Theoretical
w % Computer Science
ELSEVIER Theoretical Computer Science 203 (1998) 3149

Switchbox routing in VLSI design:
Closing the complexity gap

Stephan Hartmann*, Markus W. Schiffter, Andreas S. Schulz

Technische Universitit Berlin, Fachbereich Mathematik, MA 6-1, Strafie des 17. Juni 136,
10623 Berlin, Germany

Abstract

The design of integrated circuits has achieved a great deal of attention in the last decade. In
the routing phase, there have survived two unsolved layout problems that are important from
both the theoretical and the practical point of view. Up to now, switchbox routing has been
known to be solvable in polynomial time when there are only 2-terminal nets, and to be NP-
complete in case there exist nets involving at least five terminals. Our main result is that this
problem is NP-complete even if no net has more than three terminals. Hence, from the theoretical
perspective, the switchbox routing problem is completely settled.

The NP-completeness proof is based on a reduction from a special kind of the satisfiability
problem. It also is possible to adopt our construction to channel routing implying that this
problem is NP-complete, even if each net does not consist of more than five terminals. This
improves upon a result of Sarrafzadeh who proved the NP-completeness in case of nets with no
more than six terminals. (€©) 1998—Elsevier Science B.V. All rights reserved

Keywords: VLSI design; Switchbox routing; NP-completeness; Steiner tree packing

1. Introduction

Very large scale integrated circuit layout (VLSI) is one of the amazingly growing
areas in discrete mathematics and computing science of the last years, due to both its
practical relevance and its importance as a trove of combinatorial problems. Usually,
in VLSI design one distinguishes between the phase of placing physical components
and the subsequent routing phase realizing the conducting connections between them.

The routing phase itself consists of the layout problem and the corresponding layer
assignment. We refer the reader to the book of Lengauer [7] and to the survey of
Mohring et al. [11] for a detailed description of this process as well as for comprehen-
sive surveys of the use of combinatorial and graph-theoretical methods in VLSI design.

* Corresponding author. E-mail: {hartmann,shefta,schulz}@math. TU-Berlin.DE.

0304-3975/98/$19.00 © 1998 — Elsevier Science B.V. All rights reserved
PIT S0304-3975(97)00286-7

32 S. Hartmann et al. [Theoretical Computer Science 203 (1998} 31-49

Here, we concentrate on the layout problem where the course of the wires to connect
the cells in a single plane has to be determined.

Most generally, the problem is to find an edge-disjoint packing of Steiner trees in a
given planar graph. To be more precise, we are given a graph G =(V, E), the so-called
routing graph, and k sets Ny,...,Ny CV called nets. In this context, the elements of
the nets are referred to as terminals. The task is to find £ pairwise edge-disjoint Steiner
trees T1,...,Tp CE such that T; connects the terminals of net A, if they exist, or to
assert that there is no such packing. A solution of the Steiner tree packing problem is
called layout. For planar graphs, Kramer and van Leeuwen [6] show that the Steiner
tree packing problem is NP-complete even if there are only two-terminal nets. Korte
et al. [5] complement their result by proving the NP-completeness of the problem if
there are only two multi-terminal nets. If all terminals are assigned to the outer face of
the routing graph, Okamura and Seymour [12] give sufficient conditions for instances
that can be solved in polynomial time.

The routing graphs arising in VLSI design are actually very special planar graphs.
Most frequently, they are rectangular grids, reflecting the usual shape of the physical
layout areas. Such routing problems have been attacked by quite different methods
ranging from purely bottom-up methods over floor-planning techniques up to polyhe-
dral combinatorics (see, e.g., [7, 3]). There are two types of problems on a grid which
are of particular importance, namely switchbox routing and channel routing. In both
cases, all terminals are placed on the boundary of the grid. In switchbox routing the
terminals may be placed on all four sides. Channel routing is a special case of switch-
box routing where the terminals are only placed on the lower and the upper side of
the grid.

Preparata and Mehlhorn [9] give a polynomial-time algorithm that constructs a lay-
out for the switchbox routing problem, if all nets contain only two terminals. For the
channel routing problem, Sarrafzadeh [13] proved the NP-completeness if some of
the nets involved have six or more terminals. He also claimed (without giving a
proof) the NP-completeness of problems involving nets with at least five terminals.
This implies the same result for switchbox routing. We show that switchbox routing
is NP-complete even if all nets have at most three terminals. Hence, the present paper
closes the gap between the aigorithm of Preparata and Mehlhorn on one side, and the
NP-completeness result of Sarrafzadeh on the other side. As a consequence, heuristic
algorithms are of interest for all instances of the switchbox routing problem that con-
tain nets with more than 2 terminals. An overview of different heuristics can be found
in [8]. It also is possible to transfer our construction to channel routing. This results in
an NP-completeness proof for the case that every net has at most five terminals, see
[4]. Our reductions are partially based on refinements of some of the ideas in [14, 13].

The paper is organized as follows. In Section 2, we define the switchbox routing
problem as well as the 3-bounded 3-SAT problem and give a first, introductory de-
scription of the transformation. The following sections discuss all the details of the
transformation. In Section 5, we prove the correctness of our result. We conclude with
some remarks in Section 6.

S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149 33
2. A first description of the reduction

An instance of the switchbox routing problem consists of a routing region and a
set of nets. The routing region is assumed to be a rectangular grid, called switchbox,
with » vertical lines and m horizontal lines, also called tracks. The set of nets consists
of k nets Nj,...,N;, where each net is a set of so-called rerminals which here are
intersection points at the boundary of the grid.

A solution of the switchbox routing problem, called a layout or a routing, is given
by pairwise edge-disjoint Steiner trees 7y,...,7; embedded in the grid such that 7;
connects the terminals of net N;, i=1,...,k. In the layout, all induced paths must
have disjoint edges but they may meet at the intersection points of the grid. In VLSI
design, this is called the knock-knee model since at an intersection point, two induced
paths may cross or both may change their direction (forming a double-bend, called
knock-knee). In contrast to the knock-knee model, there is the Manhattan model where
only crossings but no knock-knees are allowed. For the Manhattan model, Szymanski
[14] showed that channel routing with 4-terminal nets is NP-complete and hence so is
switchbox routing. This result is extended by Middendorf [10] who showed that even
the 2-terminal channel routing problem in the Manhattan model is NP-complete. In the
following, we consider the knock-knee model.

The 3-terminal switchbox routing problem

Instance: A rectangular routing region consisting of » vertical and m horizontal lines.
A collection {Ni,...,Ni} of nets, each net consists of at most 3 terminals. The
terminals are assigned to the intersection points at the boundary of the grid.

Question: Is there an edge-disjoint knock-knee routing for the nets in the given routing
region?

Before explaining the basics of our reduction, we introduce some notions which
prove useful in the discussions to follow. We number the horizontal lines of the grid
top-down and the vertical lines from the left to the right. The segment of the grid
between the vertical lines with indices i and i + 1 is called a column and is denoted
by 7. The (local) horizontal density dy(i) of column 7 is defined as the number of
nets that have to cross column 7, i.e., it is the number of nets that contain terminals to
the left as well as to the right side of column 7. We call the vertical line with index
i density-increasing if dy(i)>dy(i — 1) and density-decreasing if dn(i)<dn(i — 1).
Otherwise, we say that the vertical line is density-preserving. We call the number m of
horizontal lines the horizontal capacity and the number n of vertical lines the vertical
capacity of the switchbox. The free horizontal capacity of a column is the difference
of the capacity minus the density of the column.

We interchangeably use the term net for a set of terminals and for the realization of
its Steiner tree in the layout. The respective meaning should always be clear from the
context.

The following is our main theorem.

34 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149

LI B, B; By IR

Fig. 1. The coarse-structure of the resulting switchbox instance.

Theorem 1. The 3-terminal switchbox routing problem is NP-complete.

The rest of the paper is devoted to prove this result. It is clear that 3-terminal
switchbox routing is in NP. The reduction is from a special case of the 3-SAT problem.

The 3-bounded 3-SAT problem

Instance: A set 2 = {x|,...,xy} of Boolean variables, and a collection ¥ ={C,,...,
Cys} of clauses over 7. Thereby, for each variable x; there are at most three clauses
in % that contain either x; or x;. Moreover, each clause contains at most three literals.

Question: [s there a Boolean assignment to the variables in & such that every clause
in € is satisfied?

The 3-bounded 3-SAT problem is NP-complete [2, p. 259]. Without loss of generality,
we assume that all clauses contain strictly more than one literal and that every Boolean
variable occurs negated as well as unnegated.

The main ideas of the transformation are as follows.

e For each Boolean variable x; € ¥ we introduce two nets X; and X;, called real-nets.
If x; occurs in two clauses, X; and X, consist of two terminals each, otherwise they
have three terminals.

e A variable x; is meant to be TRUE if and only if net JX; is routed below net X; in
the layout, and FaLsE otherwise.

e In order to maintain the relative vertical ordering of the real-nets X; and X;, we
aim to keep the horizontal density high throughout the switchbox. Therefore, we
introduce so-called extension-nets. Each of these nets has precisely one terminal
on the left or the right boundary of the grid. Their functionality is discussed in
Section 3.

e We also force the real- and the extension-nets to certain tracks. This is the task of
sandwich-nets. The details are given in Section 4.4.

e Each clause C; is modeled as a block B; of consecutive vertical lines. The con-
structed switchbox consists of these clause blocks chained from the left to the right
(see Fig. 1).

e The link of the Boolean variables to the clauses in which they occur is essentially
captured as follows, If the Boolean variable x; appears in the clause C;, both nets
X; and X; have each exactly one terminal on the same vertical line (called the
variable-line) of the clause block B;.

e This variable-line is surrounded by a certain collection of vertical lines (and nets
placed on these lines) to guarantee that the terminals of X; and X; can be connected
to its corresponding nets, respectively. This ensures that each literal can be TRUE or
FaLSE. The precise structure of clause blocks is described in Section 4.

S. Hartmann et al. | Theoretical Computer Science 203 (1998} 31-49 35

o Throughout the paper, repeatedly occurring collections of vertical lines and nets
of the same topological structure are called modules. The collection used in the
previous item (which provides the free capacity needed) is called a detour module
and is explained in Section 4.2.

e We use gate modules (see Section 4.3) in order to ensure that more than the avail-
able capacity is needed, in the case that all literals of a clause are FALSE.

The resulting instance of the switchbox routing problem is quite complex. To be
precise, a 3-bounded 3-SAT instance consisting of N Boolean variables and M clauses
is transformed into a switchbox routing problem instance with #n =8N + 16M; + 31M;
vertical lines, m = 10N + 10M> + 20M5 + 4 horizontal lines, and k= 14N + 16M, +
32M;3+4 nets, where M, denotes the number of 2-literal and M3 the number of 3-literal
clauses of the 3-bounded 3-SAT instance, respectively.

3. The sides of the switchbox

In this section, we introduce all tracks of the switchbox instance, explain to which
nets they are dedicated to, and finally assign terminals to their left and right end-
points. Roughly, we can distinguish between three different areas of tracks. The top
area is dedicated to the real- and extension-nets, the middle one to the gate-nets (see
Section 4.3), and the bottom one to the detour-nets (see Section 4.2).

We insert two horizontal lines for each Boolean variable x;, called variable-tracks.
They are designated for the associated real-nets. Since the terminals of the real-nets only
appear within clause blocks, we need to keep the variable-tracks occupied between the
left-hand side (right-hand side, respectively) of the switchbox and the left-most (right-
most) terminals of the real-nets. This is the task of the extension-nets, There is one
extension-net for each real-net associated with a Boolean variable and for each side
of the switchbox. Hence, there are four of them for each Boolean variable x; which
are denoted by X; 1, Xiw, Xi, and X; ,, respectively. Here, 1 and r stand for left and
right, and t and b stand for top and bottom, respectively.

Each extension-net has exactly three terminals. One is directly placed on the left
(right) boundary of the grid and two of them are in the clause block which contains
the left-most (right-most) terminal of the associated real-net. The terminals in a clause
block are combined with a so-called clamp module which is discussed in detail in
Section 4.4.

To explain the precise dedication of the introduced tracks and the arrangement of
the terminals on the sides, we fix an arbitrary ordering of the clauses and re-number
the Boolean variables correspondingly. The variables are numbered from 1 to N in
order of their first occurrence with respect to the chosen clause ordering (from left to
right).

Starting from the top, we assign the terminals of the extension-nets in the or-
der 1,...,N to the sides of the switchbox. Thereby, the associated terminals of the
upper and the lower extension-nets alternate. Each of these terminals is surrounded

36 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49

ALm;m By

AL T

I Ay

|
S i §<e8.e

i
=5 3z S IS
Mo o S
area of extension/real-nets area of gate-nets area of detour-nets

Fig. 2. The left side L of the switchbox (in landscape mode).

by a certain number of sandwich-nets. Sandwich-nets are also assigned to gate- and
detour-nets. They have a special structure: they consist of three terminals; two of them
are placed at the left-hand and at the right-hand side of the switchbox, respectively,
both on the same track. Because of lack of capacity, we will see that sandwich-nets
are forced to occupy the whole track to which their outer terminals are assigned to.

Fig. 2 depicts the terminal assignment at the left side of the switchbox. The terminals
of extension-, gate- and detour-nets are represented by long dashes while the terminals
of sandwich-nets assigned to these nets are represented by short dashes. The terminal
assignment of the right side is similar. Note that all intersection points at the left and
the right boundary of the grid are occupied by terminals.

4. The clause block

In this section, we explain the precise structure of a clause block. Every clause
block consists of vertical variable-lines for every Boolean variable of the clause. The
variable-lines are surrounded by detour modules which are themselves embedded into
gate modules. We present these concepts as well as the clamp modules which serve to
maintain the vertical ordering of the nets in the following subsections.

4.1. The variable-line

For a given clause C, we introduce a variable-line for each variable occurring in
C. If a variable x appears unnegated in C, we place a terminal of net X at the lower
position of the variable-line of x and a terminal of net X at the upper position. If x
appears negated in C, the assignment is the other way around (see Fig. 3(a)).

So far, we have mainly been concerned with the construction of the switchbox
instance. To improve the accessibility of the discussions to follow, we turn for a
moment to the interpretation. As mentioned before, a variable x is meant to be TRUE if
and only if net X is routed below net X. Now, this is rendered more precisely. Let /
denote the interval between the left-most and the right-most terminals of the real-nets
X and X. Let /* be the maximal sub-interval of / such that the left- and the right-most
vertical line is at maximum density. The variable x is defined to be truUE if and only if
net X is routed below net X in I*, and raLsE otherwise. (The reason for the restriction
of the definition to /* is given in Section 5.)

S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149 37

X, X X, X X
X X
X >———T——— X
Xo X, Xc X X ‘
(a) Var.-lines (b) TRUE-routing (c) FALSE-routing

Fig. 3. Variable-lines for C = {x,,%p,x.} and different routing types.

Given the terminal assignment at the variable-lines and the interpretation of the
routing of the real-nets, we can distinguish two possible routing types at each variable-
line. If a variable x is TRUE (FALSE, respectively) and appears negated (unnegated) in
the clause under consideration, then not both terminals of the associated variable-line
can directly be connected to their dedicated track by using the capacity of the variable-
line only. Consequently, additional horizontal and vertical capacity is needed to route
the necessary detour (see Fig. 3(c)). Such a routing is called a FALsE-routing. Every
other kind of local routing (see, for instance, Fig. 3(b)) is called a TRUEe-routing. It
corresponds to a literal with value TRUE.

In order to allow a TRUE- or a FALSE-routing at every variable-line, the detour modules
provide the required horizontal and vertical capacity.

4.2. The detour module

Detour modules appear around each variable-line. They are intended to provide the
capacity needed for a FALSE-routing and, at the same time, to keep the horizontal and
vertical density high enough to prevent a change of the vertical ordering of the nets.
We distinguish between two types of detour modules, namely right-handed and left-
handed ones. Since they are symmetric about the associated variable-line, we restrict
ourselves to the description of right-handed detour modules.

Consider, say, the ith detour module. This module consists of four vertical lines,
of two terminals of sandwich-nets, and of six terminals of four so-called detour-nets
ei_1, €, gi—i, and g;. These detour-nets serve to keep the capacity low which is caused
by the special terminal assignment at the introduced vertical lines. The first terminal
of the net ¢;_; and the first two terminals of the net g;_, are located in the previous
detour module. The third terminal of g;_, is placed on the upper endpoint of the first
vertical line of the ith detour module. We put this line itself to the left of the variable-
line surrounded by the ith detour module. The other three vertical lines of this detour
module are placed to its right (see Fig. 4). Terminals of the detour-net g; are assigned
to the bottom endpoints of the second and the fourth of these vertical lines whereas
the bottom endpoints of the first and the third vertical line are used for the nets e;_,
and e;, respectively. The remaining upper endpoints of the vertical lines to the right of
the variable-line are designated for terminals of the nets S,, e;_(, and S, respectively.

38 S. Hartmann et al. | Theoretical Computer Science 203 (1998} 31-49

gi-1 Spei-1Sg Gi-1 S, €i-1 5
|4 L
1
€i-1 ? € €i-1 — e
gi-1 J 9 Gi-1 — gi
’ T T
€i-1 g & g €i-1 g, & g,

Fig. 4. A layout for the detour module: a TRUE- and a FALSE-routing (left/right).

Here, S, denotes a sandwich-net whose remaining two terminals are placed directly
above the associated extension-nets of the Boolean variable x at both sides of the
switchbox instance (see Fig. 2). The other two terminals of the sandwich-net S, are
directly placed above the associated detour-net at both sides of the switchbox instance
(see again Fig. 2). The exact terminal assignment within the detour moduie can be
taken from Fig. 4.

The vertical line immediately to the right of the variable-line is called the derour-
line. The described detour module is called right-handed since the detour-line is on the
right side of the variable-line. A left-handed detour module is obtained by reversing
the terminal assignment from left to right. The detour-nets of a left-handed module are
denoted by f; and 4, instead of e; and g;, respectively.

The name detour-line reflects its functionality. The detour caused by a FALsE-routing
cannot be realized without using the vertical capacity of this line. For the same reason,
the detour module provides free horizontal capacity of one track between its first ver-
tical line, which is density-decreasing, and its detour-line which is density-increasing.
The remaining vertical lines of the detour module, however, are density-preserving.
The capacity provided by the detour module can be used to realize a TRUE- as well as
a raLse-routing. Notice that the free horizontal capacity of one track must be used in
both cases (see Fig. 4).

Finally, we should mention that, due to their exposed location, the detour-nets ey,
Jo. go. ho as well as e, 1201,, far, 42055 Gatr 201y, A0 Aagy 24, need a special treatment.
First, the terminals of ey, fy, go, and 4y which have not been assigned so far are
placed on the left side of the switchbox, as already indicated in Fig. 2. Similarly,
the remaining terminals of the detour-nets ea,-oas, fan~2M,5 Gst 120, ANA hag, 1opg, are
assigned to the right side of the switchbox. Second, in contrast to the other detour-nets,
the detour-nets gy, ho, €as 125, and fig, 120, have two terminals only.

4.3. The gate module

In order to ensure that each clause will be satisfied by the variable assignment
deduced from a layout, we have to guarantee that not at every variable-line within
a clause a raLsE-routing can be realized. For this purpose, we introduce gate
modules.

S. Hartmann et al | Theoretical Computer Science 203 (1998) 3149 39

Gz G1 GQ Gl GB G2 Gl G4

i j Gs — :

: ; Gr— :
G1G; Gy Gy Gy GGy Gy
Fig. 5. Layouts for an auton. interval. Fig. 6. Structure of the gate module.

FEach gate module consists of six vertical lines, four sandwich-nets and four gate-
nets which consist of three terminals each. To simplify notation, we focus on one gate
module and denote its corresponding gate-nets by G;, i =1,...,4. One terminal of each
of these nets is assigned to the sides of the switchbox, the respective terminals of G
and G to the left side, the ones of G, and G4 to the right side (see Fig. 2).

A gate module is based on the structure of so-called autonomous intervals that
are introduced in [1]. Autonomous intervals enforce detours, that is, the associated nets
cannot be routed without using additional vertical and horizontal capacity. Fig. 5 depicts
possible routings of an autonomous interval. Such an interval is assigned to the third
and the fourth vertical line of each gate module. The first and the last vertical line of
the gate module are density-preserving. The second vertical line is density-decreasing
whereas the fifth vertical line is density-increasing. Consequently, the free horizontal
capacity is one between these vertical lines.

The precise terminal assignment of the involved gate- and sandwich-nets to these
vertical lines is given in Fig. 9, after the introduction of the clamp modules. Fig. 6
depicts the pure structure of a gate module.

Two detour modules are embedded into one gate module. Their detour-lines are
placed between the second and the third vertical line of the gate-module and between
the fourth and fifth vertical line, respectively. In Fig. 6, the embedded detour-lines are
represented by dotted lines. For 2-literal clauses, the combination of gate- and detour-
modules is as follows: we assign a right-handed detour module to the left variable-
line and a left-handed detour module to the right variable-line; a gate module lies in
between. For 3-literal clauses, we first assign two detour modules to the variable-line
in the middle: a left-handed one and a right-handed one. The left variable-line of the
corresponding clause block is embedded into a right-handed detour module whereas
the right one is embedded into a lefi-handed detour module. Afterwards, two gate
modules are placed between the first two and the last two detour-lines, respectively.
The interaction between the detour and the gate modules is illustrated in Fig. 7.

In order to route the detour enforced by a gate module, the free horizontal capacity
provided by the gate module itself and the capacity of at least one embedded detour-
line must be used. This guarantees that not at every variable-line a FaLsE-routing can be
realized. In our interpretation, this means that at least one literal of the corresponding
clause has to be TRUE. This will be proved in Lemma 7.

40 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49

Gi-1 Gy e GGy Gi-1 Gz e GaGy
ST B o SO R
l : Tt 4'L T 1
: —— + —
G3 [- P -_4__:_-' G3 B s e ‘--:-_> G2
Gy I 0oL Gy G 6
€i-1 : C kS S ik T E [
gz—1>—T : —— '3 gz‘—l»—Jr—J[L T gi
ei-1 Gy gi & 95 G1Gy ei-1 Gz g e g GGy

Fig. 7. Interplay between gate and detour modules: a TRUE- and a FALSE-routing. (The real-nets are repre-
sented as bold solid lines.)

4.4. The clamp module

The crux of the transformation is to guarantee a certain vertical ordering of the
nets. Therefore, we force nets to dedicated tracks. This is the task of clamp modules.
A clamp module consists of two consecutive vertical lines, of two middle terminals of
sandwich-nets, and of two terminals of a net which either starts or ends within a clause
block and which should be forced to a dedicated track. Clamp modules are assigned
to the gate-nets G; and Gy, and to each of the extension-nets.

Consider, say, a net ¥ whose left-most terminal is placed on the left side of the
switchbox. The terminals of the associated sandwich-nets S, and S, (where “a” stands
for above and “b” for below) are directly placed above and below the left-most terminal
of Y at the left side and are assigned to the same positions at the right side of the
switchbox. The first vertical line of the clamp module is density-preserving and the
second is density-decreasing. The terminals of S, and Y are assigned to the top, and
the terminals of ¥ and S, are placed on the bottom side of these lines, in this order. If
a clamp module is assigned to a starting net whose right-most terminal is assigned to
the right side of the switchbox, the first vertical line of the clamp module is density-
increasing and the second 1s density-preserving. For the exact terminal assignment of
a clamp module, we refer the reader to Fig. 8. We will show in Proposition 3 that an
ending net (starting net, respectively) is forced to its dedicated track because of the
interaction of its terminal at the left (right) side of the switchbox, of the clamp module
at its right (left) side, and the lack of capacity in between.

To conclude with the description of the construction, we give the positions of the
clamp modules inside the clause blocks. The clamp module assigned to the gate-net
G5 (G4, respectively) is placed at the left (right) side of the left (right) detour-line of
the corresponding gate module (see Fig. 6).

For the clamp module of an extension-net, we distinguish four cases. The third
terminal of the extension-net can be assigned to the left or to the right side of
the switchbox, and the detour module that surrounds the variable-line at the transi-
tion from the extension-net to the associated real-net can be right- or left-handed.
For reasons of symmetry, we may restrict ourselves to a right-handed detour module.
If the variable-line contains the left-most terminals of the real-nets X; and X, then the

S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49 41

Y S Se Y

Fig. 8. A clamp module assigned to an ending/starting net (left/right).

g X2,]b X?,ltiz Gy e G,Gy f’ Gy Xyp

Xoy ————g—t]
Xogw DD JNU NN N -
G —-- C G,
Gl . J G2
¢ 7
f
g < .
h

e Xow Xopw XoGs ¢ & ¢ Gi1Gah f b GiXuf

Fig. 9. An example clause block for C = {%},x2}.

clamp modules assigned to the extension-nets X;y and X; , are both placed to the left
of this variable-line (see Fig. 9). If the variable-line contains the right-most terminals
of the real-nets, then the clamp module of the lower extension-net JX; , is placed right
to the variable-line. The clamp module of X;y; i1s placed to the right of the associated
detour-line.

At this point, the detailed description of all ingredients of the construction is
complete.

4.5. An example for a clause block

In this subsection, we give an example illustrating the quite complex structure of a
clause block. The main principle is that most of the nets have the same routing in every
layout, if one exists. This “skeleton™ consists of all sandwich-, detour-, and extension-
nets, Within this skeleton, the routings of the real- and gate-nets have to be realized.

42 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149

Fig. 9 essentially depicts the complete clause block for the 2-literal clause {%),x2}.
We give all vertical lines, but tracks associated with nets from other clause blocks are
only indicated by shaded lines. It contains the routing of all nets of the “skeleton”, i.e.,
nets that have the same routing in every layout. Note that only one pair of extension-
nets occurs since we assume that only the real-nets of variable x, start in this clause
block. The remaining nets marked with an arrow may have different routings (in the
shaded rectangles) depending on different variable assignments.

5. The proof

At this point, the reduction from an instance of the 3-bounded 3-SAT problem to
an instance of the 3-terminal switchbox routing problem is completely described. The
NP-completeness proof has the following structure: Lemma 2 shows that a satisfying
variable assignment for an instance of the 3-bounded 3-SAT probiem induces a lay-
out for the resulting switchbox routing problem. For the reverse direction, it is most
important to show that the determination of the values of the Boolean variables from
the layout is well defined. This is captured by Lemma 6. Once this lemma is proved,
it remains to show that the assignment deduced from the layout satisfies all clauses of
the underlying instance of the 3-bounded 3-SAT problem. This is done in Lemma 7.

Lemma 2 (Existence of a layout). Every feasible solution to an instance of the 3-
bounded 3-SAT problem induces a layout for the resulting instance of the switchbox
routing problem.

Proof. Given an instance of the 3-bounded 3-SAT problem and a satisfying variable
assignment, we now describe how to obtain a layout for the resulting switchbox routing
problem instance.

(1) Route each sandwich-net along the track where its left and right terminals are
assigned to and connect its middle terminal using the vertical line it is assigned
to.

(2) Route all extension- and upper gate-nets along their dedicated tracks.

(3) Assign the first two real nets X; and X| to the highest free tracks. If variable x
is TRUE, route X; above Xj, otherwise route them in reverse order. Continue in the
same manner with the remaining real-nets.

(4) Connect the terminals of the real-nets whenever the assignment of the terminals
in the clause blocks corresponds to the ordering of the track assignment at the
corresponding variable-lines. These are exactly the TRUE-routings.

(5) Now route the lower gate-nets and their detours enforced by the autonomous in-
tervals. Route these detours to the side where the routing of the variable-line was
already done in Step 4. This is possible as at least one TRUE-routing per clause
block exists (see Fig. 7). For a 3-literal clause, this means if only the left-most
(right-most) variable-line is routed, route the detours of both gate modules to the

S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49 43

left-hand (right-hand) side. If only the variable-line in the middle is already routed,
then route the detour of the left gate module to the right-hand side and vice versa.

(6) Connect the remaining terminals of the real-nets on the upper side directly to their
corresponding tracks. Connect the remaining terminals of the real-nets on the lower
side by using the horizontal capacity in the area of the detour-nets and the vertical
capacity of the detour-line as depicted in Fig. 4, right side. These raLse-routings
can be realized since in each clause block the number of the remaining detour-lines
is greater than or equal to the number of FALSE-routings.

(7) Route the remaining detour-nets in a canonical way (see Fig. 4).

This procedure yields a layout for the resulting switchbox routing problem. O

Proposition 3 (Clamp module). For every layout of an instance of the switchbox
routing problem, all starting (ending) nets that are combined with a clamp module
are routed along their dedicated tracks.

Proof. Due to the symmetry of a clamp module, we consider without loss of generality
a starting net Y. This means that the first vertical line of the clamp module is density-
increasing and that the density is maximum at the next two columns (see Fig. 8, right
side). Let i denote the track dedicated to net Y and j denote the track net Y is actually
assigned to. The tracks i — 1 and i + 1 are completely occupied by the sandwich-nets
S, and Sy which are assigned to the clamp module of net Y.

First, we assume that net Y is routed to a track j <i — 1. (Recall that the tracks are
numbered from the top to the bottom.) Then, the terminal assignment at the second
vertical line of the clamp module forces either net Y or net S, to occupy two tracks.
But because of the maximum density at this line, each net must only occupy exactly
one track. Hence, net Y cannot be routed along a track j<i— 1. The similar reasoning
applies if net Y is routed to a track j>i+ 1.

Thus, the clamp module assigned to net ¥ ensures that this net is routed in along its
dedicated track i. It remains to show that net ¥ will not change the track afterwards.
This is true for two reasons: first, horizontal and vertical capacity is not available,
which is necessary for a change of tracks. Second, every time another net is routed in,
this net is also combined with a clamp module such that a special track assignment is
forced allowing no changes of the existing track assignment. This completes the proof
of Proposition 3. [

We next argue that the track assignment does not change inside the gate and the
detour module. For a change of tracks, vertical and horizontal capacity is needed, of
course. Let us consider a gate module together with its two embedded detour modules.
The free horizontal capacity of the detour modules is available from the left side of the
left variable-line to the detour-line of the left detour module and from the detour-line
of the right detour module to the left side of the right variable-line. The free horizontal
capacity of the gate module is either available from the left side of the left detour-line
to the column of maximum density inside the gate module or from this column to

4 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149

the right side of the right detour-line. The clamp module of the gate-net G; (or Gy)
guarantees that at the vertical line where the free horizontal capacities overlap there is
no vertical capacity available. For this reason, the capacities of the detour and the gate
modules can be treated separately.

Lemma 4 (Detour module). For every layout of an instance of the switchbox routing
problem, the track assignment of the nets does not change inside a detour module.
In particular, the two new inserted detour-nets are assigned to the tracks of the
corresponding ending detour-nets.

Proof. Due to symmetry, we consider without loss of generality a right-handed detour
module. Obviously, the vertical line on the left side of the variable-line is density-
decreasing and the detour-line is density-increasing. Because of the terminal assignment
of the detour module, this free horizontal capacity is always used by a net occupying
two tracks. In case of a TRUE-routing, this is the detour-net ¢;_;, and in case of a FALSE-
routing, this is first the detour-net e;,_; and then the real-net whose terminal is assigned
to the lower side of the variable-line (see Fig. 4). Since all tracks are occupied by
nets, changes of the track assignment are impossible.

To complete the proof, we show that the ordering of the track assignment of the
starting detour-nets ¢; and ¢; corresponds to the ordering of the ending detour-nets e;_;
and g;_;. Therefore, we consider the sandwich-net S, whose left and right terminals are
assigned to the sides of the switchbox between those of the upper detour-nets indexed
with e and the lower detour-nets denoted by ¢. The arrangement at the right-most
vertical line of the detour module together with the maximum density enforces that
g: must be routed below S, (see Fig. 4), since otherwise density would exaggerate
capacity. Now, we suppose that the nets S, and g; are routed above e;. As all new nets
of the detour module start from the bottom of the switchbox, net S, can only ascend
in the track assignment. This means that at the right side of the switchbox the position
of S, in the track assignment is higher than the position of its last terminal. Due to
the lack of free vertical capacity at the right side of the switchbox, net S; cannot be
connected with its right terminal. Thus, the track assignment is invariant inside the
detour module. This completes the proof of this lemma. [

Lemma 5 (Gate module). For every layout of an instance of the resulting switchbox
routing problem, the track assignment of the nets does not change inside a gate
module.

Proof. We show that a change of the track assignment within the gate module is
contradicted by its special terminal assignment. Depending on the side where the detour
of the autonomous interval of the gate module is routed, horizontal capacity is either
available from the left side of the left detour-line to the column of maximum density
inside the gate module or from this column to the right side of the right detour-line.
Without loss of generality, we consider the case that the detour of the gate module

S. Hartmann et al. | Theoretical Computer Science 203 (1998) 3149 45

is routed to the right. If a FaLsE-routing is realized at the left detour-line, there is
only horizontal capacity available. Consequently, no changes of tracks are possible,
and we may restrict ourselves to the case of a TRue-routing. Suppose that the free
vertical capacity of the detour-line is used to re-route some net X to the track which
was occupied before by the gate-net G3. This means that at the next density-increasing
vertical line, X lies below the starting gate-net G,. At the following vertical line,
gate-net G; ends and G, occupies two tracks in order to lay out the detour of the gate
module. Gate-net G, has to be joined at the next detour-line since otherwise the density
would exaggerate the capacity at the next density-increasing vertical line (where the
gate-net G, is inserted). At this vertical line, G4 then cannot be assigned to the track
to which it is forced to by its clamp module according to Proposition 3 because net X
still occupies this track and it cannot be re-routed to another track. Hence, routing a net
along the free track within the gate module leads to a contradiction to the assumption
of the existence of a layout for the corresponding switchbox routing problem. [

Lemma 6 (Ordering lemma). For every layout of an instance of the switchbox rout-
ing problem, the upper variable-track of a variable x;,€ ¥ is either occupied by the
real-net X; or by the real-net X; inside the associated interval I'*. The vertical ordering
of the real-nets X; and X is the same within this interval,

Proof. Consider the variable-line to which the left-most terminals of the real-nets X;
and X; are assigned to. We assume without loss of generality that the left-most terminal
of X is assigned to the bottom side of this vertical line. Both dedicated variable-tracks
are unoccupied which is guaranteed by the clamp modules assigned to the correspond-
ing extension-nets as shown in Proposition 3. There are two major cases to be distin-
guished.

In case of a raLsE-routing, the real-nets have to pass each other which means that
net X; has to be routed above net X;. Because of a lack of capacity, the only pos-
sibility for such a routing is that net X; has to be assigned to the lower free track
directly at the variable-line, and net X; has to be routed to the upper free track at
the corresponding detour-line. Hence, both real-nets are assigned to their dedicated
tracks.

In case of a TRUE-routing, the situation is more complex. Again, there are two cases
to be distinguished.

In the first case, we suppose that X; occupies a track higher than its dedicated track
by re-routing another net to the dedicated track. This means that X; is assigned to a
higher track than its corresponding sandwich-nets. Recall that the middle terminals of
these sandwich-nets are assigned to the detour-lines of the detour modules which sur-
round the variable-lines with terminals of X; and X; (see Fig. 4). Since each variable
occurs both negated as well as unnegated, there exists another variable-line associated
to x; where a terminal of net X; is assigned to the bottom side and X; is placed on
the top side. This means that only the upper terminal X; can be directly connected
to its corresponding net at this variable-line since net X; is routed above net X;. The

46 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49

lower terminal X; must be connected at the associated detour-line using the capacity
of the detour module. But at this line, it is impossible to connect both terminals, X;
and S, to their nets because net X; is routed above the sandwich-net S, . Addition-
ally, the detour-line is density-increasing such that a net cannot be routed along two
tracks without violating the horizontal capacity constraints at the following columns.
Hence, in our interpretation, a FaLsE-routing cannot be realized for this variable. To
complete the argument for this case, if once one real-net with index i lies above its
corresponding sandwich-nets, then it can only be re-routed below its sandwich-nets
when another real-net is routed above its corresponding sandwich-nets at the variable-
line where its left-most terminal is assigned to. Consequently, there exists a pair of
real-nets (X7, X;) with index />i for which a FALsE-routing cannot be realized applying
the same argument as before. This contradicts the assumption on the existence of a
layout.

In the second case, we suppose that both real-nets occupy tracks lower than the upper
dedicated track. Then, we consider the vertical capacity at the right-most variable-
line of x;. It does not matter whether a TRUE- or a FaLse-routing has to be real-
ized, the vertical capacity below the upper dedicated track is occupied by one of
the associated real-nets. This implies that the net which occupies the upper dedicated
track cannot be re-routed. But then, this gives a conflict with the clamp module of
the corresponding upper extension-net X; ;. Hence, at least the upper dedicated track
is occupied by one of the associated real-nets which proves the first part of this
lemma.

Potentially, a change of the vertical ordering of a pair of real-nets can only happen
inside a detour or a gate module using the capacity provided by these modules, or
at variable-lines containing the left-most or right-most terminals of real-nets. From
Lemmas 4 and 5 follows that the capacity of a detour or a gate module cannot be
used for a change of tracks. Therefore, we may restrict our attention to variable-lines
corresponding to left-most or right-most terminals of real-nets. First, we consider the
left-most variable-line of a variable x;. Recall that the variables (real-nets, respectively)
are numbered in order of their first appearance in the clauses from the left to the
right. This means that all terminals of the remaining real-nets (X;,X;), /> i, are placed
to the right of the variable-line under consideration. As shown before, the real-net
corresponding to x; inserted from the top occupies at least the vertical capacity of the
variable-line from the top to its upper dedicated track. This implies that from each pair
of real-nets with index less than i — if they still exist at this point — at least the upper
real-net remains on its track. Consequently, the ordering of each pair of those real-nets
is maintained. There are no pairs of real-nets below the upper dedicated track of x;.
Furthermore, the vertical capacity of the corresponding detour-line cannot be used to
change the ordering of a pair of real-nets since the critical capacity is occupied by a
corresponding sandwich-net.

It remains to show that also at the right-most variable-line of a real-net the ordering
of each pair of real-nets is preserved. In case of right-most variable-lines, there is no
special numbering. We consider a pair of real-nets (X;,X;) and we assume without loss

S. Hartmann et al | Theoretical Computer Science 203 (1998) 3149 47

of generality that net JX; is routed along the upper dedicated track. Net X; is routed
below. Again, we distinguish two cases. First, we consider the right-most variable-line
corresponding to a variable x;, /<i. If at this variable-line a raLsg-routing has to be
realized or if both real-nets X; and X; lie above net X;, then obviously the ordering of
the real-nets X; and X; cannot be changed since vertical capacity is not available for
re-routing X; or X;. Therefore, we assume that the real-nets X; and X; lic between X;
and X;. This means that the lower dedicated track of the variable x; is occupied by a
net Y. This net has to be re-routed to a lower track. Otherwise, there is a contradiction
to the clamp module of the extension-net X, . This means that the real-net X; cannot
be re-routed to a higher track than the associated real-net X;. On the other hand, the
upper real-net X; cannot be re-routed below net X; since then both nets lie below
their associated upper dedicated track. Since at right-most variable-lines nets can only
descend in the track assignment, this gives a conflict with the clamp module of their
associated extension-nets. Thus, the ordering of the real-nets X; and X; is preserved in
this case.

In the second case, we consider the right-most variable-line corresponding to a vari-
able x;, />i. But in this case, the vertical capacity of the variable-line is used at least
from the upper side of the switchbox to the upper dedicated track of the variable x;.
Moreover, the vertical capacity of the detour-line is used in this area by a correspond-
ing sandwich-net. This implies that the ordering of the real-nets X; and X; is also
maintained inside the associated interval /*. This proves this lemma. The restriction
of the definition of /* takes the following situation into account. At the columns in-
side the corresponding detour modules between the endpoints of I* and the left-most
(right-most, respectively) variable-line of the associated real-nets the ordering may be
contrary to the ordering in 7* since the top real-net may not use the upper dedicated
track anymore. Then, it is routed along the detour-line and the horizontal capacity of
the detour module. Thereby, it is routed below its complementary real-net. But in this
case, the detour of the assigned gate module cannot be realized at this detour-line,
which means that there exists another literal which satisfies the clause. The unoc-
cupied dedicated track cannot be used by any other net since this is prevented by
the clamp module of the associated upper extension-net following at the next vertical
lines.

This completes the proof of Lemma 6. O

Lemma 7 (Gate lemma). Consider a layout for the resulting instance of the switch-
box routing problem. Then, in every clause block, a TRUE-routing is realized for at
least one variable of the associated clause.

Proof. As mentioned before, a clause block corresponding to a 3-literal (2-literal)
clause consists of 4(2) detour-lines. At the detour-lines, vertical capacity is available
in order to route a detour of a gate module or to realize a FALsE-routing. A detour
of a gate module and a raLse-routing cannot be realized at the same detour-line since
FALSE-routings occupy the vertical capacity of the detour-lines from the area of the

48 S. Hartmann et al. | Theoretical Computer Science 203 (1998) 31-49

detour-nets to the area of the extension/real-nets. Hence, a FALSE-routing occupies the
area where the detours of the gate modules have to be routed (see Fig. 7).

Suppose a layout of the switchbox routing problem implies a variable assignment
which does not satisfy a clause C. Hence, at each variable-line of the clause block
corresponding to C a raLsE-routing is realized. This means that for a 3-literal (2-literal)
clause, 3(2) FaLse-routings plus 2 (1) detours of the gate modules have to be realized.
Thus, the demand of vertical capacity is strictly greater than the number of detour-lines
which contradicts the existence of a layout. O

Proof of Theorem 1. Simple counting shows that all introduced nets consist of at most
three terminals. Then, the theorem follows directly from the above lemmas. Lemma 2
states that a satisfying variable assignment induces a layout of the corresponding in-
stance of the switchbox routing problem. Such a layout can be constructed by the
algorithm which is given in the proof of Lemma 2. For the other direction, the vari-
able assignment is shown to be well defined by Lemma 6 while Lemma 7 guarantees
that every clause of the 3-bounded 3-SAT instance is satisfied by the obtained variable
assignment. Hence, the 3-terminal switchbox routing problem is NP-complete. O

6. Concluding remarks

In this paper, we found the border between the polynomial-time solvable and the
NP-complete instances of the switchbox routing problem. The transition between the
2-terminal case (which can be solved efficiently) and the k-terminal case, k >3, (which
is NP-complete) corresponds directly to the transition between path embeddings and
Steiner tree embeddings in grid graphs. The techniques introduced in this paper also
apply to the channel routing problem. A proof similar to the one above shows that the
5-terminal channe! routing problem is NP-complete [4]. This improves upon the result
of [13] for 6-terminal nets. The complexity status of the 3- and 4-terminal channel
routing problem remains open.

Acknowledgements

The authors are grateful to Dorothea Wagner for helpful comments and discussions.

References

[1] M. Formann, D. Wagner, F. Wagner, Routing through a dense channel with minimum total wire length
J. Algorithms 15 (1993) 267-283.

[2] M.R. Garey, D.S. Johnson. Computers and Intractability — A Guide to the Theory of NP-Completeness,
W.H. Freeman, New York, 1979.

[3] M. Grdtschel, A. Martin, R. Weismantel, Routing in grid graphs by cutting planes, ZOR, Math. Methods
Oper. Res. 41 (1995) 255-275.

S. Hartmann et al | Theoretical Computer Science 203 (1998) 3149 49

[4] S. Hartmann, On the NP-completeness of channel and switchbox routing problems, Preprint no. 542,
Fachbereich Mathematik, Technische Universitit Berlin, Berlin, Germany, 1996.

[5] B. Korte, H.-J. Promel, A. Steger, Steiner trees in VLSI-layout, in: B. Korte, L. Lovasz, H.-J. Promel,
A. Schrijver (Eds.), Paths, Flows and VLSI-Layout, Springer, Berlin, 1990, pp. 185-214.

[6] M.R. Kramer, J. van Leeuwen, The complexity of wire routing and finding minimum area layouts for
arbitrary VLSI circuits. in: F.P. Preparata (Ed.), Advances in Computing Research, vol. 2 VLSI theory,
JAI Press, Reading, MA, 1984, pp. 129-146.

{7] Th. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Teubner/Wiley, Stuttgart/
Chichester, 1990.

[8] M. Marek-Sadowska, Switch box routing: a retrospective, Integration VLSI J. 13 (1992) 39-65.

[9] K. Mehlhorn, F.P. Preparata, Routing through a rectangle, J. Assoc. for Comput. Mach. 33 (1986)
60-85.

[10] M. Middendorf, Manhattan channel routing is NP-complete under truly restricted settings, Preprint,
Universitat Karlruhe, Germany, 1993, Chicago J. Theoret. Comput. Sci., to appear.

[t1] R.H. Mohring, D. Wagner, F. Wagner, VLSI network design, in: M.O. Ball, T.L. Magnanti,
C.L. Monma, G.L. Nemhauser (Eds.), Network Routing, Handbooks in Operations Research and
Management Science, vol. 8, Ch. 8, Elsevier, Amsterdam, 1995, pp. 625-712.

[12] H. Okamura, P.D. Seymour, Multicommodity flows in planar graphs, J. Comput. Theory 31 (1981)
75-81.

[13] M. Sarrafzadeh, Channel-routing problem in the knock-knee mode is NP-complete, IEEE Trans. Comput.
Aided Design 6 (1987) 503-506.

[14] T.G. Szymanski, Dogleg channel-routing is NP-complete, IEEE Trans. Comput. Aided Design 4 (1985)
31-41.

