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Abstract We present a fully polynomial time approximation scheme (FPTAS) for
optimizing a very general class of non-linear functions of low rank over a polytope. Our
approximation scheme relies on constructing an approximate Pareto-optimal front of
the linear functions which constitute the given low-rank function. In contrast to existing
results in the literature, our approximation scheme does not require the assumption
of quasi-concavity on the objective function. For the special case of quasi-concave
function minimization, we give an alternative FPTAS, which always returns a solution
which is an extreme point of the polytope. Our technique can also be used to obtain an
FPTAS for combinatorial optimization problems with non-linear objective functions,
for example when the objective is a product of a fixed number of linear functions.
We also show that it is not possible to approximate the minimum of a general con-
cave function over the unit hypercube to within any factor, unless P = NP. We prove
this by showing a similar hardness of approximation result for supermodular function
minimization, a result that may be of independent interest.
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1 Introduction

Non-convex optimization problems are an important class of optimization problems
that arise in many practical situations (see e.g., [13] for a survey). However, unlike
their convex counterpart for which efficient polynomial time algorithms are known (see
e.g., [24]), non-convex optimization problems have proved to be much more intrac-
table. A major impediment to efficiently solving non-convex optimization problems
is the existence of multiple local optima in such problems; thus any algorithm which
seeks to find a globally optimal solution (or a solution close to a global optimum) must
avoid getting stuck in local optima.

In this paper, we focus on optimizing a special class of non-convex functions, called
low-rank functions, over a polytope. Informally speaking, a function has low rank if
it depends only on a few linear combinations of the input variables. We present a
fully polynomial time approximation scheme (FPTAS) for optimizing a very general
class of low-rank functions over a polytope. An FPTAS for a minimization (resp.
maximization) problem is a family of algorithms such that for all ε > 0 there is a
(1 + ε)-approximation (resp. (1 − ε)-approximation) algorithm for the problem, and
the running time of the algorithm is polynomial in the input size of the problem, as
well as in 1/ε.

Throughout this paper, we use the following definition of a low-rank non-linear
function, given by Kelner and Nikolova [14].

Definition 1 A function f : R
n → R is said to be of rank k, if there exist k lin-

early independent vectors a1, . . . , ak ∈ R
n and a function g : R

k → R such that
f (x) = g(aT

1 x, . . . , aT
k x).

The optimization problem we are attempting to solve is

min f (x) = g(aT
1 x, . . . , aT

k x)

s.t. x ∈ P.

Here, P is a polytope, and g is a continuous function (this guarantees that a min-
imum exists). We assume that the optimal value of this program is strictly positive;
this is necessary for the notion of approximation considered here to be valid. Recent
work on optimization problems of this kind has focused on the special case when g
is quasi-concave (see e.g., [9,14,28]); all of these works exploit the fact that the min-
imum of a quasi-concave function over a polytope is always attained at an extreme
point of the polytope (see e.g., [4]). In contrast, our approximation scheme does not
require the assumption of quasi-concavity.

In general, non-linear programming problems of this form are known to be NP-
hard. Pardalos and Vavasis [27] proved that minimizing a quadratic function f (x) =
cT x+ 1

2 xT Qx , where the Hessian Q has just one non-zero eigenvalue which is negative
(and hence f (x) is a function of rank two), over a polytope is NP-hard. Subsequently,
Matsui [22] proved that minimizing the product of two strictly positive linear func-
tions over a polytope is NP-hard. Both these hardness results imply that minimizing a
rank two function over a polytope is NP-hard. In fact, as we show in Sect. 6, the opti-
mum value of the problem stated above cannot be approximated to within any factor

123



An FPTAS for optimizing low-rank non-linear functions 105

unless P = NP. Therefore, we will need some extra assumptions on the properties of
the function g to obtain an approximation scheme for the optimization problem (see
Sect. 3.1).

We mention a few classes of non-convex optimization problems that we tackle in
this paper.

1. Multiplicative programming problems: In this case, g has the form
g(y1, . . . , yk) = ∏k

i=1 yi . It is known that such a function g is quasi-concave [17],
and therefore its minimum is attained at an extreme point of the polytope. Mul-
tiplicative objective functions also arise in combinatorial optimization problems.
For example, consider the shortest path problem on a graph G = (V, E) with
two edge weights a : E → Z+ and b : E → Z+. In the context of navigation
systems, Kuno [20] discusses the shortest path problem with the objective func-
tion a(P) · b(P) (where P is the chosen path), where a corresponds to the edge
lengths, and b corresponds to the number of intersections at each edge in the graph.
A similar problem is considered by Kern and Woeginger [15] as well.

2. Low rank bi-linear forms: Bi-linear functions have the form g(x1, . . . , xk,

y1, . . . , yk) = ∑k
i=1 xi · yi . Such functions do not even possess generalized con-

vexity properties, such as quasi-concavity or quasi-convexity [1]. Bi-linear pro-
gramming problems are of two kinds: separable, in which x and y are disjunctively
constrained, and non-separable, in which x and y appear together in a constraint. A
separable bi-linear function has the neat property that its optimum over a polytope
is attained at an extreme point of the polytope, and this fact has been exploited
for solving such problems (see e.g., [16]). The non-separable case is harder, and
it requires considerably more effort for solving the optimization problem [34]. In
this paper, we investigate the particular case when the number of bi-linear terms,
k, is fixed.

3. Sum-of-ratios optimization: Sum-of-ratios functions have the form g(x1, . . . , xk,

y1, . . . , yk) = ∑k
i=1 xi/yi . Even for the case of the sum of a linear term and a

ratio of two linear terms, the function can have many local optima [32]. Further,
Matsui [22] has shown that optimizing functions of this form over a polytope is
an NP-hard problem. Problems of this form arise, for example, in multi-stage sto-
chastic shipping problems where the objective is to maximize the profit earned
per unit time [7]. For more applications, see the survey paper by Schaible and Shi
[33] and the references therein.

There are other functions which do not fall into any of the categories above, but for
which our framework is applicable; an example is aggregate utility functions [6].

Before proceeding further, we state the computational model we are assuming for
our algorithmic results to hold:

– The vectors a1, . . . , ak are known to us (i.e., they are part of the input).
– We are given a polynomial time oracle to compute the function g.
– For the polytope P , we have a polynomial time separation oracle.

Our results: The main contributions of this paper are as follows.

1. FPTAS for minimizing low rank functions over a polytope: We give an
FPTAS for minimizing a low-rank function f over a polytope under very gen-
eral conditions (Sect. 3.1). Even though we present our results only for the case
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of minimization, the method has a straightforward extension for maximization
problems as well. The running time of our approximation scheme is exponential
in k, but polynomial in 1/ε and all other input parameters. Our algorithm relies
on deciding feasibility of a polynomial number of linear programs. We emphasize
here that this FPTAS does not require quasi-concavity of the function f . To the best
of our knowledge, this is the first FPTAS for general non-quasi-concave minimi-
zation/non-quasi-convex maximization problems. We then derive approximation
schemes for three categories of non-linear programming problems: multiplicative
programming (Sect. 4.1), low-rank bi-linear programming (Sect. 4.2) and sum-of-
ratios optimization (Sect. 4.3).

2. Minimizing quasi-concave functions: For the specific case of quasi-concave min-
imization, we give an alternative algorithm which returns an approximate solution
which is also an extreme point of the polytope P (Sect. 5). Again, this algorithm
relies on solving a polynomial number of linear programs, and it can be extended
to the case of quasi-convex maximization over a polytope. As an application of
our technique, we show that we can get an FPTAS for combinatorial optimization
problems in which the objective is a product of a fixed number of linear functions,
provided a complete description of the convex hull of the feasible points in terms
of linear inequalities is known. For example, this technique can be used to get
an FPTAS for the product version and the mean-risk minimization version of the
spanning tree problem and the shortest path problem.

3. Hardness of approximation result: We show that unless P = NP, it is not pos-
sible to approximate the minimum of a positive valued concave function over a
polytope to within any factor, even if the polytope is the unit hypercube (Sect. 6).
This improves upon the Ω(log n) inapproximability result given by Kelner and
Nikolova [14]. We first show a similar result for unconstrained minimization of
a supermodular set function. Then by using an approximation preserving reduc-
tion from supermodular function minimization to minimization of its continuous
extension over a unit hypercube, we get the desired result. The hardness result
for supermodular function minimization is in contrast with the related problem of
submodular function maximization which admits a constant factor approximation
algorithm [8]. We also give a stronger hardness of approximation result, namely
that it is not possible to approximate the minimum of a concave quadratic function
(even with just one negative eigenvalue in the Hessian) over a polytope to within
any factor, unless P = NP.

The philosophy behind the approximation scheme is to view g as an objective func-
tion that combines several objectives (aT

1 x, . . . , aT
k x in this case) into one. There-

fore the idea is to consider the original single-objective optimization problem as a
multiple-objective optimization problem. We first construct an approximate Pareto-
optimal front corresponding to the k linear functions aT

1 x, . . . , aT
k x , and then choose

the best solution from this approximate Pareto set corresponding to our objective
function as the approximate solution. Constructing the exact Pareto-optimal front for
linear functions, in general, is NP-hard, but an approximate Pareto-optimal front can
be computed in polynomial time provided k is fixed (Sect. 2). Once we construct an
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approximate Pareto set, it is possible to compute an approximate solution for a large
class of functions g (see Sect. 3 for more details).

Related work: An exhaustive reference on algorithms for non-linear programming
can be found in Horst and Pardalos [13]. The case of optimizing low-rank non-lin-
ear functions is discussed extensively by Konno et al. [18]. Konno et al. [19] give
cutting plane and tabu search algorithms for minimizing low-rank concave quadratic
functions. A more recent work by Porembski [28] deals with minimizing low-rank
quasi-concave functions using cutting plane methods. The methods employed in both
papers are heuristic, with no theoretical analysis of the running time of the algorithms,
or performance guarantee of the solutions obtained. Vavasis [35] gives an approx-
imation scheme for low-rank quadratic optimization problems (i.e., the case where
the Hessian has only a few non-zero eigenvalues.) However, Vavasis uses a different
notion of approximation algorithm than the one we use in this paper.

A more theoretical investigation of low-rank quasi-concave minimization was done
by Kelner and Nikolova [14], who give an expected polynomial-time smoothed algo-
rithm for this class of functions over integral polytopes with polynomially many facets.
They also give a randomized fully-polynomial time approximation scheme for mini-
mizing a low-rank quasi-concave function over a polynomially bounded polytope (i.e.,
one in which the l1-norm of every point contained in the polytope is bounded by a
polynomial in n, the dimension of the input space), provided a lower bound on the
minimum of the quasi-concave function is known a-priori, and the objective function
satisfies a Lipschitz condition. Further, they show that it is NP-hard to approximate the
general quasi-concave minimization problem by a ratio better than Ω(log n) unless
P = NP. More recently, Goyal and Ravi [9] give an FPTAS for minimizing a class of
low-rank quasi-concave functions over convex sets. The particular class of low-rank
quasi-concave functions which can be optimized using this technique is similar to the
one which we deal with in our paper. Approximation algorithms for minimizing a
non-linear function over a polytope without the quasi-concavity assumption have not
been studied in the literature so far.

Konno and Kuno [17] propose a parametric simplex algorithm for minimizing the
product of two linear functions over a polytope. Benson and Boger [3] give a heuristic
algorithm for solving the more general linear multiplicative programming problem, in
which the objective function can be a product of more than two linear functions. Survey
articles for solving multiplicative programming problems can be found in the books
by Horst and Pardalos [13] and Konno et al. [18]. For the case of combinatorial opti-
mization problems with a product of two linear functions, Kern and Woeginger [15]
and Goyal et al. [10] give an FPTAS when the description of the convex hull of the
feasible solutions in terms of linear inequalities is known. However, the results in both
the papers do not generalize to the case when the objective function is a product of
more than two linear functions. In contrast, our results easily generalize to this case
as well.

For separable bi-linear programming problems, Konno [16] gives a cutting plane
algorithm that returns an approximate locally optimal solution. Al-Khayyal and
Falk [1] handle the non-separable case using branch-and-bound, and they showed
that their algorithm is guaranteed to converge to a globally optimal solution of the
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optimization problem. Another method for solving the non-separable case is the
reformulation-linearization technique due to Sherali and Alameddine [34]. This tech-
nique is similar to the lift-and-project method for solving mixed integer programs:
The algorithm first generates valid quadratic constraints by taking pairwise products
of the constraints, then linearizes both the valid quadratic constraints and the bi-linear
term to obtain a lower bounding linear program, and finally uses branch-and-bound to
solve the resulting reformulation. Minimizing bi-linear functions of low-rank using a
parametric simplex algorithm is discussed in the book by Konno et al. [18], however
their algorithm works for the separable case only. From a theoretical point of view,
an advantage of our technique, as compared to most of the existing algorithms in the
literature, is that it works equally well for both separable as well as non-separable
bi-linear programming problems.

A good reference for algorithms for solving the sum-of-ratios optimization problem
is the survey paper by Schaible and Shi [33]. Almost all the existing algorithms for
optimizing the sum of ratios of linear functions are heuristic, with no provable bounds
on the running time of the algorithm, nor on the quality of the solution obtained. A
common approach for solving these problems is to linearize the objective function by
introducing a parameter for each ratio in the objective (see e.g., [7]). In contrast, our
algorithm does not need to parametrize the objective function. We give the first FPTAS
for this problem, when the number of ratios is fixed. Our algorithm is especially suited
for the case where the number of ratios is small, but each ratio depends on several
variables.

As mentioned before, the main idea behind our approximation schemes is exploiting
the approximate Pareto-optimal front of the corresponding k linear functions. There
is a substantial literature on multi-objective optimization and fully polynomial time
algorithms for approximating the Pareto-optimal set [5,26,29–31]. We use the proce-
dure given by Papadimitriou and Yannakakis [26] for constructing the approximate
Pareto-optimal front in this paper. Multi-objective optimization techniques have been
applied in discrete optimization problems [23], however this technique has not yet
been fully exploited for continuous optimization problems.

2 Preliminaries on multi-objective optimization

An instance π of a multi-objective optimization problem Π is given by a set of k
functions f1, . . . , fk . Each fi : X → R+ is defined over the same set of feasible
solutions, X . Here, X is some subset of R

n (more specifically, we will consider the
case when X is a polytope), and k is significantly smaller than n. Let |π | denote the
binary-encoding size of the instance π . Assume that each fi takes values in the range
[m, M], where m, M > 0. We first define the Pareto-optimal front for multi-objective
optimization problems.

Definition 2 Let π be an instance of a multi-objective minimization problem.
A Pareto-optimal front, denoted by P(π), is a set of solutions x ∈ X , such that
for each x ∈ P(π), there is no x ′ ∈ X such that fi (x ′) ≤ fi (x) for all i with strict
inequality for at least one i .
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f1 (x)

f2 (x)

((1+ ε) f1 (x),

(1+ ε) f2 (x))

f (x )

( f1 (x), f2 (x))

Fig. 1 Figure illustrating the concept of Pareto-optimal front (shown by the thick boundary) and approxi-
mate Pareto-optimal front (shown by solid black points) for two objectives

In other words, P(π) consists of all undominated solutions. For example, if all
fi are linear functions and the feasible set X is a polytope, then the set of func-
tion values ( f1(x), . . . , fk(x)) for x ∈ X is a polytope in R

k . Then P(π) in this
case is the set of points on the “lower” boundary of this polytope. Still, P(π) may
have infinitely many points, and it may not be tractable to compute P(π). This
necessitates the idea of using an approximation of the Pareto-optimal front. One
such notion of an approximate Pareto-optimal front is as follows. It is illustrated
in Fig. 1.

Definition 3 Let π be an instance of a multi-objective minimization problem. For
ε > 0, an ε-approximate Pareto-optimal front, denoted by Pε(π), is a set of solutions,
such that for all x ∈ X , there is x ′ ∈ Pε(π) such that fi (x ′) ≤ (1 + ε) fi (x), for all i .

In the rest of the paper, whenever we refer to an (approximate) Pareto-optimal front,
we mutually refer to both its set of solutions and their vectors of objective function
values. Even though P(π) may contain exponentially many (or even uncountably
many) solution points, there is always an approximate Pareto-optimal front that has
polynomially many elements, provided k is fixed. The following theorem gives one
possible way to construct such an approximate Pareto-optimal front in polynomial
time. We give a proof of this theorem here, as the details will be needed for designing
the FPTAS.

Theorem 1 [26] Let k be fixed, and let ε, ε′ > 0 be such that (1 − ε′)(1 + ε)1/2 = 1.
One can determine a Pε(π) in time polynomial in |π | and 1/ε if the following ‘gap
problem’ can be solved in polynomial-time: Given a k-vector of values (v1, . . . , vk),
either

(i) return a solution x ∈ X such that fi (x) ≤ vi for all i = 1, . . . , k, or
(ii) assert that there is no x ∈ X such that fi (x) ≤ (1 − ε′)vi for all i = 1, . . . , k.

Proof Suppose we can solve the gap problem in polynomial time. An approximate
Pareto-optimal frontier can then be constructed as follows. Consider the hypercube
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in R
k of possible function values given by {(v1, . . . , vk) : m ≤ vi ≤ M for all i}.

We divide this hypercube into smaller hypercubes, such that in each dimension, the
ratio of successive divisions is equal to 1 + ε′′, where ε′′ = √

1 + ε − 1. For each
corner point of all such smaller hypercubes, we solve the gap problem. Among all
solutions returned by solving the gap problems, we keep only those solutions that are
not Pareto-dominated by any other solution. This is the required Pε(π).

To see this, it suffices to prove that every point x∗ ∈ P(π) is approximately dom-
inated by some point in Pε(π). For such a solution point x∗, there is a corner point
v = (v1, . . . , vk) of some hypercube such that fi (x∗) ≤ vi ≤ (1 + ε′′) fi (x∗) for
i = 1, . . . , k. Consider the solution of the gap problem for y = (1 + ε′′)v. For the
point y, the algorithm for solving the gap problem cannot assert (ii) because the point
x∗ satisfies fi (x∗) ≤ (1 − ε′)yi for all i . Therefore, the algorithm must return a
solution x ′ satisfying fi (x ′) ≤ yi ≤ (1 + ε) fi (x∗) for all i . Thus, x∗ is approxi-
mately dominated by x ′, and hence by some point in Pε(π) as well. Since we need to
solve the gap problem for O((log (M/m)/ε)k) points, this can be done in polynomial
time. �	

3 The approximation scheme

Recall the optimization problem given in Sect. 1.

min f (x) = g(aT
1 x, . . . , aT

k x) (1)

s.t. x ∈ P.

We further assume that the following conditions are satisfied:

1. g(y) ≤ g(y′) for all y, y′ ∈ R
k+ such that yi ≤ y′

i for all i = 1, . . . , k,
2. g(λy) ≤ λcg(y) for all y ∈ R

k+, λ > 1 and some constant c, and
3. aT

i x > 0 for i = 1, . . . , k over the given polytope.

There are a number of functions g which satisfy conditions 1 and 2, for example the
l p norms (with c = 1), bi-linear functions (with c = 2) and the product of a constant
number (say p) of linear functions (with c = p). Armed with Theorem 1, we now pres-
ent an approximation scheme for the problem given by (1) under these assumptions.
We denote the term aT

i x by fi (x), for i = 1, . . . , k. We first establish a connection
between optimal (resp. approximate) solutions of (1) and the (resp. an approximate)
Pareto-optimal front P(π) (resp. Pε(π)) of the multi-objective optimization problem
π with objectives f1, . . . , fk over the same polytope.

Before proceeding, we emphasize that the above conditions are not absolutely
essential to derive an FPTAS for the general problem given by (1). Condition 1 may
appear to be restrictive, but it can be relaxed, provided that there is at least one optimal
solution of (1) which lies on the Pareto-optimal front of the functions aT

1 x, . . . , aT
k x .

For example, the sum-of-ratios form does not satisfy this condition, but still we can
get an FPTAS for problems of this form (see Sect. 4.3).
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3.1 Formulation of the FPTAS

Lemma 1 There is at least one optimal solution x∗ to (1) such that x∗ ∈ P(π).

Proof Let x̂ be an optimal solution of (1). Suppose x̂ /∈ P(π). Then there exists
x∗ ∈ P(π) such that fi (x∗) ≤ fi (x̂) for i = 1, . . . , k. By Property 1 of
g, g( f1(x∗), . . . , fk(x∗)) ≤ g( f1(x̂), . . . , fk(x̂)). Thus x∗ minimizes the function
g and is in P(π). �	

Lemma 2 Let x̂ be a solution in Pε(π) that minimizes f (x) over all points x ∈ Pε(π).
Then x̂ is a (1 + ε)c-approximate solution of (1); that is, f (x̂) is at most (1 + ε)c

times the value of an optimal solution to (1).

Proof Let x∗ be an optimal solution of (1) that is in P(π). By the definition of ε-
approximate Pareto-optimal front, there exists x ′ ∈ Pε(π) such that fi (x ′) ≤ (1 + ε)

fi (x∗), for all i = 1, . . . , k. Therefore,

f (x ′) = g( f1(x ′), . . . , fk(x ′)) ≤ g((1 + ε) f1(x∗), . . . , (1 + ε) fk(x∗))
≤ (1 + ε)cg( f1(x∗), . . . , fk(x∗)) = (1 + ε)c f (x∗),

where the first inequality follows from Property 1 and the second inequality fol-
lows from Property 2 of g. Since x̂ is a minimizer of f (x) over all the solutions in
Pε(π), f (x̂) ≤ f (x ′) ≤ (1 + ε)c f (x∗). �	

When the functions fi are all linear, the gap problem corresponds to checking the
feasibility of linear programs, which can be solved in polynomial time. Hence we get
an approximation scheme for solving the problem given by (1). This is captured in the
following theorem.

Theorem 2 The gap problem corresponding to the multi-objective version of the prob-
lem given by (1) can be solved in polynomial time. Therefore, there exists an FPTAS
for solving (1), assuming Conditions 1–3 are satisfied.

Proof Solving the gap problem corresponds to checking the feasibility of the following
linear program:

aT
i x ≤ (1 − ε′)vi , for i = 1, . . . , k, (2a)

x ∈ P. (2b)

If this linear program has a feasible solution, then any feasible solution to this LP
gives us the required answer to question (i). Otherwise, we can answer question (ii)
in the affirmative. The feasibility of the linear program can be checked in polyno-
mial time under the assumption that we have a polynomial time separation oracle
for the polytope P [11]. The existence of the FPTAS follows from Lemma 1 and
Lemma 2. �	
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3.2 Outline of the FPTAS

The FPTAS given above can be summarized as follows.

1. Sub-divide the space of objective function values [m, M]k into hypercubes, such
that in each dimension, the ratio of two successive divisions is 1 + ε′′, where
ε′′ = (1 + ε)1/2c − 1.

2. For each corner of the hypercubes, solve the gap problem as follows, and keep
only the set of non-dominated solutions obtained from solving each of the gap
problems.
(a) Check the feasibility of the LP given by (2a)–(2b).
(b) If this LP is infeasible, do nothing. If feasible, then include the feasible point

of the LP in the set of possible candidates for points in the approximate
Pareto-optimal front.

3. Among the non-dominated points computed in Step 2, pick the point which gives
the least value of the function f , and return it as an approximate solution to the
given optimization problem.

The running time of the algorithm is O
(
(

log (M/m)
ε

)k · L P(n, |π |)), where
L P(n, |π |) is the time taken to check the feasibility of a linear program in n vari-
ables and input size of |π | bits. This is polynomial in the input size of the problem
provided k is fixed. Therefore when the rank of the input function is a constant, we
get an FPTAS for the problem given by (1).

4 Applications of the approximation scheme

Using the general formulation given in Sect. 3.1, we now give approximation schemes
for three categories of optimization problems: multiplicative programming, low-rank
bi-linear programming and sum-of-ratios optimization.

4.1 Multiplicative programming problems

Consider the following multiplicative programming problem for a fixed k:

min f (x) = (aT
1 x) · (aT

2 x) · . . . · (aT
k x) (3)

s.t. x ∈ P.

We assume that aT
i x > 0, for i = 1, . . . , k, over the given polytope P . In our

general formulation, this corresponds to g(y1, . . . , yk) = ∏k
i=1 yi with c = k. f (x)

has rank at most k in this case. Thus, we get the following corollary to Theorem 2.

Corollary 1 Consider the optimization problem given by (3), and suppose that k is
fixed. Then the problem admits an FPTAS if aT

i x > 0 for i = 1, . . . , k over the given
polytope P.

It should be noted that the function f given above is quasi-concave, and so
it is possible to get an FPTAS for the optimization problem given by (3) which
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always returns an extreme point of the polytope P as an approximate solution (see
Sect. 5).

4.2 Low rank bi-linear programming problems

Consider a bi-linear programming problem of the following form for a fixed k.

min f (x, y) = cT x + dT y +
k∑

i=1

(aT
i x) · (bT

i y) (4)

s.t. Ax + By ≤ h.

where c, ai ∈ R
m, d, bi ∈ R

n, A ∈ R
l×m, B ∈ R

l×n and h ∈ R
l . f (x, y) has rank at

most 2k + 1. We have the following corollary to Theorem 2.

Corollary 2 Consider the optimization problem given by (4), and suppose that k is
fixed. Then the problem admits an FPTAS if cT x > 0, dT y > 0 and aT

i x > 0, bT
i y > 0

for i = 1, . . . , k over the given polytope Ax + By ≤ h.

It should be noted that our method works both in the separable case (i.e., when x
and y do not have a joint constraint) as well as in the non-separable case (i.e., when
x and y appear together in a linear constraint). For the case of separable bi-linear
programming problems, the optimum value of the minimization problem is attained
at an extreme point of the polytope, just as in the case of quasi-concave minimization
problems. For such problems, it is possible to obtain an approximate solution which
is also an extreme point of the polytope, using the algorithm given in Sect. 5.

4.3 Sum-of-ratios optimization

Consider the optimization of the following rational function over a polytope.

min f (x) =
k∑

i=1

fi (x)

gi (x)
(5)

s.t. x ∈ P.

Here, f1, . . . , fk and g1, . . . , gk are linear functions whose values are positive over
the polytope P , and k is a fixed number. This problem does not fall into the framework
given in Sect. 1 (the function combining f1, . . . , fk, g1, . . . , gk does not necessarily
satisfy Property 1). However, it is still possible to use our framework to find an approxi-
mate solution to this optimization problem. Let hi (x) = fi (x)/gi (x) for i = 1, . . . , k.
We first show that it is possible to construct an approximate Pareto-optimal front of
the functions hi (x) in polynomial time.

Lemma 3 It is possible to construct an approximate Pareto-optimal front Pε(π) of
the k functions hi (x) = fi (x)/gi (x) in time polynomial in |π | and 1/ε, for all ε > 0.
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Proof From Theorem 1, it suffices to show that we can solve the gap problem cor-
responding to the k functions hi (x) in polynomial time. Solving the gap problem
corresponds to checking the feasibility of the following system:

hi (x) ≤ (1 − ε′)vi , for i = 1, . . . , k,

x ∈ P.

Each constraint hi (x) ≤ (1 − ε′)vi is equivalent to fi (x) ≤ (1 − ε′)vi · gi (x), which
is a linear constraint as fi (x) and gi (x) are linear functions. Hence solving the gap
problem reduces to checking the feasibility of a linear program, which can be done
in polynomial time under the assumption that we have a polynomial time separation
oracle for the polytope P . �	

The corresponding versions of Lemma 1 and Lemma 2 for the sum-of-ratios mini-
mization problem are given below.

Lemma 4 There is at least one optimal solution x∗ to (5) such that x∗ is in P(π), the
Pareto-optimal front of the functions h1(x), . . . , hk(x).

Proof Suppose x̂ is an optimal solution of the problem and x̂ /∈ P(π). Then there
exists x∗ ∈ P(π) such that hi (x∗) ≤ hi (x̂) for all i = 1, . . . , k. Then f (x∗) =∑k

i=1 hi (x∗) ≤ ∑k
i=1 hi (x̂) ≤ f (x̂). Thus x∗ minimizes the function f and is in

P(π). �	
Lemma 5 Let x̂ be a solution in Pε(π) that minimizes f (x) over all points x ∈ Pε(π).
Then x̂ is a (1 + ε)-approximate solution of the problem (5).

Proof Let x∗ be an optimal solution of (5) that is in P(π). By definition, there exists
x ′ ∈ Pε(π) such that hi (x ′) ≤ (1 + ε)hi (x∗), for all i = 1, . . . , k. Therefore,

f (x ′) =
k∑

i=1

hi (x ′) ≤
k∑

i=1

(1 + ε)hi (x∗) ≤ (1 + ε) f (x∗).

Since x̂ is a minimizer of f (x) over all the solutions in Pε(x), f (x̂) ≤ f (x ′) ≤
(1 + ε) f (x∗). �	

The existence of an FPTAS for problem (5) now follows from Lemma 4 and Lemma
5. We therefore have the following corollary.

Corollary 3 Consider the problem given by (5), and suppose that k is fixed. Then the
problem admits an FPTAS if fi (x) > 0, gi (x) > 0 over the given polytope P.

5 The special case of minimizing quasi-concave functions

The algorithm given in Sect. 3 may not necessarily return an extreme point of the
polytope P as an approximate solution of the optimization problem given by (1).
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However, in certain cases it is desirable that the approximate solution we obtain is
also an extreme point of the polytope. For example, suppose P describes the convex
hull of all the feasible solutions of a combinatorial optimization problem, such as the
spanning tree problem. Then an algorithm that returns an extreme point of P as an
approximate solution can be used directly to get an approximate solution for the com-
binatorial optimization problem with a non-linear objective function as well. In this
section, we prove the existence of such an algorithm for the case when the objective
function is a quasi-concave function, which we define below.

Definition 4 A function f : R
n → R is quasi-concave if for all λ ∈ R, the set

Sλ = {x ∈ R
n : f (x) ≥ λ} is convex.

It is a well known result that the minimum of a quasi-concave function over a
polytope is attained at an extreme point of the polytope (see e.g., [4]). In fact, for this
case, it is also possible to get an approximate solution of the problem which is an
extreme point of the polytope, a result already given by Goyal and Ravi [9]. We can
get a similar result using our framework, by employing a different algorithm that uses
the concept of approximate convex Pareto set, instead of approximate Pareto-optimal
front. We first define a convex Pareto-optimal set below [5].

Definition 5 Letπ be an instance of a multi-objective minimization problem. The con-
vex Pareto-optimal set, denoted by C P(π), is the set of extreme points of conv(P(π)).

Similar to the Pareto-optimal front, computing the convex Pareto-optimal front is an
intractable problem in general. Therefore, similar to the notion of an approximate Pa-
reto-optimal front, we need to have a notion of an approximate convex Pareto-optimal
front, defined below [5].

Definition 6 Let π be an instance of a multi-objective minimization problem. For
ε > 0, an ε-approximate convex Pareto-optimal set, denoted by CPε(π), is a set of
solutions, such that for all x ∈ X , there is x ′ ∈ conv(C Pε(π)) such that fi (x ′) ≤
(1 + ε) fi (x), for all i .

The concept of convex Pareto-optimal set and approximate convex Pareto-optimal
set is illustrated in Fig. 2. In the rest of the paper, whenever we refer to an (approxi-
mate) convex Pareto-optimal front, we mutually refer to both its set of solutions and
their vectors of objective function values. The theorem below establishes the existence
of a polynomial time algorithm for computing an approximate convex Pareto-optimal
front.

Theorem 3 [5] There is an algorithm that yields an approximate convex Pareto-opti-
mal front CPε corresponding to the k linear functions aT

i x, i = 1, . . . , k, subject to
the constraints x ∈ P. Moreover, each solution in CPε so obtained is also an extreme
point of the polytope P.

For quasi-concave functions, it suffices to consider only the points in CPε(π)

returned by this algorithm to solve the optimization problem given by (1). This is
captured in the theorem below.
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Fig. 2 Figure illustrating the
concept of convex
Pareto-optimal front CP (shown
by solid black points) and
approximate convex
Pareto-optimal front CPε

(shown by solid gray points) for
two objectives. The dashed lines
represent the lower envelope of
the convex hull of CPε

f1 (x)

f2 (x)

((1+ ε) f1(x),
(1+ ε) f2(x))

( f1(x), f2(x))

Theorem 4 Consider the optimization problem given by (1). If f is a quasi-concave
function and satisfies Conditions 1–3 given in Sect. 3, then the set CPε obtained using
the above algorithm contains a (1 + ε)c-approximate solution to the optimization
problem.

Proof The lower envelope of the convex hull of CPε is an approximate Pareto-optimal
front. By Lemma 2, the approximate Pareto-optimal front contains a solution that is
(1 + ε)c-approximate. Therefore, to find an approximate solution of the optimization
problem, it suffices to find a minimum of the function g over conv(CPε). Since f is
a quasi-concave function, g is a quasi-concave function as well. Therefore, the min-
imum of g over conv(CPε) is attained at an extreme point of conv(CPε), which is
in CPε. Since any point in CPε is an extreme point of the polytope P , the theorem
follows. �	

We now discuss a couple of applications of this algorithm for combinatorial opti-
mization problems.

5.1 Multiplicative programming problems in combinatorial optimization

Consider the following optimization problem.

min f (x) = f1(x) · f2(x) · . . . · fk(x) (6)

s.t. x ∈ X ⊆ {0, 1}n .

Since the product of k linear functions is a quasi-concave function [3,17], we can
use the above algorithm to get an approximate solution of this problem by minimizing
the product function over the polytope P = conv(X). The FPTAS always returns an
extreme point of P as an approximate solution, which is guaranteed to be integral. We
therefore have the following theorem.
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Theorem 5 Consider the optimization problem given by (6), and assume that a com-
plete description of P = conv(X) (or the dominant of P) is known in terms of linear
inequalities or a polynomial time separation oracle. Then if k is fixed, the problem
admits an FPTAS.

Our FPTAS is both simple in description as well as easily generalizable to the case
where we have more than two terms in the product, in contrast to the existing results
in the literature [9,10,15].

5.2 Mean-risk minimization in combinatorial optimization

Mean-risk minimization problems have to following form [2,25]:

min f (x) = μT x + c
√

τ T x (7)

s.t. x ∈ X ⊆ {0, 1}n .

Here, μ, τ ∈ R
n+ and c ≥ 0. In this case, f (x) is a concave function of rank two. If

we have a concise description of P = conv(X), then we can use the above algorithm
to get an FPTAS for the problem. This is captured in the following theorem.

Theorem 6 Consider the optimization problem given by (7), and assume that a com-
plete description of P = conv(X) (or the dominant of P) is known in terms of linear
inequalities or a polynomial time separation oracle. Then the problem admits an
FPTAS.

Again, although an FPTAS for this problem is known [25], our FPTAS has the
advantage of being conceptually simpler than the existing methods.

6 Inapproximability of minimizing a concave function over a polytope

In this section, we show that it is not possible to approximate the minimum of a con-
cave function over a unit hypercube to within any factor, unless P = NP. First, we
establish the inapproximability of supermodular function minimization.

Definition 7 Given a finite set S, a function f : 2S → R is said to be supermodular
if it satisfies the following condition:

f (X ∪ Y ) + f (X ∩ Y ) ≥ f (X) + f (Y ), for all X, Y ⊆ S.

Definition 8 A set function f : 2S → R is submodular if − f is supermodular.

In some sense, supermodularity is the discrete analog of concavity, which is illus-
trated by the continuous extension of a set function given by Lovász [21]. Suppose
f is a set function defined on the subsets of S, where |S| = n. Then the continuous
extension f̂ : R

n+ → R of f is given as follows:
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1. f̂ (x) = f (X), where x is the 0/1 incidence vector of X ⊆ S.
2. For any other x , there exists a unique representation of x of the form x =∑k

i=1 λi ai , where λi > 0, and ai are 0/1 vectors satisfying a1 ≤ a2 ≤ · · · ≤ ak .
Then f̂ (x) is given by f̂ (x) = ∑k

i=1 λi f (Ai ), where ai is the incidence vector of
Ai ⊆ S.

The following theorem establishes a direct connection between f and f̂ .

Theorem 7 [21] f is a supermodular (resp. submodular) function if and only if its
continuous extension f̂ is concave (resp. convex).

We first give a hardness result for supermodular function minimization.

Theorem 8 Let f : 2S → Z+ be a supermodular function defined over the subsets
of S. Then it is not possible to approximate the minimum of f to within any factor,
unless P = NP.

Proof The proof is by reduction from the E4-Set splitting problem [12]. The E4-Set
splitting problem is this: given a ground set V , and a collection C of subsets Si ⊂ V
of size exactly 4, find a partition V1 and V2 of V so as to maximize the number of
subsets Si such that both Si ∩ V1 and Si ∩ V2 are non-empty. Let g : 2V → Z be the
function such that g(V ′) is equal to the number of subsets Si satisfying V ′ ∩ Si �= ∅
and (V \ V ′) ∩ Si �= ∅. Then g is a submodular function (g is just the extension of
the cut function to hypergraphs), and therefore the function f defined by f (V ′) =
|C |−g(V ′)+ε is supermodular, where ε > 0. Clearly, f is a positive valued function.

Håstad [12] has shown that it is NP-hard to distinguish between the following two
instances of E4-Set splitting:

1. There is a set V ′ which splits all the subsets Si , and
2. No subset of V splits more than a fraction (7/8 + η) of the sets Si , for any η > 0.

For the first case, the minimum value of f is ε, whereas for the second case, the
minimum is at least ( 1

8 − η)|C |. Therefore, if we had an α-approximation algorithm
for supermodular function minimization, the algorithm would return a set for the
first case with value at most εα. Since ε is arbitrary, we can always choose ε so that
εα < ( 1

8 −η)|C |, and hence it will be possible to distinguish between the two instances.
We get a contradiction, therefore the hardness result follows. �	

Using this result, we now establish the hardness of minimizing a concave function
over a 0/1 polytope.

Theorem 9 It is not possible to approximate the minimum of a positive valued con-
cave function f over a polytope to within any factor, even if the polytope is the unit
hypercube, unless P = NP.

Proof Kelner and Nikolova [14] have given an approximation preserving reduction
from minimization of a supermodular function f to minimization of its continuous
extension f̂ over the 0/1-hypercube. Thus any γ -approximation algorithm for the
latter will imply a γ -approximation algorithm for the former as well. This implies
that minimizing a positive valued concave function over a 0/1-polytope cannot be
approximated to within any factor, unless P = NP. �	
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In fact, a similar hardness of approximation result can be obtained for minimizing a
concave quadratic function of rank 2 over a polytope. Pardalos and Vavasis [27] show
the NP-hardness of minimizing a rank 2 concave quadratic function over a polytope
by reducing the independent set problem to the concave quadratic minimization prob-
lem. In their reduction, if a graph has an independent set of a given size k, then the
minimum value of the quadratic function is 0, otherwise the minimum value is a large
positive number. This gives the same hardness of approximation result for minimizing
a rank 2 quadratic concave function over a polytope.

The two inapproximability results show that in order to get an FPTAS for minimiz-
ing a non-convex function over a polytope, we need not only the low-rank property
of the objective function, but also additional conditions, such as Property 1 of the
function g given in Sect. 3.1.
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