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Commodity prices are volatile, and volatility itself varies over time. Changes
in volatility can affect market variables by directly affecting the marginal
value of storage, and by affecting a component of the total marginal cost of
production, the opportunity cost of producing the commodity now rather
than waiting for more price information. I examine the role of volatility in
short-run commodity market dynamics and the determinants of volatility
itself. I develop a structural model of inventories, spot, and futures prices
that explicitly accounts for volatility, and estimate it using daily and
weekly data for the petroleum complex: crude oil, heating oil, and gasoline.
© 2004 Wiley Periodicals, Inc. Jrl Fut Mark 24:1029–1047, 2004

INTRODUCTION

Most commodity markets are volatile, and volatility itself fluctuates over
time. This paper examines the short-run dynamics of commodity prices
and inventories, focusing on the behavior and role of volatility. I show
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1Schwartz (1997) and Schwartz and Smith (2000) show how futures prices can be used to estimate
a mean-reverting price process and derive values of commodity-based options. Casassus and Collin-
Dufresne (2001) estimate a three-factor model of commodity prices that extends the models of
Schwartz (1997) and others by allowing for time-varying risk premia. Milonas and Henker (2001)
also study the behavior of crude oil convenience yield and show that is is like a call option.

how changes in volatility affect spot prices, futures prices, and invento-
ries, and measure the magnitudes of these effects.

Volatility affects prices, production, and inventories in two principal
ways. First, it directly affects the marginal value of storage (the marginal
convenience yield), i.e., the flow of benefits from an extra unit of inventory.
When prices—and hence production and demand—are more volatile,
there is a greater demand for inventories, which are needed to smooth pro-
duction and deliveries and reduce marketing costs. Thus an increase in
volatility can lead to inventory build-ups and raise prices in the short run.

Second, for a depletable resource like oil, volatility affects the total
marginal cost of production via the “option premium.” Producers hold
operating options, with an exercise price equal to direct marginal pro-
duction cost and a payoff equal to the spot price. Total marginal cost
equals the direct marginal cost plus the opportunity cost of exercising
the incremental operating option. An increase in price volatility raises
the value of this option and the associated opportunity cost, and can
thus result in a decrease in production. Litzenberger and Rabinowitz
(1995) used a two-period model to show that this option premium can
cause backwardation in futures markets. Using data for crude oil, they
demonstrated that consistent with the theory, production is negatively
correlated, and the extent of backwardation is positively correlated, with
price volatility.1 I show how volatility and option value can be incorporat-
ed in a model of a commodity market dynamics.

I develop a weekly model that relates the dynamics of inventories,
spot and futures prices, and the level of volatility, and I estimate the
model using data for the three commodities that make up the petroleum
complex: crude oil, heating oil, and gasoline. To estimate volatility, I use
sample standard deviations of adjusted daily log changes in spot and
futures prices. As Campbell et al. (2001) point out, in addition to its sim-
plicity, this approach has the advantage that it does not require a para-
metric model of the evolution of volatility.

As shown below, at least for the petroleum complex, changes in price
volatility are not predicted by market variables such as inventories or con-
venience yields, and can be viewed as exogenous. However, changes in
volatility affect market variables through the marginal value of storage
and by affecting price and production through the option premium,



Volatility and Commodity Price Dynamics 1031

2The exogeneity of volatility is consistent with informational efficiency in the spot and futures
markets.
3See Pindyck (1993, 1994). This approach has also been used in studies of manufacturing invento-
ries, e.g., Miron and Zeldes (1988) and Ramey (1991). Considine (1997) and Considine and Heo
(2000) estimated Euler equation models of inventory behavior for petroleum products, focusing on
the joint production characteristics of refining. McDonald and Shimko (1998) estimate the marginal
value of storage for gold.

although the impact is smaller than that suggested by Litzenberger and
Rabinowitz (1995), Milonas and Henker (2001), and others. Also,
changes in the value of storage affect production, inventories, and spot
prices, so these variables are indirectly affected by volatility.2

This paper also shows how inventories adjust and affect prices in the
short run. Inventories can be used to reduce costs of varying production
(when marginal cost is increasing), and to reduce marketing costs by facil-
itating production and delivery scheduling and avoiding stockouts.
Equilibrium inventory behavior is the solution to a stochastic dynamic
optimization problem. Early studies of manufacturing inventories, as well
as Eckstein and Eichenbaum’s (1985) study of crude oil inventories, rely
on linear-quadratic specifications to obtain analytical solutions. This is
unrealistic for commodity markets because the cost of drawing down
inventory is highly convex in the stock of inventory, rising rapidly as
the stock falls toward zero, but remaining very small for moderate to high
stock levels. I therefore adopt a more general specification and estimate
the Euler equations that follow from intertemporal optimization, using
futures market data to directly measure the marginal value of storage.3

Unlike my earlier study of commodity markets (Pindyck, 1994), here I
explicitly account for price volatility as a determinant of both the marginal
value of storage and the full marginal cost of production. I thereby esti-
mate the extent to which changes in volatility affect prices and inventories,
and obtain evidence on the channels through which these effects occur.

A MODEL OF PRICES, INVENTORIES,
AND VOLATILITY

Costs

The total economic cost of commodity production, marketing, and
storage is:

(1)

and has four components: (1) is the direct cost of producing out-
put x. (2) is the opportunity cost of producing x now, rather�(x; s, r)

C(x)

TC � C(x) � �(x; s, r) � £(N, P, s) � k N
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4If marginal production costs are increasing with the rate of output and if demand is fluctuating,
producers can reduce costs by selling from inventory during high-demand periods, and replenishing
inventories during low-demand periods. Industrial consumers also hold inventories to facilitate their
production processes.
5To see why Equation (2) must hold, note that the (stochastic) return from holding a unit of the
commodity for one period is . Suppose that one also shorts a futures contract.
The return on this futures contract is , so one would receive a total return
equal to . No outlay is required for the futures contract, and this total return is
non-stochastic, so it must equal the risk-free rate times the cash outlay for the commodity, i.e., rPt ,
from which Equation (2) follows. Because futures contracts are marked to market, strictly speaking,

should be a forward price. For most commodities, however, the difference between the futures
and forward prices is negligible.
F1 t 

ct � (F1t � Pt) � k
F1t � F1, t�1 � F1 t � Pt�1

ct � (Pt�1 � Pt) � k

than waiting to see how prices evolve; it is the cost of exercising firms’
“operating options,” and it depends on the level of price volatility, � and
the risk-free rate r. (3) is total marketing cost, i.e., the cost of
production and delivery scheduling and stockout avoidance, and is
decreasing in the level of inventories N. (4) k is the per-unit storage cost,
which I assume is constant.

The first and last components of cost (the direct production cost
and the cost of storage) are standard. The second component, 
is the total opportunity cost of producing output x. The opportunity cost
of producing the marginal unit is price will exceed direct
marginal cost by this premium. The third component, is the
total marketing cost, which includes actual or opportunity costs of activ-
ities facilitated by inventories, e.g., costs of adjusting production over
time, delivery scheduling, and stockout avoidance.4 The value of the
marginal unit of inventory (the marginal convenience yield) is

Note that the net (of storage costs) marginal convenience
yield can be measured from spot and futures prices:

(2)

where is the futures price at time t for a contract maturing at time
is the one-period interest rate, and k is the one-period cost

of storage.5 Thus is the value of the flow of production- and delivery-
facilitating services from the marginal unit of inventory, a value that
should be greater the greater is the volatility of price.

Euler Equations

Taking prices as given, firms choose production and inventory levels to
maximize the present value of the expected flow of profits:

max (3)Eta
�

t�0
Rt, t(Pt�t Qt�t � TCt�t) 

ct

 t � 1, r
F1t

ct � k � (1 � r)Pt � F1t

c � �0£�0N.

£(N, P, s),
v � 0 ��0 x;

�(x; s, r),

£(N, P, s)
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where is the t-period discount factor, Q is sales, TC is given by
Equation (1), and the maximization is subject to the accounting identity 

(4)

(The maximization is subject to the additional constraint that 
for all t, but because as , this constraint will never be
binding.) To obtain first-order conditions, first maximize with respect to
xt, holding Nt fixed so that :

(5)

Equation (5) simply equates price with full marginal cost, where the lat-
ter includes the opportunity cost of exercising the marginal operating
option.

Next, maximize Equation (3) with respect to Nt, holding Qt and
fixed:

(6)

Over a one-week time period, so that Equation (6) can be
rewritten as:

(7)

Finally, to make this easier to interpret, substitute Equation (5) for 
and rearrange:

(8)

Equation (8) describes the trade-off between selling out of inventory ver-
sus producing. Consider producing an extra unit now, holding it in
inventory for one period, and then next period selling it and producing
one unit less. The left-hand side of the equation is the savings in mar-
keting costs from the extra unit of inventory, net of storage costs (i.e., net
marginal convenience yield). This should equal the expected change in
production cost (the increase from producing an extra unit now, minus
the expected decrease next period from producing one unit less).
Expected changes in production cost can come from expected changes in
input prices and opportunity costs, and changes due to convexity of the
cost function.

 
0TCt

0Nt
� Eta 0TCt�1

0xt�1
b �

0TCt

0xt

Pt

Et Pt�1 � Pt �
0TCt

0Nt

Rt�1�Rt � 1,

Et 
aRt�1

Rt
 Pt�1b � Pt �

0TCt

0Nt

Nt�1

Pt �
0TCt

0xt

¢xt � ¢Qt

NS 0£ S �

Nt�t � 0

¢Nt � xt � Qt

 Rt,t



1034 Pindyck

Empirical Specification

The components of cost are modelled as follows. I assume that the direct
cost of production is quadratic. For crude oil, direct cost is:

(9)

where is a random shock. Note that there are no input cost variables
(such as wage rates) in Equation (9); such variables cannot be
measured—and are unlikely to vary much—on a weekly basis. For heat-
ing oil and gasoline, however, the price of crude oil is a large com-
ponent of direct production cost, and must be accounted for:

(10)

Marketing cost should be roughly proportional to price, and should
be increasing in the level of price volatility, which is a proxy for market
volatility in general. Ideally, the marketing cost function should be
derived from a dynamic optimizing model that accounts for stockout
costs and costs of scheduling and managing production and shipments,
but that is beyond the scope of this work. Instead, I assume that this
function is isoelastic in price, the variance of log price changes, and the
total inventory level:

(11)

where are monthly time dummies and . This implies that the
marginal value of storage (marginal convenience yield), 
can be written as:

(12)

To model the marginal opportunity cost we need the
value of the option to produce a marginal unit of the commodity, and the
optimal price P* at which that option should be exercised. The differ-
ence between P* and the direct marginal cost is the opportunity
cost of exercising the option to produce the marginal unit. Valuing this
option requires assumptions about the stochastic dynamics of price.
Because commodity prices tend to be mean-reverting, I assume the
following continuous-time reduced form price process:

(13)dP�P � l(m � P) dt � s dz 

C�(x)

vt � 0�t�0 xt,

log ct � b0 � a
11

j�1
b0 DUMjt � a1 log Pt � a2 log s2

t � a3 log Nt

�0£�0N, ct �

a3 	 1DUMjt

£(N, P, s) �
1

a3 � 1
 expab0 � a

11

j�1
bj DUMjtbPa1

 t (s2
t )a2

 N1�a3
t

£

C(x) � (c�0 � ht) xt � 1
2  c1 x

2
t � c2 PC,t xt

(PC,t)

ht

C(x) � (c�0 � ht)xt � 1
2  c1 x

2
t



Volatility and Commodity Price Dynamics 1035

6The numerical analyses of Hull and White (1987) suggest that treating as non-stochastic makes
little quantitative difference. See, also, Franks and Schwartz (1991) and Ball and Torous (1991).

s 

Here, m is the “normal” price to which tends to revert and l is the
speed of reversion. I treat s as a constant because allowing for stochas-
tic volatility precludes a closed-form solution for the option value.
Furthermore, it should not affect the way in which the option value
depends on volatility, although it will affect its magnitude (overstating
it). To account for this, I include a scaling coefficient that is estimated as
part of the model.6

If the price process follows Equation (13) and direct marginal cost
is non-stochastic, a series solution can be found for the value of the
option to produce. I use a quadratic approximation to this solution. As
shown in the Appendix, letting r denote the risk-free rate and r the com-
modity’s risk-adjusted expected return, the opportunity cost vt can be
written as:

(14)

where

(15)

and

(16)

I include a scaling coefficient, so that is the marginal opportunity
cost. Note that the estimated value of should be close to 1.

Estimating Equations

Substitute these functions for the components of cost into Equations (5)
and (8). Including the crude oil input price, Equation (5) becomes:

(17)

(This equation applies to heating oil and gasoline; for crude oil the 
term is dropped.)

It is convenient to eliminate production and write the model in
terms of prices and inventories. In the short run consumption should be

PC,t

  Pt � c�0 � c1 xt � c2 PC,t � c3 vt � ht

c2 PC,t,

c3 
c3vt 

 u �
1
2

�
(r � r � lm)

s2 � B c
(r � r � lm)

s2 �
1
2
d 2 �

2r
s2

 g2 �
l(u � 1)

2lm � (2u � 1)s2 g1 �
lu

lm � us2 ,

vt �
1

1g1g2

� m

Pt
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7Equation (20) is an expanded version of a model that has been used by a number of other authors.
See, for example, Williams and Wright (1991), Routledge, Seppi, and Spatt (2000), and Schwartz
and Smith (2000).

very price inelastic, so I model it as:

(18)

where the are monthly dummies, HDD and CDD are, respectively,
heating and cooling degree days, and T is a time trend. Thus I assume that
consumption fluctuates seasonally and in response to changes in temper-
ature, is subject to (possibly serially correlated) random shocks , but is
insensitive to price. Substituting for in Equation (4) and rearranging:

(19)

Thus Equation (17) can be rewritten as:

(20)

where 7

Making the appropriate substitutions into Equation (8) and denot-
ing the second first-order condition becomes:

(21)

To estimate the model, I substitute Equation (12) for in
Equation (21). Also, because estimation is by GMM, I drop the expecta-
tion operator and use actual values of variables dated at :

(22) � c�4¢HDDt�1 � c�5¢CDDt�1 � c�6 � ¢ht�1 � c1¢ Pt�1

 � c2 ¢PC, t�1 � c3 ¢vt�1 � a
11

j�1
d�j ¢DUMj,t�1

 0 � c1¢2Nt�1 � exp ab0 � a
11

j�1
bj DUMjtb

 

Pa1
t (s2

t )a2 N�a3
t � k

t � 1

ct

� c�4¢HDDt�1 � c�5¢CDDt�1 � c�6 � ¢ht�1 � c1¢ Pt�1d

 0 � Et c c1¢2Nt�1 � ct � k � c2 ¢PC, t�1 � c3 ¢vt�1 � a
11

j�1
d�j  ¢ DUMj, t�1

¢2 Nt�1 � ¢Nt�1 � ¢Nt

c0 � c�0 � c1 Q, c�4 � c1c4, c�5 � c1c5, c�6 � c1c6, and d�j � c1dj.

 � c�6 Tt � a
11

j�1
d�j DUMjt � c1Pt � ht

 Pt � c0 � c1¢Nt � c2 PC,t � c3vt � c�4 HDDt � c�5 CDDt

xt � ¢Nt � Q � a
11

j�1
dj DUMjt � c4 HDDt � c5 CDDt � c6Tt � Pt

Qt

(Pt)

DUMjt 

  Qt � Q � a
11

j�1
dj DUMjt � c4 HDDt � c5 CDDt � c6Tt � Pt
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The model is closed by including Equation (12) for the marginal
convenience yield. Together, Equations (20), (22), and (12) describe the
evolution of the state variables 

DATA AND ESTIMATION

The Data

Estimation uses weekly data for January 1, 1984, to January 31, 2001,
for crude and heating oil, and January 1, 1985, to January 31, 2001, for
gasoline (reflecting the later start of gasoline futures trading). Daily
futures settlement prices for the nearest contract (often the spot con-
tract), the second-nearest, and the third-nearest were used to estimate
spot prices and volatility.

The spot price is estimated from the nearest and next-to-nearest
active futures contracts by extrapolating the spread between these con-
tracts backwards to the spot month:

(23)

where is the spot price on day t, and are the prices on the near-
est and next-to-nearest futures contracts, and and are the number
of days from t to the expiration of the first contract, and the number of
days between the first and second contracts.

From these daily spot prices, I compute weekly estimates of volatility.
To do this, one must account for non-trading days. If the spot price fol-
lowed a geometric Brownian motion, one could simply divide log price
changes by the square root of the number of intervening days and then
calculate the sample variance. However, as is well known, on average the
variance of n-day log price changes is less than n times the variance of
one-day changes, when n includes non-trading days. To deal with this, I
sort the daily price data by intervals according to the number of days since
the last trading day. For example, with no holidays, prices for Tuesday
through Friday would be assigned an interval of one day, but Monday
would be assigned an interval of three days, because of the two-day week-
end. With holidays, some prices could be assigned to intervals of two,
four, or even five days. For each interval set, I calculate the sample stan-
dard deviation of log price changes for the entire 16- or 17-year sample
for each commodity. Let denote this sample standard deviation for an
interval of n days. The “effective” daily log price change for each trading

ŝn

n1n0t

F2tF1tPt

 Pt � F1t(F1t�F2t)
n0t�n1

Pt, Nt, and ct.
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day is then computed as:

(24)

For each week, I compute a sample variance and corresponding sample
standard deviation using these daily log price changes for that week and
the preceding four weeks:

(25)

where N is the number of “effective” days in the five-week interval.
Equation (25) gives the sample standard deviation of daily percentage
price changes; to put it in weekly terms, I multiply by 
The resulting weekly series is the measure of volatility, 

The T-period net marginal convenience yield, is
computed weekly from Equation (2) using the futures price and esti-
mated spot price for the Wednesday of each week:

(26)

I use the futures price corresponding as closely as possible to a three-
month interval from the spot price, and the three-month Treasury bill
rate for the interest rate These net marginal convenience yields are
converted to weekly terms.

For each commodity, there are periods when is negative. By def-
inition, gross marginal convenience yield must always be positive, so I
estimate k for each commodity as and then compute gross
marginal convenience yield as 

To obtain a weekly series for the opportunity cost from
Equation (14), I need estimates of m and l, and the average value of s,
for each commodity. I estimate these parameters from an OLS regression
of the discrete-time version of Equation (13):

(27)

so that The resulting estimates of m, l, and s for
crude oil, heating oil, and gasoline respectively are: $20.44, 57.2¢,
and 58.6¢, 0.00114, 0.00050, and 0.00071; and 0.050, 0.052,
and 0.059.

Finally, the U.S. Department of Energy, Monthly Energy Review,
provides weekly production and inventory data. The numbers are

 ŝ �l̂ �

m̂ �

m̂ � â�l̂ � ŝ2�2l̂.

¢ log Pt � a � l Pt�1 � sPt

vt

ct � c�t � k̂ .
k̂ � ƒ  min c�t ƒ ,

c�T,t

RT,t.

c�T,t � (1 � RT,t)Pt � FT,t

c�T,t � cT,t � kT,
st.
130�4 � 17.5.

  ŝt � B
1

N � 1a
N

t�1
(rtt � rt)

2

 rt �
(log Pt � log Pt�n)

ŝn�  ̂s1
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announced on Tuesday evenings, so that the information is incorporated
in the prices and convenience yields each Wednesday.

Augmented Dickey-Fuller unit root tests on (run
with a constant, and then a constant and trend, and with six lags in the
equation) reject a unit root in all cases. Thus in much of the empirical
analysis that follows, I work with variables in levels.

Estimation Method

I estimate Equations (20), (22), and (12) using Generalized Method of
Moments (GMM). GMM is an instrumental variables procedure that
minimizes the correlation between variables known at time t and the
equation residuals, and is thus a natural estimator for an Euler equation
model such as this one.

Equations (20) and (22) include the “structural” error terms
which represent unobserved shocks to cost and demand. These

errors may be serially correlated, and appear in differenced form in
Equation (22). Also, actual values for variables at time are used in
place of expectations, which introduces expectational errors. Thus the
equations will have composite error terms with a possibly complex auto-
correlation structure. The GMM procedure uses an autocorrelation-
robust weighting matrix and yields autocorrelation-robust standard
errors. However, the error structure has implications for the choice of
instruments.

By definition, the expectational errors are uncorrelated with any
variable known at time t. The structural errors, however, may be corre-
lated with endogenous variables. Hence I use instruments that can rea-
sonably be viewed as exogenous: the seasonal dummy variables, the time
trend, heating and cooling degree days, and the following unlagged,
lagged once, and lagged twice: the exchange-weighted value of the U.S.
dollar (EXVUS), the New York Stock Exchange Index (NYSE), the three-
month Treasury bill rate (TBILL), the rate on Baa corporate bonds
(BAA), and the Commodity Research Bureau’s commodity price index
(CRB). I also include four endogenous variables lagged two periods: the
spot price, production, inventory, and convenience yield. With the con-
stant term, this gives a total of 34 instruments.

The minimized value of the objective function from the GMM
procedure times the number of observations provides a statistic, J, which
is distributed as with degrees of freedom equal to the number
of instruments times the number of equations minus the number of
parameters. This statistic is used to test the model’s overidentifying

x2

t � 1

ht and Pt,

Pt, Nt, ct, and st



1040 Pindyck

restrictions, and hence the hypothesis that agents are optimizing with
rational expectations.

Volatility

Price, inventories, and convenience yield are endogenous, and can
depend directly or indirectly on volatility, as well as on the exogenous
variables. A natural question is whether these market variables, or other
exogenous variables, predict volatility. 

To investigate this, I estimate vector autoregressions (VARs) relating
the three market variables and volatility to each other and to a set of exoge-
nous variables, and then test the predictive power of each variable. The
VAR includes six lags of each of the four variables and six lags of the fol-
lowing exogenous variables: the Three-month Treasury bill rate, the Baa
bond rate, the exchange-weighted value of the dollar, and the monthly
dummies. For each equation, I test whether all lags of a particular variable
can be excluded as explanators of the dependent variable. I find that the
spot price, inventories, and convenience yield all have no predictive power
with respect to volatility for crude and heating oil, consistent with the view
that volatility is exogenous. However, the spot price and convenience yield
are significant predictors of volatility for gasoline. This could simply reflect
the fact that past values of the spot price affect past values of volatility,
which in turn affect its current value.

Given these results, in what follows I treat volatility as exogenous.
For simulation purposes, I use a simple sixth-order autoregression (suffi-
cient to capture the AR structure of volatility), along with six lags of the
three-month Treasury bill rate, the Baa corporate bond rate, the
exchange-weighted value of the dollar, the CRB commodity price index,
and monthly dummy variables to generate forecasts of volatility.

GMM Estimation

Table 1 shows the results of estimating Equations (20), (22), and (12) as
a system by GMM. In addition to the 10 coefficients in the table, there
are another 22 coefficients (not shown) for the 11 monthly time dum-
mies: the bjs in the marginal convenience yield Equation (12), and the
djs in the demand Equation (18) and thus in Equations (20) and (22).
The t statistics are based on autocorrelation-consistent standard errors.
The J statistics, distributed as (71) for crude oil and (70) for heat-
ing oil and gasoline, are all insignificant at the 5% level, so we cannot
reject the overidentifying restrictions.

x2x2
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TABLE I

Estimates of Three-Equation System

Parameter Crude oil Heating oil Gasoline

NOB � 881 NOB � 881 NOB � 829
(1) (2)

c0 53.63 �30.48 5.409 10.98
(20.69) (�5.33) (0.99) (2.03)

c1 0.426 1.478 1.568 1.541
(4.76) (10.16) (11.00) (11.79)

c2 __ 2.927 2.780 2.728
(43.35) (46.67) (45.34)

c3 �0.594 0.946 �0.018 �0.035
(�12.53) (4.31) (�1.06) (�2.15)

c�4 0.001 0.016 �0.007 �0.007
(0.97) (8.74) (�4.75) (�5.13)

c�5 0.001 0.001 0.006 0.006
(0.20) (0.32) (1.67) (1.69)

c�6 0.015 �0.012 0.007 0.009
(7.97) (�4.38) (2.72) (4.10)

a1 0.932 0.951 0.841 0.633
(22.63) (15.4) (21.61) (12.7)

a2 0.097 0.092 0.036 0.003
(8.56) (7.10) (3.85) (0.25)

a3 1.946 2.196 �0.341 1.1
(9.11) (12.03) (�2.73)

J 79.73 77.70 82.24 88.62

Note. Table shows GMM estimates of Equations (20), (22), and (12), with t statistics in parentheses. Estimates of 22
parameters for monthly dummy variables are not shown. For gasoline, the estimate of a3 is negative, so the model is re-
estimated with a3 constrained to equal 1.1. The J statistics are distributed as x2(71) for crude oil and x2 (70) for heating oil
and gasoline; the critical 5% values are 91.40 and 90.32, respectively.

In each case, the marginal cost of production is increasing ( 	 0
and significant). The price of crude oil is the most important determinant
of marginal cost for heating oil and gasoline ( is between 2.7 and 2.9, so
a $1 per-barrel increase in the crude price, i.e., $1�42 � 2.4 cents per
gallon, leads to a commensurate increase in the per-gallon price of heat-
ing oil or gasoline). The opportunity cost affects total marginal cost as
predicted only for heating oil: is close to 1 and significant for heating
oil, but negative for crude and gasoline.

Apart from the constant and time dummies, the marginal value of
storage, c, is characterized by the coefficients , , and in Equa-
tions (12) and (22). For crude and heating oil, the estimates of these
coefficients are all positive and significant, and consistent with a
well-behaved marginal value of storage function: 	1, , the priceâ1â3

a3a2a1

c3 
vt 

ĉ2

ĉ1



1042 Pindyck

elasticity of c is close to 1, and 	 0, i.e., c is increasing with volatility.
For gasoline, was negative, so the model was re-estimated with a3 con-
strained to equal 1.1. The estimates of are largely unchanged,
but drops from 0.84 to 0.63, and becomes insignificant.

Thus the model fits the theory very well for heating oil, but less so for
crude oil and gasoline. For both crude oil and gasoline, the net demand
function is upward sloping, but does not depend on the marginal opportu-
nity cost as predicted. Also, the unconstrained marginal value of storage
function for gasoline is increasing in the level of inventories Nt, and when
a3 is set to equal 1.1, the elasticity with respect to volatility becomes zero.

SIMULATIONS

Dynamic simulations, in which Equations (20), (22), and (12) are solved
as a system, can be used to evaluate the ability of the model to replicate
the behavior of the endogenous variables, and to study the effects of
shocks to volatility or other variables. I focus on heating oil, for which all
of the coefficient estimates are consistent with the predictions of the
theory. The first simulation covers the 10-week period of August 8 to
October 3, 1990, when Iraq invaded Kuwait and the price of heating oil
jumped from 60¢ to about $1 per gallon. The second covers the last 10
weeks of the sample: November 29, 2000 to January 31, 2001. Both sim-
ulations are dynamic; actual values of Pt, Nt, ct, and st are used only
prior to the starting date.

Simulated and actual values of the spot price, inventory level, and
convenience yield are shown in Figures 1–3 (each figure shows both

â2â1
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FIGURE 1
Heating oil spot price.
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Heating oil inventories.

simulations). For the 1990 period, the simulated spot price tracks the
sharp increase during August 22 to 29, but not the temporary decline on
September 5, and is again close to the actual over the last three weeks of
the period. Actual inventories rose by 11% over this period, but the sim-
ulated series increases by much more. Finally, simulated convenience
yield closely tracks the actual series throughout. In the second simula-
tion, the actual spot price fell from about $1.10 per gallon to about
83¢, and the simulated series closely tracks this decline. The model
again over-predicts inventories. Finally, the actual convenience yield
fluctuated widely, and the simulated series replicates the directional
movements but not the magnitude of the fluctuations.
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Heating oil convenience yield.
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Overall, the model replicates the dynamics of the heating oil spot
price and convenience yield well, given the sharp movements that
occurred during the two simulation periods. The model does not,
however, capture the dynamics of inventories very well. This is not sur-
prising; Equations (20) and (22) explain first and second differences of
inventories, so that prediction errors in the level of inventories will accu-
mulate over time.

Finally, I repeated the second simulation, adding a shock to volatility.
I increased the entire trajectory of volatility by 0.0448, which is one stan-
dard deviation of its level over the 1984–2001 sample, and then re-solved
the model. As seen in Figures 1–3, this volatility shock has a substantial
effect on convenience yield, but only a small effect on the spot price and
inventories. Convenience yield increases because the value of storage
depends directly on volatility, and the higher convenience yield raises
inventories. The increase in volatility also increases the opportunity cost
of production and thus the spot price, but only slightly.

CONCLUSIONS

In principle, volatility should affect market variables through the mar-
ginal value of storage and through the opportunity cost component of
marginal cost. For the petroleum complex, and in particular for heating
oil, changes in volatility do influence market variables, although the
effects are not large. Most of the impact is on the convenience yield, and
to a lesser extent, inventories. Thus, accounting for changes in volatility
can help explain changes in the spot-futures spread, but not changes in
the spot price itself. As for volatility, market variables do little to explain
its behavior, and it can be viewed as exogenous.

These results give partial support to the theory of commodity price
dynamics presented at the outset. For heating oil, the results fit the the-
ory very well, but for crude oil and gasoline the results are less clear cut.
There are several possible reasons for this. First, my use of a quadratic
approximation to calculate the marginal opportunity cost may be unwar-
ranted. Second, the intertemporal optimization that underlies the model
may be inconsistent with high-frequency data. Changes in market
variables may affect production decisions more slowly than can be cap-
tured by the weekly differences that appear in the estimating equations.8

Finally, it is unclear how much of a commodity’s short-run price

8Also, as Borenstein and Shepard (2002) show, gasoline prices adjust slowly to crude oil price
shocks, which may reflect market power in gasoline markets.
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9For example, Roll (1984) found that only a small fraction of price variation for frozen orange juice
can be explained by fundamentals such as the weather, and Pindyck and Rotemberg (1990) found
high levels of price correlation across commodities that are inconsistent with prices driven solely by
fundamentals.

movements can be explained by rational optimizing behavior. Price vari-
ation may be partly the result of speculative noise trading or herd behav-
ior, rather than fundamentals.9

APPENDIX: DERIVATION OF
OPPORTUNITY COST

In this Appendix, I derive Equation (14) for the opportunity cost of pro-
duction, assuming that the spot price P follows the mean-reverting
process given by Equation (13).

Let V (P) be the value of the option to produce a unit of the com-
modity. It is easily shown that V(P) must satisfy the following equation
(see Dixit & Pindyck, 1994):

(A.1)

where r is the risk-free rate and r is the risk-adjusted return on the com-
modity. Thus the expected return “shortfall” is Also,
the solution must satisfy the boundary conditions 

(A.2)

(A.3)

where P* is the critical price that triggers production of an incremental
unit, and c is marginal cost. The solution to Equation (A.1) is:

(A.4)

where u is given by Equation (16), and, letting
Here, H() is the confluent hypergeometric

function:

(A.5)

I use a quadratic approximation to h(P):

(A.6)h(P) � 1 � g1 P � g2 P
2

 H(x; u, b) � 1 �
u

b
 x �

u(u � 1)
b(b � 1)2!

 x2 �
u(u � 1)(u � 2)

b(b � 1)(b � 2)3!
 x3 � . . . .

s2, h(P) � H(2l
s2 P; u, b).

b � 2u � 2(r � r � lm)�

V(P) � APuh(P)

V�(P*) � 1

 V(P*) � P* � c

d � r � l(m � P).

1
2 s2 P2 V–(P) � [r � r � l (m � P)] PV�(P) � rP � 0
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where and are given by Equation (15). Thus 
Substituting into boundary conditions (A.2)

and (A.3) gives two equations in P* and the constant A. Divide one by
the other to eliminate A and rearrange, yielding:

(A.7)

Next, expand the right-hand side of this equation in a Taylor series
around take a quadratic approximation, and set c � m to obtain
Equation (14).
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