
capacity constraint. Rusmevichientong et al. (2009) show
that this problem is NP-hard but admits a PTAS when G is
fixed. They also prove that to get an approximate solution of
this problem, it suffices to find an approximate solution of
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the following sum-of-ratios problem:

.. < ZleS
maximize g(S,,...,S;) = Z & v)
les; Vi
G
st. > Y ¢ <K
i=1leS;
S, C€H;, foralli=1,...,G.

Here, u; € Z,, for all [ € N. Let x, be the indicator variable
that is one if an item [/ € N is selected, zero otherwise. The
objective function is g(x) = X7, £, (x)/(f»(x))*, where

fa(x) = Z upxy,
leH;

fo(x)= Z JRIR
leH;

Moreover, if S; = @, then we count zero for the term
fa(x)/(fi(x))% in the objective function. Note that the
denominator in each of the ratios in this problem is nonlin-
ear. However, because each exponent «; is upper bounded by
one, we can still use our framework to get an FPTAS for this
problem. First, we choose some k of the G sets S, ..., S;
to be nonempty and the rest of the sets to be empty. Because
there are G groups, we will need to do this 2¢ times to
cover all the possible cases. This does not affect the poly-
nomial running time of our algorithm as G is fixed. Once
we choose the k sets, say Sil, e, Sik to be nonempty, we
construct the Pareto-optimal frontier corresponding to max-
imizing the k linear functions f; ,, ..., f;; and minimizing
the k linear functions f; ,, ..., f; ,. To ensure that each of the
k sets Sl-l ey Sik is nonempty, we set the lower bound for
the numerator function corresponding to these groups to be
one when solving the gap problem (see the proof of Theo-
rem 2.3). The underlying set of constraints is given by

> oex <K

leN

x,€{0,1}, leN.

This is the knapsack constraint, and the corresponding
exact problem can be solved in pseudo-polynomial time by
dynamic programming. Hence we get an FPTAS for the
assortment optimization problem in the nested logit choice
model with capacity constraints. We therefore have the fol-
lowing corollary to Theorem 7.5.

COROLLARY 7.7. The capacitated assortment optimization
problem with nested logit choice model admits an FPTAS
when the number of partitions G of the set of products N is
fixed.

8. Conclusion

The main contribution of this paper is a novel framework for
designing approximation schemes for combinatorial opti-
mization problems in which several functions are combined

into one objective, or can be viewed as such. Using this
framework, we design FPTASes for problems arising in
scheduling and resource allocation, combinatorial optimiza-
tion problems with a rational or a product objective function,
robust weighted multiobjective optimization problems, and
assortment optimization problems with logit choice model.
Given the versatility of our technique, we believe that it will
be applicable in many other situations as well.

Appendix

LEmMA A.1. Suppose f(x) = Z ax;, 0<a;<v, x; €
{0,1} and r = [d/€]. Let f'(x) = jl 1 AjX ), where a; =
[a;r/v]. Then,

1. if f'(x) < r, then f(x) < v;

2. if f(x) <v(l —e€), then f'(x)<r

Proor. 1. Given f'(x) <r

v ar v[ar
(X) Za ;;ijg;rzl’VT—‘x] —f(x)<v
2. Because f(x) < v(l —e€),

d

2

j=1

a;r
—x; <r(l—e).
v

Rounding up each of the d numbers on the left-hand side,
we get

i’r?—‘xj <r(l—e)+d

j=1
d
’7——‘6 +d
€

= f()<r—

<r. O

LEMMA A.2. Suppose f(x) = _lb]x], 0<b; <y x; €

{0,1} and r = [d/€]. Let f/(x) = 2. bix;, where b’
min(r, [b;r/v]). Then,

1. if f'(x) = r, then f(x) = v;

2. iff(x) = (1+e€)v, then f'(x)=r

Proor. 1.Given f'(x) = r
< b.r v | b;r
e > el
j=I
v / v 4
>;Zijxj=;f (x)=v
=

2. Let V be the index set of all the variables x; such that
x; = 1. Suppose j € V and b} = r. Then clearly f'(x) > r.
Now assume that for all j € V, b} = ¥z ir/ v]|. Then,

b.r
Y2

jev

(1+e)r.
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Rounding down each of the numbers on the left-hand side
and together with the assumption that b; = | b;r/v], we get

2|2 |5 ror-a

= f(x)?r—i—e[g—‘ —d

>r. O
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