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Gomory’s and Chvátal’s cutting-plane procedure proves recursively the validity of linear
inequalities for the integer hull of a given polyhedron. The Chvátal rank of the polyhedron
is the number of rounds needed to obtain all valid inequalities. It is well known that
the Chvátal rank can be arbitrarily large, even if the polyhedron is bounded, if it is 2-
dimensional, and if its integer hull is a 0/1-polytope.

We show that the Chvátal rank of polyhedra featured in common relaxations of many
combinatorial optimization problems is rather small; in fact, we prove that the rank of
every polytope contained in the n-dimensional 0/1-cube is at most n2(1+logn). Moreover,
we also demonstrate that the rank of any polytope in the 0/1-cube whose integer hull is
defined by inequalities with constant coefficients is O(n).

Finally, we provide a family of polytopes contained in the 0/1-cube whose Chvátal
rank is at least (1+ ε)n, for some ε>0.

1. Introduction

Chvátal [12] (and, implicitly, Gomory [25–27]) established cutting-plane
proofs as a way to certify certain properties of combinatorial problems, e.g.,
to testify that there are no k pairwise non-adjacent nodes in a given graph,
that there is no acyclic subdigraph with k arcs in a given digraph, or that
there is no tour of length at most k in a prescribed instance of the traveling
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salesperson problem. In this paper, we discuss the length of such proofs. Let
us first recall the notion of a cutting-plane proof. A sequence of inequalities

c1 x � δ1, c2 x � δ2, . . . , cm x � δm(1)

is called a cutting-plane proof of cx�δ from a given system of linear inequal-
ities Ax� b, if c1, . . . , cm are integral, cm= c, δm= δ, and if, for i=1, . . . ,m,
cix� δ′i is a nonnegative linear combination of Ax� b,c1x� δ1, . . . , ci−1x�
δi−1 for some δ′i with �δ′i�� δi. Obviously, if there is a cutting-plane proof
of cx�δ from Ax�b, then every integer solution of Ax�b satisfies cx�δ.
Chvátal [12] showed that the converse holds as well. That is, if all integer
points in a nonempty polytope {x∈Rn :Ax�b} satisfy an inequality cx�δ,
for some c∈Zn, then there is a cutting-plane proof of cx� δ from Ax� b.
Schrijver extended this result to rational polyhedra [42].

In a way, the sequential order of the inequalities in (1) obscures the (recur-
sive) structure of the cutting-plane proof; it is better revealed by a directed
graph with vertices 0,1,2, . . . ,m, in which an arc goes from node i to node j
if the i-th inequality has a positive coefficient in the linear combination of
the j-th inequality. Here, 0 serves as a representative for any inequality in
Ax� b. The number of arcs in a longest simple path terminating at node i
is commonly referred to as the depth of the i-th inequality cix�δi w.r.t. the
cutting plane proof. The depth of the m-th inequality is called the depth of
the proof, while m is the so-called length of the cutting-plane proof. We also
say that an inequality cx�δ has depth (at most) d relative to a polyhedron
{x :Ax�b} if it has a cutting-plane proof from Ax�b of depth less than or
equal to d. The following theorem clarifies the relation between the depth
and the length of a cutting-plane proof. It closely resembles the relation be-
tween the height and the number of nodes of a recursion tree in which every
interior node has degree at most n. It can be proved with the help of Farkas’
Lemma.

Theorem 1.1 (Chvátal, Cook, and Hartmann [14]). Let A ∈ Zm×n

and b∈Zm, let Ax� b have an integer solution, and let cx� δ have depth
at most d relative to Ax� b. Then there is a cutting-plane proof of cx� δ
from Ax�b of length at most (nd+1−1)/(n−1).

Gomory–Chvátal cutting-planes have gained importance for at least three
reasons. First, the cutting-plane method is a (theoretical) tool to obtain a
linear description of the integer hull of a polyhedron. In fact, as mentioned
earlier, any valid inequality for the integer hull has a cutting-plane proof from
the defining system of the polyhedron. TheChvátal rank of this polyhedron is
the smallest number d such that all inequalities valid for its integer hull have
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depth at most d relative to the defining system. Hence, if we later state lower
and upper bounds for the depth of inequalities they immediately apply to the
Chvátal rank of the corresponding polyhedron as well. Second, despite the
early computational disappointments with Gomory’s cutting-plane method
[25–27], it is of practical relevance. On the one hand, it has stimulated to a
certain extent the search for problem-specific cutting planes, which became
the basis of an own branch of combinatorial optimization, namely polyhedral
combinatorics (see, e.g., [28,39,41]). On the other hand, Balas et al. [2]
successfully incorporated Gomory’s mixed integer cuts within a Branch-
and-Cut framework. Third, cutting planes are of interest to mathematical
logic and complexity theory. Cook, Coullard, and Turán [15] were the first to
consider cutting-plane proofs as a propositional proof system. In particular,
they pointed out that the cutting-plane proof system is a strengthening of
resolution proofs. Since the work of Haken [30], exponential lower bounds
are known for the latter. Results of Chvátal, Cook, and Hartmann [14], of
Bonet, Pitassi, and Raz [8], of Impagliazzo, Pitassi, and Urquhart [35], and
of Pudlák [40] imply exponential lower bounds on the length of cutting-
plane proofs as well. On the other hand, there is no upper bound on the
length of cutting-plane proofs in terms of the dimension of the corresponding
polyhedron, as the following well-known example shows. The Chvátal rank
of the polytope defined by

−t x1 + x2 � 1
t x1 + x2 � t+ 1

x1 � 1
x1, x2 � 0

grows with t. Notice that the integer hull of this 2-dimensional polytope is a
0/1-polytope, i.e., all its vertices have components 0 or 1 only. In contrast,
we give a polynomial bound in the dimension for the Chvátal rank of any
polytope contained in the 0/1-cube. Then, Theorem 1.1 implies the existence
of exponentially long cutting-plane proofs, matching the known exponential
lower bounds.

In polyhedral combinatorics, it has been custom to consider the depth of
a class of inequalities if not as an indicator of quality at least as a measure
of its complexity. Hartmann, Queyranne, and Wang [34] gave conditions un-
der which an inequality has depth at most 1 and used them to establish
that several classes of inequalities for the traveling salesperson polytopes
have depth at least 2, as was claimed before in [3,9–11,22,24,29]. How-
ever, it follows from a recent result in [19] that deciding whether a given
inequality cx � δ has depth at least 2 can in general not be conducted in
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polynomial time, unless P=NP. Chvátal, Cook, and Hartmann [14] (see also
[32]) answered questions and proved conjectures of Schrijver, of Barahona,
Grötschel, and Mahjoub [4], of Jünger, of Chvátal [13], and of Grötschel
and Pulleyblank [29] on the behavior of the depth of certain inequalities
relative to popular relaxations of the stable set polytope, the bipartite-
subgraph polytope, the acyclic-subdigraph polytope, and the traveling sales-
person polytope, resp. They obtained similar results for the set-covering and
the set-partitioning polytope, the knapsack polytope, and the maximum-cut
polytope, and so did Schulz [44] for the transitive packing, the clique parti-
tioning, and the interval order polytope. The observed increase of the depth
was never faster than a linear function of the dimension; we prove that this
indeed has to be the case: The depth of any inequality with coefficients
bounded by a constant is O(n), relative to a polytope in the 0/1-cube. Nat-
urally, most polytopes associated with combinatorial optimization problems
are 0/1-polytopes.

Main Results. We present two new upper bounds on the depth of inequal-
ities relative to polytopes in the 0/1-cube. For notational convenience, let
P be an arbitrary polytope contained in the 0/1-cube, i.e., P ⊆ [0,1]n, and
let cx � δ, c ∈ Zn be an arbitrary inequality valid for the integer hull PI

of P .

We prove first that the depth of cx � δ relative to P is at most n2 +
2n log‖c‖∞. This yields an O(n2 logn) bound on the Chvátal rank of P
since any 0/1-polytope PI can be represented by a system of inequalities
Ax� b with A∈Zm×n, b∈Zm such that the absolute value of each entry in
A is bounded by nn/2. Note that the latter bound is sharp, i.e., there exist
0/1-polytopes with facets for which any inducing inequality ax�β, a∈Zn

satisfies ‖a‖∞∈Ω(nn/2) [1].

Second, we show that the depth of cx� δ relative to P is no more than
‖c‖1+n. A similar result was previously known for monotone polyhedra [14].
In fact, we present a reduction to the monotone case that is of interest in its
own right because of the smooth interplay of unimodular transformations
and the rounding operator. Asymptotically, the second bound gives an im-
provement by a factor of n to the before-mentioned bound if the components
of c are bounded by a constant.

Third, we construct a family of polytopes in the n-dimensional 0/1-cube
whose Chvátal rank is at least (1+ε)n, for some ε>0. In other words, if r(n)
denotes the maximal Chvátal rank over all polytopes that are contained in
[0,1]n, then it is one outcome of our study that r(n)�(1+ε)n for infinitely
many n∈N, and r(n)�n2(1+logn) for all n∈N.
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Finally, we also show that the number of inequalities in any linear de-
scription of a polytope P ⊆ [0,1]n with empty integer hull is exponential in
n, whenever there is an inequality of depth n.
Related Work. Bockmayr and Eisenbrand [5] derived the first polyno-
mial upper bound of 6n3 logn on the Chvátal rank of polytopes in the n-
dimensional 0/1-cube, via a geometric argument. Subsequently, Schulz [45]
and Hartmann [33] independently obtained a simpler proof as well as a
slightly better bound of n2 log(nn/2), by using bit-scaling. The reader is re-
ferred to the joint journal version of their papers [7], where the authors
actually proved that the depth of any inequality cx � δ, c ∈ Zn, which is
valid for PI is at most n2 log‖c‖∞, relative to P . For monotone polytopes
P , Chvátal, Cook, and Hartmann [14] showed that the depth of any inequal-
ity cx�δ that is valid for PI is at most ‖c‖1. Moreover, they also identified
polytopes stemming from relaxations of combinatorial optimization prob-
lems that have Chvátal rank at least n.

Ultimately, our study of r(n) can also be seen as a continuation of the in-
vestigation of combinatorial properties of 0/1-polytopes, like their diameter
[38], their number of facets [23], their number of vertices in a 2-dimensional
projection [36], or their feature of admitting polynomial-time simplex-type
algorithms for optimization [46].

The paper is organized as follows. We start with some preliminaries and
introduce some notation in Section 2. We also show that any linear descrip-
tion of a polytope in the 0/1-cube that has empty integer hull and Chvátal
rank n needs to contain at least 2n inequalities. In Section 3, we prove the
O(n2 logn) upper bound on the Chvátal rank of polytopes in the 0/1-cube.
Then, in Section 4, we utilize unimodular transformations as a key tool to
derive an O(n) bound on the depth of inequalities with small coefficients, rel-
ative to polytopes in the 0/1-cube. Finally, we present the new lower bound
on the Chvátal rank in Section 5.

2. Preliminaries

A polyhedron P is a set of points of the form P ={x∈Rn|Ax�b}, for some
matrix A ∈ Rm×n and some vector b ∈ Rm. The polyhedron is rational if
both A and b can be chosen to be rational. If P is bounded, then P is called
a polytope. The integer hull PI of a polyhedron P is the convex hull of the
integer points in P . The half space H=(cx� δ) is the set {x∈Rn |cx� δ},
for some non-zero vector c∈Qn and δ∈Q. It is called valid for a subset S of
Rn, if S⊆H. Sometimes we also say that the inequality cx� δ is valid for
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S. If cx�δ is valid for a polyhedron P , then {x∈P |cx=δ} is called a face
of P . If the components of c are relatively prime integers, i.e., c ∈ Zn and
gcd(c)=1, then HI =(cx��δ�), where �δ� is the largest integer number less
than or equal to δ. The elementary closure P ′ of a polyhedron P is the set

P ′ =
⋂

H⊇P

HI ,

where the intersection ranges over all rational half spaces containing P . We
refer to an application of the ′ operator as one iteration of the Gomory–
Chvátal procedure. If we set P (0)=P and P (i+1)=(P (i))′, for i�0, then the
Chvátal rank of P is the smallest number t such that P (t)=PI . We denote
the Chvátal rank of a polyhedron P by rank(P ). The depth of an inequality
cx�δ with respect to P is the smallest k such that cx�δ is valid for P (k).

Let P ⊆ Rn be a polyhedron. A polyhedron Q with Q ⊇ P is called a
weakening of P , if QI = PI . If cx � δ is valid for PI , then the depth of
this inequality with respect to Q is an upper bound on the depth of this
inequality with respect to P . It is easy to see that each polytope P ⊆ [0,1]n

has a rational weakening in the 0/1-cube.
The following important lemma can be found in [43, p. 340] (see also [16,

Lemma 6.33]). It allows to use induction on the dimension of the considered
polyhedra and provides the key for the termination of the Gomory–Chvátal
procedure, which was shown by Schrijver for rational polyhedra in [42].

Lemma 2.1. Let F be a face of a rational polyhedron P . Then F ′=P ′∩F .

Lemma 2.1 yields the following upper bound on the Chvátal rank of ra-
tional polytopes in the 0/1-cube with empty integer hull (see [7] for details).

Lemma 2.2. Let P ⊆ [0,1]n be a d-dimensional rational polytope in the
0/1-cube with PI =∅. If d=0, then P ′=∅; if d>0, then P (d)=∅.

Thus, if cx� δ is valid for a rational polytope P ⊆ [0,1]n and cx� δ−1
is valid for PI , then cx�δ−1 is valid for P (n).

With these methods at hand one can prove the following result due to
Hartmann [32].

Lemma 2.3. If P ⊆ [0,1]n is a polytope and
∑

i∈I xi−
∑

j∈J xj � r is valid
for PI for some subsets I and J of {1, . . . ,n}, then this inequality has depth
at most n2 with respect to P .

A side-product of our result in Section 4.3 is a reduction of this bound
to 2n.
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Chvátal, Cook, and Hartmann [14, p. 481] provided the following family
of rational polytopes in the 0/1-cube with empty integer hull and Chvátal
rank n:

Pn =
{
x ∈ Rn |

∑
j∈J

xj +
∑
j /∈J

(1− xj) � 1
2
, for all J ⊆ {1, . . . , n}

}
.(2)

The polytopes in this example have exponentially many inequalities, and
this indeed has to be the case, as the following result shows.

Proposition 2.4. Let P ⊆ [0,1]n be a polytope in the 0/1-cube with PI =∅
and rank(P )=n. Any inequality description of P has at least 2n inequalities.

Proof. For a polytope P ⊆Rn and for some i∈{1, . . . ,n} and �∈{0,1}, let
P 


i ⊆Rn−1 be the polytope defined by

P 

i = {x ∈ [0, 1]n−1 | (x1, . . . , xi−1, �, xi+1, . . . , xn)T ∈ P}.

Notice that, if P is contained in a facet (xi= �) of [0,1]n for some �∈{0,1}
and some i ∈ {1, . . . ,n}, then the Chvátal rank of P is the Chvátal rank
of P 


i . Let P be a polytope in the 0/1-cube with PI = ∅ and rank(P ) = n.
We will prove next that every one-dimensional face F1 of the cube satisfies
F1∩P 
=∅. We proceed by induction on n.

If n=1, this is definitely true since P is not empty and since F1 is the
cube itself.

For n>1, observe that every one-dimensional face F1 of the cube lies in
a facet (xi = �) of the cube, for some �∈ {0,1} and for some i∈ {1, . . . ,n}.
Since P has Chvátal rank n it follows that P̃ =(xi=�)∩P has Chvátal rank
n− 1. This can be seen as follows. Suppose the Chvátal rank of P̃ was at
most n−2 and suppose that �=1. (The case �=0 is similar.) Then, with
Lemma 2.1, the inequality xi �0 is valid for P (n−1). Since the Chvátal rank
of P ∩ (xi = 0) is at most n− 1, it follows again with Lemma 2.1 that the
inequality xi>0 is valid for P (n−1). Thus the Chvátal rank of P is at most
n−1, a contradiction. It then follows by induction that (F1)
i ∩ P̃ 


i 
=∅, thus
F1∩P 
=∅.

Each 0/1-point has to be cut off from P by some inequality, as PI = ∅.
If an inequality cx�δ cuts off two different 0/1-points simultaneously, then
it must also cut off a 1-dimensional face of [0,1]n. Because of our previous
observation this is not possible, and hence there is at least one inequality
for each 0/1-point which cuts off only this point. Since there are 2n different
0/1-points in the cube, the claim follows.

We conclude the first section by introducing some further notation. The
�∞-norm ‖c‖∞ of a vector c∈Rn is the largest absolute value of its entries,
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‖c‖∞ = max{|ci| | i = 1, . . . ,n}. The �1-norm ‖c‖1 of c is the sum ‖c‖1 =∑n
i=1 |ci|. We define the function log :N→N as

log n =

{
1 if n = 0
1 + �log2(n)� if n > 0.

Note that logn is the number of bits in the binary representation of n.
For a vector x ∈ Rn, �x� denotes the vector obtained by component-wise
application of �·�.

3. A New Upper Bound on the Chvátal Rank

We call a vector c saturated with respect to a polytope P , if max{cx |
x ∈ P} = max{cx | x ∈ PI}. If Ax � b is an inequality description of PI ,
then P = PI if and only if each row vector of A is saturated w.r.t. P . It
was shown in [7] that an integral vector c ∈ Zn is saturated after at most
n2 log‖c‖∞ steps of the Gomory–Chvátal procedure. Since each 0/1-polytope
has a representation Ax� b with A∈Zm×n, b∈Zm, such that each absolute
value of an entry in A is bounded by nn/2 (see, e.g., [39]), the known bound
of O(n3 logn) follows. One drawback in this proof is that faces of P that
do not contain 0/1-points are taken to have worst-case behavior n. The
following observation is crucial to derive a better bound.

Lemma 3.1. Let cx�α be valid for PI and cx� γ be valid for P , where
α � γ, α,γ ∈ Z and c ∈ Zn. If, for each β ∈ R, β > α, the polytope Fβ =
P∩(cx=β) does not intersect two opposite facets of the 0/1-cube, then the
depth of cx�α relative to P is at most 2(γ−α).

Proof. Notice that F ′
β=∅ for each β>α, since there exists some i∈{1, . . . ,n}

and some ε>0 such that xi � ε and xi �1− ε are valid for Fβ . Thus, xi �1
and xi � 0 are valid for F ′

β . The proof is by induction on γ−α. If α = γ,
there is nothing to prove. So let γ−α>0. Since F ′

γ =∅, Lemma 2.1 implies
that cx�γ−ε is valid for P ′ for some ε>0, Hence, the inequality cx�γ−1
is valid for P (2).

Proposition 3.2. Let P be a rational polytope in the n-dimensional 0/1-
cube. An integral vector c∈Zn is saturated w.r.t. P (t) if t�n2+2n log‖c‖∞.

Proof. We can assume that c�0 and that PI 
=∅. (It was already shown in
[7] that polytopes with empty integer hull have Chvátal rank at most n, see
Lemma 2.2.) The proof is by induction on n and log‖c‖∞. The claim holds
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for n=1,2 since the Chvátal rank of a polytope in the 1- or 2-dimensional
0/1-cube is at most 1 and 4, resp.

So let n > 2. If log‖c‖∞ = 1, the claim follows, e.g., from Theorem 4.6
below. So let log‖c‖∞ > 1. Write c = 2c(1) + c(2), where c(1) = �c/2� and
c(2) ∈ {0,1}n. By induction, it takes at most n2 + 2n log‖c(1)‖∞ = n2 +
2n log‖c‖∞ − 2n iterations of the Gomory–Chvátal procedure until c(1) is
saturated. Let k=n2+2n log‖c‖∞−2n.

Let α =max{cx | x ∈ PI} and γ =max{cx | x ∈ P (k)}. The “integrality
gap” γ−α is at most n. This can be seen as follows. Choose x̂∈P (k) with
cx̂=γ and let xI ∈PI satisfy c(1)xI =max{c(1) x |x∈P (k)}. One can choose
xI out of PI since c(1) is saturated w.r.t. P (k). It follows that

γ − α � c(x̂− xI) = 2c(1)(x̂− xI) + c(2)(x̂− xI) � n ,

where the last inequality follows from c(1)x̂�c(1)xI and c(2)∈{0,1}n.
Consider now the fixing of an arbitrary variable xi to an arbitrary value

�∈{0,1}. The result is the polytope

P 

i = {x ∈ [0, 1]n−1 | (x1, . . . , xi−1, �, xi+1, . . . , xn)T ∈ P}

in the (n−1)-dimensional 0/1-cube for which, by the induction hypothesis,
the vector

c̃i = (c1, . . . , ci−1, ci+1, . . . , cn)

is saturated after at most

(n− 1)2 + 2(n − 1) log ‖c̃i‖∞ � n2 + 2n log ‖c‖∞ − 2n

iterations.
It follows that

α− �ci � max{c̃i x | x ∈ (P 

i )

(k)} = max{c̃i x | x ∈ (P 

i )I}.

If β > α, then (cx= β)∩P (k) cannot intersect a facet of the cube, since a
point in P (k)∩(xi=�), �∈{0,1}, has to satisfy cx�α.

With Lemma 3.1, after 2n more iterations of the Gomory–Chvátal pro-
cedure, c is saturated, which altogether happens after n2+2n log‖c‖∞ iter-
ations.

We conclude this section with a new upper bound on the Chvátal rank.

Theorem 3.3. The Chvátal rank of a polytope in the n-dimensional 0/1-
cube is at most n2(1+logn).
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Proof. Each polytope Q in the 0/1-cube has a rational weakening P . The
integral 0/1-polytope PI can be described by a system of integral inequalities
PI ={x∈Rn |Ax�b} with A∈Zm×n, b∈Zm such that each absolute value of
an entry in A is bounded by nn/2. We count the number of Gomory–Chvátal
steps until all row-vectors of A are saturated. Proposition 3.2 implies that
these row-vectors are saturated after at most n2+2n lognn/2 �n2(1+logn)
steps.

4. A Different Upper Bound on the Depth

In this section we show that any inequality cx � δ that is valid for the
integer hull of a polytope P in the n-dimensional 0/1-cube has depth at
most n+‖c‖1 w.r.t. P .

We start by recalling some useful properties of monotone polyhedra,
prove then that the Gomory–Chvátal operator complies with unimodular
transformations, and eventually reduce the general case to monotone poly-
topes via a special unimodular transformation.

4.1. Monotone Polyhedra

A nonempty polyhedron P ⊆Rn
�0 is called monotone if x∈P and 0�y�x

imply y∈P . Hammer, Johnson, and Peled [31] observed that a polyhedron
P is monotone if and only if P can be described by a system x� 0, Ax� b
with A,b� 0. The next statements are proved in [32] and [14, p. 494]. We
include a proof of Lemma 4.2 for the sake of completeness.

Lemma 4.1. If P is a monotone polyhedron, then P ′ is monotone as well.

Lemma 4.2. Let P be a monotone polytope in the 0/1-cube and let cx�δ,
c∈Zn, be valid for PI . Then cx�δ has depth at most ‖c‖1−δ.

Proof. The proof is by induction on ‖c‖1. If ‖c‖1 = 0, the claim follows
trivially. W.l.o.g., we can assume that c� 0 holds. Let γ=max{cx |x∈P}
and let J = {j | cj > 0}. If max{∑j∈J xj | x ∈ P} = |J |, then, since P is
monotone, x̂ with

x̂i =

{
1 if i ∈ J,

0 otherwise

is in P . Also cx̂= γ must hold. So γ = δ and the claim follows trivially. If
max{∑j∈J xj | x∈ P}< |J |, then ∑

j∈J xj � |J |−1 has depth at most 1. If
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‖c‖1 = 1 this also implies the claim, so assume ‖c‖1 � 2. By induction the
valid inequalities cx−xj �δ, j∈J , have depth at most ‖c‖1−δ−1. Adding
up the inequalities cx−xj �δ, j∈J , and

∑
j∈J xj � |J |−1 results in

c x � δ + (|J | − 1)/|J |.

Rounding down yields cx�δ and the claim follows.

4.2. Unimodular Transformations

Unimodular transformations and in particular flipping operations will play
a crucial role in relating the Chvátal rank of arbitrary polytopes in the
0/1-cube to the Chvátal rank of monotone polytopes. In this section, we
show that unimodular transformations and the Gomory–Chvátal operator
commute.

A unimodular transformation is a mapping

u : Rn → Rn

x �→ Ux+ v,

where U ∈Zn×n is a unimodular matrix, i.e., det(U)=±1, and v∈Zn.
Note that u is a bijection. Its inverse is the unimodular transformation

u−1(x)=U−1x−U−1v. Since U−1∈Zn×n, u is also a bijection of Zn.
Consider the rational halfspace (cx� δ), c∈Zn,δ∈Q. The set u(cx� δ)

is the rational halfspace

{x ∈ Rn | c u−1(x) � δ} = {x ∈ Rn | cU−1x � δ + cU−1v}
= (cU−1x � δ + cU−1v).

Notice that the vector cU−1 is also integral. Let S be some subset of Rn. It
follows that (cx�δ)⊇S if and only if (cU−1x�δ+cU−1v)⊇u(S).

Consider now the first elementary closure P ′ of some polyhedron P ,

P ′ =
⋂

(c x�δ)⊇P
c∈Zn

(c x � �δ�).

It follows that

u(P ′) =
⋂

(c x�δ)⊇P
c∈Zn

(cU−1x � �δ� + cU−1v).

From this one can derive the next lemma.
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Lemma 4.3. Let P be a polyhedron and u be a unimodular transformation.
Then

u(P ′) = (u(P ))′.

Corollary 4.4. Let P ⊆ Rn be a polyhedron and let cx � δ be a valid
inequality for PI . Let u be a unimodular transformation. The inequality
cx�δ is valid for P (k) if and only if u(cx�δ) is valid for (u(P ))(k).

The i-th flipping operation is the unimodular transformation

πi : Rn → Rn

(x1, . . . , xn) �→ (x1, . . . , xi−1, 1− xi, xi+1, . . . , xn).

It has the representation

πi : Rn → Rn

x �→ Ux+ ei,

where U coincides with the identity matrix In except for U(i,i), which is −1.
Note that the flipping operation is a bijection of [0,1]n. For the set (cx�δ)
one has πi(cx�δ)= c̃ x�δ−ci. Here c̃ coincides with c except for a change
of sign in the i-th component.

4.3. The Reduction to Monotone Weakenings

If one wants to examine the depth of a particular inequality with respect to
a polytope P ⊆ [0,1]n, one can apply a series of flipping operations until all
its coefficients are nonnegative. An inequality with nonnegative coefficients
defines a (fractional) 0/1-knapsack polytope K. The depth of this inequality
with respect to the convex hull of P and K is then an upper bound on its
depth with respect to P . We will show that conv(P,K)(n) has a monotone
weakening in the 0/1-cube.

Lemma 4.5. Let P ⊆ [0,1]n be a polytope in the 0/1-cube, with PI =KI ,
where K = {x | cx � δ, 0 � x � 1} and c � 0. Then, P (n) has a rational,
monotone weakening Q in the 0/1-cube.

Proof. We can assume that P is rational. Let x̂ be a 0/1-point which is not
contained in P , i.e., cx̂> δ. Let I= {i | x̂i=1}. The inequality ∑

i∈I xi � |I|
is valid for the cube and thus for P . Since c � 0, the corresponding face
F ={x |∑i∈I xi= |I|, x∈P} of P does not contain any 0/1-points. Lemma 2.2
implies that

∑
i∈I xi � |I|−1 is valid for P (n).
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Thus, for each 0/1-point x̂ which is not in P , there exists a nonnegative
rational inequality ax̂x � γx̂ which is valid for P (n) and which cuts x̂ off.
Thus

0 � xi � 1, i ∈ {1, . . . , n}
ax̂ x � γx̂, x̂ ∈ {0, 1}n, x̂ /∈ P

is the desired weakening.

Theorem 4.6. Let P ⊆ [0,1]n, P 
= ∅ be a nonempty polytope in the 0/1-
cube and let cx�δ be a valid inequality for PI with c∈Zn. Then cx�δ has
depth at most n+‖c‖1 with respect to P .

Proof. One can assume that c is nonnegative, since one can apply a series
of flipping operations. Notice that this can change the right hand side δ, but
in the end δ has to be nonnegative since P 
=∅. Let K={x∈ [0,1]n |cx� δ}
and consider the polytope Q=conv(K,P ). The inequality cx�δ is valid for
QI and the depth of cx�δ with respect to P is at most the depth of cx�δ
with respect to Q. By Lemma 4.5, Q(n) has a monotone weakening S. The
depth of cx � δ with respect to Q(n) is at most the depth of cx � δ with
respect to S. But it follows from Lemma 4.2 that the depth of cx� δ with
respect to S is at most ‖c‖1−δ�‖c‖1.

5. A New Lower Bound on the Chvátal Rank

To the best of the authors’ knowledge, no example of a polytope P in the n-
dimensional 0/1-cube with rank(P )>n has been provided in the literature
so far. We show next that r(n)>(1+ε)n, for infinitely many n, where ε>0
and where r(n) denotes the maximal Chvátal rank over all polytopes that
are contained in [0,1]n. The construction relies on a lower bound for the
fractional stable-set polytope due to Chvátal, Cook, and Hartmann [14].

Let G=(V,E) be a graph on n vertices, C be the family of all cliques of
G, and let Q⊆Rn be the fractional stable set polytope of G defined by the
inequalities

x(C) � 1 for all C ∈ C,
xv � 0 for all v ∈ V.

(3)

Let e be the vector of all ones. The following lemma is proved in [14,
Proof of Lemma 3.1].
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Lemma 5.1. Let k < s be positive integers and let G be a graph with n
vertices such that every subgraph of G with s vertices is k-colorable. If P is
a polyhedron that contains QI and the point u= 1

k e, then P (j) contains the

point xj=( s
s+k )

ju.

Let α(G) be the size of the largest independent subset of the nodes of G.
It follows that ex�α(G) is valid for QI . One has

exj =
n

k
(

s

s+ k
)j � n

k
e−jk/s ,

and thus xj does not satisfy the inequality ex�α(G) for all j<(s/k) ln n
kα(G) .

Erdős proved in [21] that for every positive t there exist a positive integer
c, a positive number δ and arbitrarily large graphs G with n vertices, cn
edges, α(G) < tn and every subgraph of G with at most δn vertices is 3-
colorable. One wants that ln n

kα(G) � 1 and that s/k grows linearly, so by
chosing some t<1/(3e), k=3 and s=�δn� one has that xj does not satisfy
the inequality ex�α(G) for all j<(s/k).

We now give the construction. Let P be the convex hull of Pn defined
in (2) and Q. Pn ⊆ P contributes to the fact that 1/2e is in P (n−1) [14,
Lemma 7.2]. Thus x0=1/3e is in P (n−1). Since the integer hull of P is equal
to QI , it follows from the discussion above that the depth of ex � α(G)
with respect to P (n−1) is Ω(n). Thus the depth of ex � α(G) is at least
(n−1)+Ω(n)�(1+ε)n for infinitely many n, where ε>0.

6. Concluding Remarks

Subsequently, Li has refined some of our results and especially extended
them to polytopes in the 0/k-cube [37]. Cornuéjols and Li [18] proved that
the Gomory mixed-integer rank of polytopes in the n-dimensional 0/1-cube
is at least n. (An upper bound of n follows from existing results in the
literature.) Cook and Dash [17] presented a lower bound of n for the matrix-
cut rank of polytopes contained in the n-dimensional 0/1-cube. Moreover,
they adapted the proof of Proposition 2.4 to show that a polytope with
empty integer hull and matrix-cut rank n has to have at least 2n inequalities
in any defining system of linear inequalities. Bockmayr and Eisenbrand [6]
showed that the number of inequalities needed to describe the elementary
closure P ′ of a rational polyhedron P is polynomially bounded in fixed
dimension.
Acknowledgments. The authors are grateful to Alexander Bockmayr,
Volker Priebe, and Günter Ziegler for helpful comments on an earlier ver-
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