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In integer programming, {0, 1/2}-cuts are Gomory-Chvatal cuts that can be derived from the original
linear system by using coefficients of value 0 or 1/2 only. The separation problem for {0, 1/2}-cuts is
strongly NP-hard. We show that separation remains strongly NP-hard, even when all integer variables
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1. Introduction

We consider rational polyhedra P = {x € R" : Ax < b} with
A € Z™"and b € Z™. Inequalities of the form

(ATA)x < [ATb], (1)

with A € R™ ATA € Z", and ATb ¢ Z are commonly referred to
as Gomory-Chvatal cuts; they were first mentioned in the work of
Gomory [13] and Chvatal [7]. Gomory-Chvatal cuts are valid for the
integer hull, P, = conv{x € Z" : Ax < b}, of P. It is well known
that it suffices to consider A-vectors with small coefficients (see,
e.g., [18]); more specifically,

P = {x: (ATA)x < [A"b], L e R™ ATA € Z"}
= {x: WAx < |ATh], A €[0,1]", A"A € Z"},

and this rational polyhedron is commonly referred to as the first
Gomory-Chvatal closure. Geometrically speaking, P’ arises from
P by considering all inequalities that are valid for P and pushing
the associated hyperplanes towards P; until they contain some
integer point. In particular, P’ is a stronger relaxation of P; than P,
i.e.,, P C P’ C P.There are several prominent explicit examples of
Gomory-Chvatal cuts in polyhedral combinatorics, including the
blossom inequalities of the matching polytope [10,7], the odd-
cycle inequalities of the stable set polytope [17], the simple comb
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inequalities of the symmetric traveling salesman polytope [15,4],
and the simple Mobius ladder inequalities of the acyclic subdigraph
polytope [14,2], to name a few. Interestingly, the separation
problem for all these families of inequalities (or classes containing
them) can be solved in polynomial time. Moreover, all these cuts
can be derived as in (1) with A € {0, 1/2}™. This prompted Caprara
and Fischetti [2] to introduce the family of all {0, 1/2}-cuts,

Fi2(A,b) = {(ATA)x < [ATb] : » € {0, 1/2}", ATA € Z"},

and to analyze the computational complexity of the following
problem: Given A € Z™", b € Z™, and X € Q" with Ax < b, does
X violate an inequality in F1,2(A, b)? This problem is, of course,
equivalent to the membership problem for the {0, 1/2}-closure of
P = {x € R" : Ax < b}, which is defined by the points in P that
satisfy all inequalities in #7,,(A, b). Caprara and Fischetti showed
that checking whether % violates some inequality in ¥3,,(A, b) is,
in general, strongly NP-complete (and, therefore, the membership
problem is strongly coNP-complete). However, the polytopes of
interest in combinatorial optimization oftentimes have vertices
with coordinates 0 or 1; that is, P C [0, 1]", which is not the
case for the instances that occur in Caprara and Fischetti’s proof.
This provides the motivation for our work, in which we study the
following problem.

GivenA € Z™"and b € Z™ such that {x € R" : Ax < b} C
[0, 1]", and X € Q" with Ax < b, does X violate an inequality in
Fi2(A, b)?

Our main result is that this problem is still strongly NP-complete,

and we give two different proofs for it, each of which is interesting
in its own right. One proof is a careful modification of Caprara
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and Fischetti’s proof, and the other one shows a slightly stronger
result in that the corresponding 0/1-polytopes that arise from our
reduction are of set-packing type. That is, P is of the form P =
{x € R, : Ax < 1}, where A € {0, 1}"™" is a binary matrix,
and 1 denotes the all-1 vector with m entries. Before we present
the first proof in Section 2 and the second proof in Section 3, we
briefly discuss some other work related to {0, 1/2}-cuts.

1.1. Related work

Caprara and Fischetti’s original proof of their own hardness
result (published in [3]) was, in some sense, stronger than that
in [2], because it actually showed that checking whether a point
violates some inequality in ¥7,,(A, b) is strongly NP-hard, even
when the non-negativity constraints —x; < O foralli = 1,...,n
are part of the system Ax < b. A similar proof was later given
in [5]. “Maximally violated” {0, 1/2}-cuts, however, can always be
separated in polynomial time; in fact, this is true more generally for
mod-k cuts, for any given k > 2 [4]. A mod-k cut is an inequality of
the form (1) in which each component of A is a multiple of 1/k. A
mod-k cut is maximally violated by a given point if the difference
between its left-hand side and its right-hand side is equal to
(k — 1)/k. Earlier, Caprara and Fischetti [2,3] had given a couple
of sufficient conditions under which the separation problem for
{0, 1/2}-cuts can be solved in polynomial time. Letchford [ 16] later
introduced a superclass of {0, 1/2}-cuts, so-called binary clutter
inequalities, which allowed him to describe broader classes of
special cases in which {0, 1/2}-cuts can be separated efficiently.
However, the computational complexity of separating {0, 1/2}-
cuts for systems Ax < bwithP = {x : Ax < b} C [0, 1]" has
remained open, and is the subject of this paper.

2. Areduction from DECODING OF LINEAR CODES

The following problem, known as DECODING OF LINEAR CODES, is
NP-complete [12, Problem MS7].

GivenamatrixQ € {0, 1}"**,avectord € {0, 1}", and a positive
integer K, is there a z € {0, 1}* with no more than K entries
equal to 1 such that Qz = d mod 2?

Theorem 2.1. The membership problem for the {0, 1/2}-closure of
polytopes contained in the 0/ 1-hypercube is strongly coNP-complete.

Our reduction carefully modifies the proof of Caprara and
Fischetti in [2] so as to ensure that P C [0, 1]".

Proof. Membership testing is clearly in coNP. We give a reduction
from DECODING OF LINEAR CODES to show completeness. Let Q,
d, and K describe an instance of DECODING OF LINEAR CODES. We
construct the following instance of the membership problem for
the {0, 1/2}-closure:

T 2 . -lt
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where I; is the identity matrix in dimension I, 0' is the all-0 vector
in dimension I, 1" is the I-dimensional all-1 vector, w = —— - 1¢,

. . . K+1 |
and the Os in the matrix represent all-0 submatrices of appropriate

dimension. We first show that P = {x | Ax < b} C [0, 1]7 T
Consider row [ of Ax < b.

Case1.(t+ 1)+ 1 <1 < (t + 1) 4+ r. We obtain the inequality
2X1—t+1) < 2 and, therefore, x,_+1) < 1. Put differently, x, < 1
forall1<lIl<r.

Case2.(t+1)+r+1 <1< (t+1)+2r.Wehave —2x,_t414r) <0
and, therefore, X,_(4+14r) > 0. We obtainx; > Oforall1 <[ <r.

The first t + 1 rows of A correspond to inequalities of the form
Do i + 2% < 2for 1 < I < tand )i, dixj + 2x, 41 < 1
for | = t + 1. The non-negativity of the coefficients of Q and d
together with x; > Oforallj € {1, ..., r}implies thatx,; < 1 for
all1 <i<t+ 1.

Finally, consider row [ with (t4+1)4+2r+1 <1 < 2(t+1)+2r.
The corresponding inequalities are of the form —3x, ;1 (¢+1)42r) <
0 and, therefore, x,4; > Oforall 1 < I < t 4 1.1t follows that
P C [0, 1]"*t*+1 Moreover, b — A% = (w1, ..., w;,0,2-17,0",3 —
2wy, ..., 3= 3w, 2)".In particular, % € P.

Note that X violates a {0, 1/2}-cut if and only if there exists
w € {0, 1}2E+D+2r sych that u"A = 0 (mod 2), ©"b = 1 (mod
2),and uT(b — AX) < 1.To have u"A = 0 (mod 2), it is necessary
that u; = Ofor (t +2) + 2r <1 < 2(t + 1) 4 2r. Furthermore,
w'b = 1(mod 2)ifand onlyif ;4 ; = 1.Consequently, there exists
ap e {0, 12140 with u"A = 0 (mod 2) and b = 1 (mod 2) if
and only if there exists az € {0, 1}' such that Qz = d (mod 2) with
z € {0, 1}*.Indeed, z; = u, for 1 < | < t, and the remaining w; for
the reverse direction can be chosen arbitrarily for those rows of A
that are equal to 0 (mod 2).

Note that w'z < 1 if and only if no more than K entries of
z are equal to 1. Thus, it remains to show that uT(b — AX) < 1
if and only if w"z < 1 with z and u as above. Assume first that
uw'(b—ARX) < 1.Recallthath —AX = (wq, ..., w;,0,2-17,0",3 —
2wy, ..., 3 — 3wy, 2)7. Therefore, w'z < 1forz € {0, 1} with
7= for1 <1 < t.Conversely, let w'z < 1forsomez € {0, 1}.
Define 1 € {0, 1)2E+D+2r by 1) ==z for 1 < I < t, eyq = 1,
and p; := 0 otherwise. Then 1 > w'z = u"(wq, ..., w, 0,2 -
1,0,3 - 2wy, ...,3 = 2w, 2)T = uT(b — AR). So there is a
violated {0, 1/2}-cut if and only if there is a solution to DECODING
OF LINEAR CODES. [

3. Reduction from EXACT 3-COVER

For a given n x m 0/1-matrix A, the intersection graph is an
undirected graph with vertex set V. = {1,...,n}, and an edge
{i, j} if and only if there is at least one row of A with a 1 in the
ith and jth columns [17]. The edge {i, j} represents the fact that
x; and x; cannot take the value 1 simultaneously. The set-packing
problem amounts to the problem of finding a maximum weight
stable set (set of pairwise non-adjacent vertices) in the intersection
graph. Padberg [17] showed that every clique C (i.e., every set of
pairwise adjacent vertices) in the intersection graph yields a valid
clique inequality ZjeC X; < 1 for the set-packing polytope, and
that such an inequality induces a facet of that polytope if and only
if the clique is maximal.

In general, there may be many facet-inducing clique inequali-
ties which are not represented in the system Ax < 1. Indeed, the
number of maximal cliques can be exponential in n and m. If, how-
ever, there is a one-to-one correspondence between the rows of A
and the maximal cliques of the intersection graph (i.e., the system
Ax < 1 consists of the facet-inducing clique inequalities), then A is
said to be a clique matrix.

We will find it helpful to write the {0, 1/2}-cuts of a clique
matrix in a certain explicit form. Lett > 1be an odd integer, and let
C1, ..., G be maximal cliques whose associated clique inequalities
are to be used (receive a multiplier of 1/2) in the derivation of the
cut. Fori = 1, ..., n, let ¢; represent the number of these cliques
which contain i. That is, ¢; = |{k € {1, ..., t} : i € C}|. Then, we
must use (set the multiplier to 1/2 for) a non-negativity inequality
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—x; < 0foreachi € V such that ¢; is odd. Thus, the cut takes the
form

> lgi/2ix < (/2]
i=1

Multiplying by 2, we see that this is equivalent to
t

Zin—inft—l.

k=1 ieCy ¢; odd

Following [2], we define the slack variables s, :== 1 — )
k=1, ...,t.The cut can then be written as

s+ Y x>l

t
k=1 iodd

iec, Xi for

Thus, we see that the {0, 1/2}-cut derived using cliques Cy, ..., C;
is violated by a given X if and only if

Z§k+ Z&,’<1, (2)

t
k=1 ¢; odd

where §; equals the slack of the kth clique inequality, computed
with respect to X.

We recall the definition of the NP-complete decision problem
EXACT 3-COVER [ 12, Problem SP2].

Let s be a multiple of 3, and let Sy, ..., Sq C {1, ..., s} be such
that |Sy| = 3fork = 1,...,q.Is there someR C {1,...,q}
with |R| = s/3 such that |, Sk = {1,...,s}?

Theorem 3.1. Testing whether agivenx € P = {x | Ax < b} violates
a {0, 1/2}-cut is strongly NP-complete, even when the corresponding
integer linear program is a set-packing problem, the matrix A is a
clique matrix, and the intersection graph of A contains only O(n)
maximal cliques.

Proof. Given an instance of EXACT 3-COVER, we construct a graph
with 2s 42 4 q vertices and 2q 4+ 3 maximal cliques (see Fig. 1). For
i=1,...,s, we have two vertices, u; and v;. Fork = 1, ..., q we
have a vertex wy. We also add two further vertices, u* and v*. Edges
are put into the graph so that there are 2q + 3 maximal cliques,
as follows. The vertices of type u will be mutually adjacent and
form the u-clique. The vertices of type v will likewise be mutually
adjacent and form the v-clique. The two vertices u* and v* will also
be connected by an edge, forming the 2-clique.Fork =1, ..., g, we
connect wy to the three u-vertices representing S, thus forming
q cliques of cardinality 4. We will call these the upper 4-cliques.
Finally, for k = 1, ..., g, we connect wy to the three v-vertices
representing S, thus forming g more cliques of cardinality 4. We
will call these the lower 4-cliques.

We now let A equal the clique matrix of this graph. (Note that
A has 2q + 3 rows and 2s + 2 4 q columns.) We define a vector
X € P asfollows. Fori = 1,...,s, we set the component of X
corresponding to u; to 2/(3s+ 3), and we do the same for v;. We set
the component of X corresponding to u* to (s +3)/(3s+ 3), and we
do the same for v*. Finally, fork = 1, ..., g, we set the component
of X corresponding to wy to (3s — 6)/(3s + 3).

It is readily checked that the u-clique and the v-cliques have
slack 0, the 2-clique has slack (s — 3)/(3s + 3), and each of the
upper and lower 4-cliques have slack 3/(3s + 3).

If the ¢ coefficient of a given vertex is odd, then we say that
the vertex is exposed. Each w vertex is contained in exactly two
cliques (an upper 4-clique and a lower 4-clique). An exposed w
vertex contributes (3s — 6)/(3s + 3) to the left-hand side of (2).
Thus, there is at most one exposed w vertex.

Suppose there was exactly one exposed w vertex. As each upper
and lower 4-clique used contributes 3/(s + 3) to the left-hand side
of (2), at most two of them could be used in the Gomory-Chvatal
derivation. In fact, exactly one would have to be used, otherwise

ULy oo, Usg U

Vly.-.,VUg v

Fig. 1. Graph used in the proof.

there would be either zero or two exposed w vertices. Moreover,
the 2-clique could not be used either, because it would contribute
(s —3)/(3s+ 3) to the left-hand side of (2). Only the u and v cliques
remain, and the {0, 1/2}-cut becomes vacuous. Therefore, there are
no exposed w vertices.

Thus, we have shown that, if an upper 4-clique is used, the
corresponding lower 4-clique must be used as well. That is, the
4-cliques come in pairs. Then, in order for the number of cliques
used to be odd, we must use either one or three of the u-, v- and
2-cliques.

Suppose we use the u-clique but not the v- or 2-cliques. The ver-
tex u* is exposed, contributing (s+3)/(3s+ 3) to the left-hand side
of (2). Suppose that we use K pairs. Each pair contributes 6/(3s+3)
to the left-hand side. Moreover, the number of exposed u; vertices
is at least s — 3K, and each contributes 2/(3s + 3) to the left-hand
side. Thus, the left-hand side is at least (s+3+6K +2s—6K) /(3s+
3) = 1, and the cut is not violated. By symmetry, we cannot use the
v-clique without using the u- and 2-cliques. Moreover, we cannot
use the 2-clique without using the u- and v-cliques, because this
would immediately contribute 1 to the left-hand side of (2).

In order to obtain a violated cut, then, we must use the u-, v-
and 2-cliques, together with a number of pairs. Suppose we use K
pairs. Each pair contributes 6/(3s + 3) to the left-hand side of (2),
and the 2-clique contributes (s — 3)/(3s + 3). Moreover, the num-
ber of exposed u vertices is at least max{0, s — 3K}, and the same
holds for the number of exposed v vertices. Thus, the left-hand side
of (2) is at least

6K/(3s + 3) + (s — 3)/(3s + 3) + max{0, 4s — 12K}/ (3s + 3).

It is readily checked that this is less than 1 if and only if K = s/3.
Thus, there is a violated {0, 1/2}-cut if and only if K = s/3 and
there are no exposed vertices at all. This is true if and only if, for
i = 1,...,s, vertex u; appears in exactly one of the s/3 upper
4-cliques and vertex v; appears in exactly one of the s/3 lower
4-cliques. Thus, there is a violated {0, 1/2}-cut if and only if there
is a solution to EXacT 3-COVER. O

4. Concluding remarks

It is not difficult to see that finding a stable set of maximum
weight in graphs of the type used in the proof of Theorem 3.1
can be performed in polynomial time (by enumerating over all
possible choices of a u-vertex, and all possible choices of a v-
vertex). Therefore, the hardness result holds even if the associated
integer linear program itself is polynomially solvable. On the other
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hand, Caprara and Salazar [6] consider an interesting class of NP-
hard set-packing problems for which the separation of {0, 1/2}-
cuts is polynomially solvable. So the complexity of a class of integer
linear programs is not related to the complexity of the separation
problem for the associated {0, 1/2}-cuts. See also [5,9].

It is worth pointing out that the hardness proof of Section 3 can
easily be adapted to set-partitioning and set-covering problems.
This is interesting because Bienstock and Zuckerberg [1] have
recently shown that, in the case of set covering, one can separate
over all Gomory-Chvatal-cuts to an arbitrary fixed precision in
polynomial time.

Naturally, our results imply that it is NP-hard to optimize a
linear function over the {0, 1/2}-closure of a polyhedron P C
[0, 1]". This provides an interesting contrast to the fact that one
can optimize in polynomial time over the elementary closures
associated with lift-and-project, Sherali-Adams, Lovasz-Schrijver,
and Lasserre cuts (see, e.g., [8]).

For Caprara and Fischetti’s second proof of their hardness result
(in [2]), it is not difficult to see that the {0, 1/2}-closure and
the Gomory-Chvatal closure coincide [11]. In particular, testing
membership (or separation) over the Gomory-Chvatal closure is
NP-hard in general. However, in spite of the results provided
herein, it remains unknown whether testing membership for the
Gomory-Chvatal closure remains NP-hard for rational polytopes
contained in the unit cube.
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