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UNCERTAINTY, INVESTMENT, AND INDUSTRY EVOLUTION*

"By RiIcAarRDO J. CABALLERO AND ROBERT S. PINDYCK!

We study the effects of industry-wide and idiosyncratic uncertainty on the
entry of firms, total investment, and prices in a competitive industry with
irreversible investment. We determine entry decisions and the resulting indus-
try equilibrium and its characteristics, emphasizing effects of different sources
of uncertainty. We stress how irreversibility affects the equilibrium distribution
of prices, which in turn affects entry. Finally, we use four-digit U.S. manufac-
turing data to measure the extent of uncertainty and gauge its importance for
investment. We find that a doubling of industry-wide uncertainty raises the
required rate of return on new capital by about 20 percent.

1. INTRODUCTION

Most investment expenditures are at least in part irreversible, that is, are sunk
costs that cannot be recovered should market conditions change adversely. As a
result, the cost of investing includes an opportunity cost of commiting resources
rather than waiting for new information. A growing literature has shown how this
opportunity cost can be evaluated, and demonstrated that it is very sensitive to
uncertainty over future project values, so that changing market conditions that affect
the riskiness of future cash flows can have a large impact on investment spending.
These results emphasize the role of uncertainty as a determinant of investment
spending, and suggest that policies that reduce volatility (over, say, exchange rates,
prices, or interest rates) may lower the required cost of capital.?

In most of the recent literature, the emphasis is on the investment decisions of an
individual firm, rather than industry-wide investment and growth, and uncertainty is
modelled by introducing an exogenous state variable (e.g., a demand or cost shift
parameter, the price of the firm’s output, or the interest rate) that follows some
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2 McDonald and Siegel (1986) were among the first to demonstrate the implications of irre-
versibility for investment decisions. Other examples of this literature include Bertola and Caballero
(1994), Dixit (1989b), Majd and Pindyck (1987), and Pindyck (1988). For an overview, see Dixit
(1992), Pindyck (1991), and Dixit and Pindyck (1994). The earlier literature on investment under
uncertainty, e.g., Hartman (1972) and Abel (1983), demonstrates how uncertainty will increase the
expected value of a marginal unit of capital if the marginal revenue product of capital is a convex
function of the stochastic variable (an implication of Jensen’s inequality), and thereby increase
investment.

641



642 RICARDO J. CABALLERO AND ROBERT S. PINDYCK

stochastic process. However, similar effects of uncertainty on investment can be
found at the industry level. The reasons for these effects, however, may not be the
same.

What always matters for investment are the distributions of future values of the
marginal profitability of capital—if these distributions are symmetric (and the firm
is risk-neutral), increasing uncertainty will not affect investment. For a monopolist,
irreversibility causes the distributions to be asymmetric because the firm cannot
disinvest in the future if negative shocks arrive; hence the firm invests less today to
reduce the frequency of bad outcomes in the future (i.e., the frequency of situations
in which the firm has more capital than desired). On the other hand, in a
competitive industry with constant returns to scale, the distribution of the future
marginal profitability of capital is independent of the firm’s current investment. But
this distribution is not independent of industry-wide investment if the elasticity of
demand faced by the industry is less than infinite.

As a result, when studying irreversible investment in an industry context, it is
important to distinguish between aggregate (industry-wide) and idiosyncratic (firm-
level) shocks. To see this, consider idiosyncratic and aggregate shocks to productivity
that are both symmetrically distributed. Although either type of shock might affect
the expected future market price and hence the expected marginal profitability of
capital, idiosyncratic shocks lead to a symmetric probability distribution for the
marginal profitability.? Aggregate shocks, however, do not; although negative shocks
can reduce the market price, positive shocks are accompanied by the entry of new
firms and /or expansion of existing firms, which limits any increases in price. Hence
the distribution of outcomes for individual firms is truncated; negative shocks to
productivity reduce profits more than positive shocks increase them, and irreversible
investment is reduced accordingly.* Thus an important objective of this paper is to
clarify the different mechanisms through which aggregate and idiosyncratic shocks

“interact with irreversibility in a competitive industry.

Uncertainty affects irreversible investment in two ways: first, through the effect of
the firm’s current investment on the expected path of its marginal profitability of
capital; and second, through the effects of competitors’ investment on the path of this
marginal profitability. Caballero (1991) has shown that with constant returns to
scale, the importance of the first effect decreases as the demand curve facing the
firm becomes more elastic, as long as the uncertainty is firm-specific. But this does
not mean that industry-level uncertainty will not affect industry investment and
output in a competitive equilibrium. As shown by Pindyck (1993), irreversibility has
the same type of effect on industry investment as it does for a monopolist once one
allows for entry of new firms or the expansion of existing ones. The reason is that
irreversibility combined with the possibility of entry affects the distribution of the
marginal profitability of capital seen by each individual firm. Hence another objec-
tive of this paper is to characterize the distribution of the marginal profitability of

3 For simplicity, we are ignoring the effect of uncertainty through the convexity of the marginal
revenue product of capital, as stressed by Hartman (1972).
* This is an example of the bad news principle discussed by Bernanke (1983).
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capital and its evolution, and show how it affects entry, investment, and the price
level itself.

This paper extends and complements recent work by Dixit (1989b), Leahy (1993),
and others. Dixit characterizes industry evolution in the presence of aggregate
uncertainty by using dynamic programming methods to determine the entry and exit
decisions of individual firms of discrete size. Leahy models an industry equilibrium
in which price is endogenous, and shows that under reasonable assumptions, it is
optimal for individual firms to make their investment decisions under the myopic
assumption that price follows an exogenous lognormal random walk. Other related
work includes the discrete-time models of Hopenhayn (1992a,b) and Lambson
(1991). Hopenhayn examines industry equilibrium allowing for endogenous exit and
firm heterogeneity, but restricts uncertainty to be firm-specific. Lambson develops a
model similar to ours in that it allows for industry-wide as well as firm-specific
shocks, but he focuses on the effects of evolving market conditions on technology
selection.’ In the first part of this paper we use a continuous-time approach similar
to that used by Dixit (1989b) and Leahy (1993), but we emphasize the effects of
different sources of uncertainty on entry. We then go on to show how the distribu-
tion of prices, conditional on the time elapsed since entry, can be used as an
alternative way to characterize firms’ behavior and industry equilibrium. This helps
to clarify how investment is affected by the interaction of irreversibility with
different forms of uncertainty in an equilibrium setting.

We examine the effects of idiosyncratic and aggregate uncertainty using a simple
model of a competitive market in which firms have constant returns to scale and
there is a sunk cost of entry. In the next section, we cast the model as a dynamic
programming problem, and we obtain a solution and examine its properties. In
Section 3 we re-cast the problem in terms of the conditional distribution of the
marginal profitability of capital. We calculate the time path for this distribution, and
show how it provides additional insight into the effects of uncertainty on investment
and industry evolution. In Section 4 we use four-digit U.S. manufacturing data to
measure the extent of uncertainty and gauge its importance for industry investment.
Section 5 concludes, and discusses possible extensions of our work.

2. A STYLIZED MODEL

We begin with a highly stylized model in which the value of a marginal unit of
capital is stochastic and exogenous. For simplicity, our formulation eliminates the
conventional positive Jensen’s inequality effect of uncertainty on the value of a
marginal unit of capital that arises from the endogenous response of variable factors
to exogenous shocks. This lets us focus on the way in which the effects of
uncertainty are mediated through the equilibrium behavior of all firms.

5 In related studies, Lippman and Rumelt (1985) model a competitive industry equilibrium with
free entry and exit, Dixit (1991) characterizes the equilibrium for a competitive industry with
irreversible investment and a price ceiling, and Lambson (1992) examines the long-run determinants
of average profit rates in a model of industry equilibrium with sunk costs.



644 RICARDO J. CABALLERO AND ROBERT S. PINDYCK

We consider a market with a large number of productive units. Each productive
unit might be a single firm, or individual firms might each own several units. These
units are industry specific, so that their installation involves a sunk cost. Entry
occurs when new productive units are added, either because new firms invest and
enter the market, or existing firms invest in new capacity. What matters is that
idiosyncratic shocks apply to these units individually, that is the units all have the
same expected productivity, but will have randomly differing realized productivities.
To clarify the ways in which uncertainty affects investment, we assume that the
owners and managers of these units are risk-neutral. (Hence the investment rules we
derive maximize firms’ values in a competitive financial market, whether or not
idiosyncratic or aggregate shocks are spanned by the set of traded assets in the
economy.)

We assume that these productive units are small enough and the number of them
is large enough so that we can represent them as a continuum whose mass at time ¢
is N(z). Total industry output, Q(z), is given by:

N(t)

(1) Q)= [ () di

0

where A,(¢) is the output of productive unit i at time ¢. The A4,’s are assumed to
follow arbitrary and possibly correlated exogenous stochastic processes. We decom-
pose these individual productivity variables into two parts, their average (the
aggregate) and the remainders:

A,(t) = A(t)a,(t), such that [ON"’a,.(t) di=N(t).
Here A(t) is the average productivity of the industry, so that Q(z) = A(¢)N(¢), and
at) is the productivity of unit i relative to that of the industry as a whole.

We allow for one idiosyncratic and two aggregate sources of uncertainty. First, we
let a,(t) and A(¢) follow separate stochastic processes, so that productivity has both
an idiosyncratic and an aggregate component. Second, we introduce another source
of aggregate uncertainty through the industry demand curve. Industry demand is
taken to be isoelastic:

(2 P(1) =M(0)Q(1) ™",

where M(¢) is an exogenous stochastic process that captures aggregate shocks. We
will assume that M(¢) follows a diffusion.

The measure of industry size, N(¢), increases with entry and decreases with
failures, the (involuntary) removal of productive units. We assume that the latter
occurs at an exogenous proportional rate y. At the level of an individual unit, a
failure is a Poisson arrival, and the intensity of the Poisson process is y.® Alterna-
tively, we could have assumed a deterministic depreciation rate y that applies to all
units; our results (from (4) below onwards) would be the same.

81t would be more realistic, of course, to make the Poisson arrival rate depend on the age of the
specific unit. However, that complicates the model but adds little additional insight.
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To introduce irreversibility, we assume that entry of a productive unit requires a
sunk cost F. Free entry determines that there are no profits to be made by adding
another productive unit to the industry, so that:

3) FzE,.{EO[[:P(t)A,.(t)e-ﬁf dt]},

which holds with equality at all times in which there is entry. The parameter § is the
discount rate. Note that the expectation E; is over all unit-specific uncertainty,
which includes the stochastic productivity process a,(¢) as well as the Poisson failure
process for each unit. The expectation E, is over the distribution of the future
marginal revenue product of capital, P(¢#)A4,(t), and therefore accounts for the
possible (irreversible) entry of new productive units. As will become evident, the
ability to enter the industry reduces the probability of good outcomes by truncating
the upper part of the distribution for the aggregate component of P(¢)A4,(¢), namely
P() A(t).

By Fubini’s theorem and the construction of A,(¢) we can pass the expectation
operator E; inside the integral in eqn. (3), so that it reduces to:

(4) FzEO[[:P(t)A(t)e'@”)fdt .

Note that the only idiosyncratic effect that remains in (4) is the failure rate y, and
this is now indistinguishable from an industry-wide depreciation rate. Because the
value of the output of each unit is linear in the output-specific stochastic state
variable, we can eliminate all other idiosyncratic elements from the right-hand side
of (3). This is an extreme result that will help to focus and clarify our analysis. In the
concluding section we discuss natural modifications of the model that give an
additional role to idiosyncratic shocks. However, these modifications do not affect
our basic conclusions.

Since Q(¢) =A(t)N(¢), we can use the market demand equation to construct a
measure of the value of output for an average productive unit. Letting B(¢) denote
the average value of output:

(5) B(t) =P(t) A(t) = M(t) A() " /" N(t) /.
Because the industry size N(¢) is endogenous, B(¢) will follow a regulated stochastic

process, where N(z) regulates B(z). Letting lower case letters represent the loga-
rithm of the corresponding variable, we can write:

(6) dlog B(t) = db(t) = dm(r) + (1;—1) da(t) — %dn(t).

In order to obtain analytical results that can be used to illustrate the implications
of different sources of uncertainty, we make the simplifying assumption that the
aggregate stochastic state variables follow geometric Brownian motions. Thus, we
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write the dynamics of m(¢) and a(#) as:
(7 dm(t) = (a,, — 30,2) dt + 0, dz,,(t)
(8) da(t) = (@, — Lo2) dt + o, dz,(1).

We also assume that the Wiener processes dz,(¢) and dz,(¢) are uncorrelated. (It is
easy to relax this assumption.) Then B(¢) follows a particularly simple regulated
geometric Brownian motion. Specifically, B(¢) will remain at or below a fixed upper
boundary. This boundary, which we denote by U, is yet to be determined as part of
an industry equilibrium. Regulation is due to entry; when this is not occurring,
n(t) = log(N(¢)) will follow:

dn(t) = —vydt,
and b(¢) is given by:
9) db(t) = Bdt+ o, dz(t),
where
R
and

This model is simple enough so that we can find a closed form solution for the
optimal investment rule, i.e., for the upper boundary U. (Later we will see how the
entire problem can be recast in terms of the conditional distribution of marginal
revenue product.) Let W(x) denote the value of entering the industry at ¢ = 0 when
b(0) =x, so that B(0) =e*: -

(10) W(x) = [0 “e=GrDIE [ B(£)IB(0) = e*] dt.

By arbitrage, over an interval dt, the total expected return from being in the
industry must be equal to (8 + y)Wdt. This expected return has two components, an
expected capital gain, E, dW, and a flow of revenue B(0)dt = ¢* dt. By Ito’s Lemma,
EodW=BW'(x)dt + (1/2)a?W"(x) dt, so W(x) must satisfy the following differ-
ential equation:

(11) LORW" (x) + BW'(x) — (8+ ¥)W(x) +e*=0.
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In addition, W(x) must satisfy the following boundary conditions:

(12) lirflw W(x)=0,
and
(13) W' (u) =0,

where u =logU. Boundary condition (12) follows from the fact that 0 is an
absorbing boundary for B. Condition (13) follows from the (left) continuity of the
value function at the trigger point u.

The reader can check that (11) has the following simple solution that satisfies the
associated boundary conditions:

(14) W(x)= - - </ eMxmw
S+y—B—02/2 S+y—B—02/2 ’
where
—B+B2+2(8+y)a}
@) e VB +2(5+ )0}

(sz

A sufficient condition for the existence of this solution is that the discount rate
be large enough so that the value of a unit remains bounded even if entry into
the industry were prohibited throughout the future. Specifically, we require that
8+y—B—0o2/2>0,thatis 6> a,, +[(n—1/nle, —y)—[(n—1)/29*]g2 This
ensures that A>1, and simply implies that the neoclassical cost of capital is
positive.

We can now determine U, the upper boundary of B(¢). If we had solved this as a
central planning problem, we would determine U from the first-order condition that
W"(U) = 0. Instead, we follow Leahy (1993) and use the free entry condition, which
in this case is F = W(u). Hence:

U A 1

(16) F—m(ﬁ‘F'y B 20'b).

Because of free entry, E,[;B(t)e”®*"" dt =F, where ¢t =0 is the time of entry.
Since U=E([B(¢)] for all ¢+ and U>E([B(¢)] for all >0, we know that
EofoUe~®*")dt > F. This is a result of irreversibility; there is an opportunity cost
of investing now rather than waiting for new information. If firms could uninvest and
recoup the cost F, we would instead have the standard Marshallian result that
EofoUe V)i dt=F.

For simplicity, in what follows we assume that aggregate productivity is constant,
so that @, =0, =0 (and hence o, =0;,,). Recall that «, and o, represent the
mean and the standard deviation of the rate of growth of revenue per productive
unit averaged over the industry when there is no entry. With tedious calculation, one
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FIGURE 1

DEPENDENCE OF U/F ON 0, AND «,,

can show that d(U/F)/da, >0 and d(U/F)/de,, <0. A smaller value of a,, raises
U/F because given any value of U/F, it implies a lower expected price so that less
entry is needed to satisfy the zero profit condition. (This is discussed further below.)
A higher value of o, raises U/F by increasing the opportunity cost of investing,
and thereby raising the threshold required for a firm to pay the sunk cost F. But
note that only aggregate uncertainty matters; U/F is unaffected by idiosyncratic
shocks. Figure 1 shows this dependence of U/F on a,, and o,

One can also show that 3(U/F)/én >0, and §(U/F)/35> 0. An increase in the
elasticity of demand, 7, implies that the potentially positive effect of the failing units
on the price is reduced. This lowers expected revenue flow and hence raises the
threshold required for investment. An increase in & likewise raises the threshold by
directly lowering the expected present value of returns and by increasing the
opportunity cost of investing in the unit now, rather than waiting and discounting
the expenditure F. As for 9(U/F)/dy, the discounting effect described above again
holds (capital depreciates faster when vy is larger). However, there is an offsetting
effect from the increased depreciation of the capital of other firms, which tends to
raise the expected industry price as seen from the time of entry. The first effect
dominates for most reasonable parameter values.

We can now describe the behavior of industry investment, output, and price in
equilibrium. Suppose, for example, that aggregate demand increases. Then entry of
new productive units will occur, so that price will rise only to the point that
P(t)A(t) = U. Figures 2A, 2B, and 2C illustrate this by showing a particular sample
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path for industry evolution for two values of g,,, 0.15 and 0.30. (In this simulation,
the other parameters are =2, a,,=0.02, o,=0,=0, y=0.03, §=0.06, and
F =100.) The top graph shows the log of the stochastic driving force, m(¢). (The
realization for z(¢) is the same for the two lines, but the values of o, are different.)
Figure 2B shows the log of the number of productive units, n(¢). Note that when
m(t) is falling (e.g., between ¢ =12 and 18), there is little or no investment, so n(t)
falls due to failures (or depreciation). For ¢ > 18, m(t) is generally rising, and so
entry occurs and n(t) rises.

Figure 2C shows the realization for the log of price, p(¢). Note that p(¢) appears
stationary; that is because we have set a, = g, = 0 for all ¢, so that A(¢) =1 always.

o, =.30

o,=.15

p(t)

32

FIGURE 2C

LOG OF PRICE
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(Hence price is equal to the average revenue per productive unit, which is the
relevant state variable for the decision-making unit. In the more general case, b(¢)
would follow the same pattern as in Figure 2C, and p(¢) would be the sum of b(z)
and a Brownian motion.) As the figure illustrates, during recessions (when m(¢) is
falling) price will also fall, and will fall farther when o, is larger. But during good
times, p(t) is generally higher when o, is larger. The reason is that with a larger o,
there is a greater chance of deeper recessions, so during good times firms wait
longer before entering, n is smaller, and p is higher.

Underlying these results is a forecast of future revenues by firms that are
considering entry. In fact, this forecast (which must take into account entry by other
firms) completely determines the decision to enter. Hence, looking directly at the
expected value of future revenues, and their dependence on the underlying parame-
ters, helps to understand industry evolution. We turn to this next.

3. THE PRICE DISTRIBUTION AND ENTRY

In the previous section we found the optimal investment rule in the standard way
—by using dynamic programming to calculate the firm’s value function. In general,
this approach is useful in that studying the local (in time) behavior of the value
function allows one to fully characterize complex dynamic problems. Problems in
which the optimal or competitive outcome consists of regulating a Brownian motion,
as in the model developed in the previous section, are good examples of this. Value
matching, smooth pasting and the Bellman equation are all intuitive properties
arising from this local analysis.

Although dynamic programming is a powerful tool, it sometimes conceals the
economic intuition as to how changes in parameters affect optimal policies. As we
explained in the Introduction, the combination of irreversibility and industry-wide
uncertainty causes the threshold that triggers investment to rise because of the
asymmetry in the distribution of the future marginal profitability of capital that the
irreversibility constraint brings about. This is hidden in the dynamic programming
formulation.

For example, (10) defined the value function, W(x), as the expected present value
of the flow of marginal revenue product. Thus, any effects of changes in the variance
or drift parameters on the value function, and hence on the optimal investment rule,
must come through their effects on either the path of the expected marginal
profitability of capital or the discount rate. In this section we illustrate this
mechanism by looking at the path of expected marginal profitability directly and
showing how it is affected by the underlying parameters. Although this approach is
more cumbersome than that used in the previous section, it makes the nature of the
irreversible investment problem more apparent.

To proceed, we need to derive the conditional probability density for b, which we
denote by f(b,?). Since we know that a firm will enter only when b(¢) = u, we can
replace x by u in (10). Hence f(b, t) is the probability density of b after a time ¢ has
elapsed from the moment of entry, conditional on b(0) =u. As mentioned above,
any effects of parameters such as 8 and o, on the entry point « and hence on price
will occur through their effects on the path of the density f(b,t), and in particular
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on the function:
E[B(1)|B(0) = U] = [*"e’f(b,1) ab.

This expected value begins at the moment of entry at U, and then converges over
time to the ergodic mean. In the Appendix we derive the entire path of the density
f(b, t) and its conditional moments. In particular, its ergodic mean, which we denote
by B,, is given by:

_ 28
(17) B,,o—tlln;E[B(t)IB(O) U] w2128 U.

If the discount and depreciation rates are small, this ergodic mean, as opposed to
the transition path to this mean, has a relatively large weight in determining the
response of the equilibrium entry point, U, to changes in the drift and uncertainty
parameters. It is straightforward to see that B, rises with 8 and falls with o,; thus,
by the free entry condition, U must fall with B8 and rise with o.

_ If the discount and/or depreciation rates are large, the transition path to the
ergodic mean carries more weight, so the problem is more complicated. In this case
we need to account for the entire path of f(b,¢). (Intuitively, we know that f(b,t)
must start as a spike at # when ¢ =0, and as ¢ increases it must converge smoothly
to the ergodic density.) Because b(¢) follows the diffusion equation (9), f(b, t) must
satisfy the Kolmogorov forward equation:

(18) fi(b,t) =307 fo(b,t) = Bfy(b,1).
(See Karlin and Taylor 1981.) Since b(¢) is regulated at u, the solution to this

equation must satisfy the following boundary conditions for ¢ > 0:

2
(19) fu,t) = ;’—;f,,<u,t),
(20) im_ f(b,1) =0,

as well as the initial condition:

(21) f_xmf(b,O) db = {0 x<u

1 x=u

In Appendix A we derive the solution for f(b, ¢). Using this, we find an expression
for the trajectory of the expected marginal profitability of capital, conditional on its
value at the time of entry, U. From the free entry condition, the present value of the
flow of this expected marginal profitability must equal the cost of entry, and this
determines U.
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Figure 3 illustrates how the mechanisms underlying industry-wide investment are
revealed by the conditional expectation of the marginal profitability of capital. The
figure divides the investment problem into two steps. The first step, shown in panel
(a), removes the effect of individual firms’ optimal entry decisions by normalizing the
path of the conditional expectation of B(¢) by its value at the time of entry. Thus it
isolates the impact on firms’ expected marginal revenue of the interaction between
industry-wide entry (optimal or otherwise) and the stochastic environment. The
second step, shown in (b), adds back in the effect of firms’ individual entry decisions.

Panel (a) shows E[ B(¢)|B(0) = U]/U as a function of time for o, = 0.10, 0.15, and
0.20. (Other parameter values are y = 0.03, a,, =0.02, a,=0,0,=0,7=2, §=10.06,
and F =1.) Two points should be noted. First, the asymmetry of the irreversibility
constraint (i.e., there is free entry but no exit) implies that the expected marginal
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profitability is largest at the time of entry, and declines monotonically thereafter.
Second, the more uncertainty there is the faster and deeper is this decline. The
reason is that free entry truncates the distribution from above, while larger negative
shocks imply larger reductions in marginal profitability.

Panel (b) shows E[ B(¢)|B(0) = U] for the same three values of o,. This incorpo-
rates the industry-wide determination of U in response to the post-entry pattern of
the expected marginal profitability. Note first that the entry threshold U (the
intersections of these curves with the vertical axis) is always greater than the
frictionless neoclassical cost of capital, which is equal to §+ y— 8—(1/2)a2 In
order to recoup the initial investment with a declining path for expected marginal
profitability, expected returns in early periods must exceed the neoclassical cost
of capital. Second, U increases with uncertainty. This is the case because (as we
saw above) greater uncertainty implies a steeper decline in expected marginal
profitability.’

4. SOME EVIDENCE FROM U.S. MANUFACTURING

In this section we use data for two- and four-digit U.S. manufacturing industries
to obtain measures of uncertainty over the marginal profitability of capital. We then
use these measures to gauge the importance of uncertainty for investment.

Given assumptions about the production technology and market structure, we
estimate a times series for our marginal profitability variable, B(¢), up to a scaling
factor. In particular, we assume that the industry is competitive and the production
function is Cobb-Douglas with constant returns to scale. We can thus express the
output of a productive unit as:

(22) Y(t) = §,KL$a-a)pa-oxi-a),

where S, is an index of profitability, « is the share of capital, and ¢ is the share of
labor in a labor-materials composite which we will denote by H. (This might appear
different from the model in Section 2, but it is not. Note that if the firm chooses the
flexible factors L and M optimally, given CRTS, Y, will be proportional to K,.)
Given this expression for output, the marginal profitability of capital is given by:

(23) Mg () = a(l— a) '™ (P,S,) /Py Lo/,

where P, is the price of output, and Py, is the price of the labor-materials
composite. Letting 4, = a(1 — )12/ 2§}/ ap =)/« we can write the marginal

"1f the discount rate & and depreciation rate y were zero, these curves would all converge to the
same value, and would not cross each other. The reason is that with no discounting, only the
long-run steady-state matters, and not the transition to that steady-state. Different values of o,
would result in different values of U such that the resulting ergodic means for the marginal
profitability of capital would be the same. With discounting, however, the transition matters, so that
the curves cross.
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profitability of capital as:
M (t) =A4,PYe.

Note that this is equivalent to our expression for B(¢) in Section 2, except for the
exponent on P,. (In Section 2 we eliminated this standard convexity exponent for
purely expositional reasons.) We will work with b(¢) = log B(t) = log I1 ¢ (¢). This is
given by:

1
(24) b(t) =a,t ;Pu

where again, lower case letters represent logs of the corresponding variables.

We cannot measure b(¢) at the individual firm or plant level. Instead we focus on
investment and the marginal profitability of capital at two different levels of
aggregation: 20 two-digit manufacturing industries, and 443 four-digit subsectors
that make up these two-digit industries. While it is not clear which level of
aggregation is more representative of what we have called an industry, shocks at the
four-digit level are likely to have a larger idiosyncratic component. Hence it is useful
to compare the volatility of b(¢) and its implications for investment across these
levels of aggregation. For each industry, we use data on the real value of output,
real inputs of capital, materials, and labor, and the corresponding price deflators to
obtain a time series for b(¢) over the 29-year-period 1958 through 1986. We denote
these series by b,(#) and b,(¢) for the two-digit and four-digit industries respectively.
The data and the calculation of the b(¢)’s are discussed in the Appendix.®

We calculated the sample standard deviations of Ab(¢) for each of the 20
two-digit industries, which we denote by SDB2, and for each of the 443 four-digit
industries, which we denote by SDB4. If we view shocks at the four-digit level as
idiosyncratic, then SDB4 would measure total (aggregate and idiosyncratic) uncer-
tainty.” Table 1 shows SDB2 and the average of the SDB4s for each of the two-digit
industries. Observe that the average four-digit standard deviation is typically two or
three times as large as the corresponding two-digit standard deviation. The two-digit
standard deviations are on the order of 10 percent per year (consistent with an
annual standard deviation of real returns on the New York Stock Exchange Index of
20 percent per year and an average debt/equity ratio of one).

Table 1 also shows the premia over the neoclassical cost of capital implied by our
model, for the two- and four-digit standard deviations, assuming for both that all
uncertainty is aggregate (the premium is U/F — (§ + y— 8 — 30,2), with U/F given
by (16)). Note that for the two-digit level of aggregation, the implied premia are on

8 We used a database assembled by Brian K. Sliker, who graciously made it available for our use.
We included only 443 of the 450 four-digit SIC industries because of missing data in seven of the
industries.

°Our estimators of SDB2 and, possibly, SDB4 are biased downwards from the true standard
deviations because b(¢) is a regulated process. Equation (9) applies when it is not regulated, but our
sample includes periods of regulation.
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TABLE 1
BASIC STATISTICS FOR TWO- AND FOUR-DIGIT INDUSTRIES
Implied Mean Implied
SIC NOB SDB2 Premium of SDB4 Premium
20 47 0.058 0.039 0.246 0.085
21 4 0.104 0.047 0.451 0.170
22 30 0.118 0.050 0.366 0.130
23 33 0.076 0.042 0.304 0.105
24 17 0.168 0.062 0.327 0.114
25 13 0.125 0.051 0.258 0.089
26 17 0.113 0.049 0.217 0.076
27 17 0.061 0.039 0.192 0.068
28 28 0.088 0.044 0.224 0.078
29 5 0.201 0.071 0.256 0.088
30 6 0.127 0.052 0.242 0.084
31 11 0.093 0.045 0.231 0.080
32 27 0.099 0.046 0.236 0.082
33 26 0.250 0.086 0.506 0.198
34 32 0.123 0.051 0.277 0.095
35 44 0.160 0.060 0.301 0.104
36 39 0.147 0.056 0.264 0.091
37 15 0.184 0.066 0.403 0.147
38 12 0.105 0.047 0.220 0.077
39 20 0.109 0.048 0.255 0.088

NOB, number of 4-digit industries in each 2-digit industry; Mean of SDB4, cross-sectional sample
mean of the 4-digit sample standard deviations of Ab(t) corresponding to the 2-digit industry;
implied premium, premium over the neoclassical cost of capital resulting from uncertainty and
irreversibility, i.e., it is U/F — (8 + y—B— (1/2)a2), where U/F is given by (16), with y=0.03,
a, =002, a,=0,=0, =2, and §=0.06.

the order of 5 or 6 percent, while for the four-digit level they are on the order of 12
percent. These premia are substantial, and are distinct from any premia associated
with systematic risk, for instance, in the context of the CAPM. Finally, we also gauge
the importance of uncertainty for investment by computing the semi-elasticity
Alog(U/F)/Aa,. For the industries in Table 1, this semi-elasticity is about 2 for
either level of aggregation.

Ideally we would like to estimate the semi-elasticity A log(U/F)/Ao, using a
direct measure of the required return U/F, rather than the one implied by the
model. However, the threshold U is not directly observable. Instead, we compute
proxies for this threshold, and then use them to estimate the semi-elasticity
assuming that the model is correct. We proxy u =log U by extreme values of b(¢);
since u is the upper barrier for b(¢), b(¢) should be close to u when it is large
relative to its average value. We use three variables, all computed relative to the
industry mean of b(¢), to proxy u at both the two- and four-digit levels: (i) the
maximum of b(¢) over the 29 years of data, denoted by DBMAXn, where n =2 or 4
for the two- and four-digit industries; (ii) the average of the top decile (three
observations) of the 29 annual values of b(¢), denoted by DBDECn; and (iii) the
average of the top quintile (six observations), denoted by DBQUINTn. We average
over several extreme values and use DBDEC and DBQUINT rather than just
DBMAX because in practice b(t) may rise above u temporarily if there are lags in
investment, if there are predictable temporary increases in b(¢), or if firms do not
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TABLE 2
CROSS-SECTION REGRESSION RESULTS
Dependent Variable Const. SDBn NOB R?

DBMAX?2 0.0651 2.3347 20 0.246
(0.1290) (0.9641)

DBDEC2 0.0072 2.3634 20 0.296
(0.1151) (0.8598)

DBQUINT2 0.0070 1.8928 20 0.359
(0.0799) (0.5966)

DBMAX4 0.2136 1.5274 443 0.580
(0.0208) (0.0619)

DBDEC4 0.1886 1.2038 443 0.550
(0.0161) (0.0480)

DBQUINT4 —-0.1677 0.9361 443 0.588
(0.0135) (0.0403)

SDB2, sample standard deviation of Ab(¢) = A log B(¢) for each 2-digit industry; SDB4, average
sample standard deviation of Ab(¢) for the 4-digit industries that comprise the 2-digit industry.
Standard errors corrected for heteroscedasticity are shown in parentheses.

always optimize. We compute these variables relative to the mean because b(¢) is
identified only up to a constant, which may differ across sectors.!

Table 2 shows cross-section regressions of DBMAXn, DBDECn, and DBQUINTn
against SDBn and a constant, for n =2 and 4. These regressions provide alternative
estimates of the semi-elasticity A log(U/F)/Ao,.!! For the two-digit industries, we
again find that this semi-elasticity is about 2, close to what we obtained by
computing implied premia directly from the model (see Table 1). This implies that
an increase in the annual standard deviation of the marginal profitability of capital
from, say, 0.1 to 0.2 should increase the required return on investment by 20 percent
(so that if the required return was 30 percent, it should rise to about 36 percent).
This is a sizable effect, consistent with the simulated elasticities illustrated in Figure
1, but less than predictions based on analyses of individual projects, such as those by
McDonald and Siegel (1986), Majd and Pindyck (1987), and others. For the
four-digit industries, the estimates of A log(U/F)/Aa, are about half as large. One
interpretation of this is that the four-digit standard deviations have a much larger
idiosyncratic component (as we would expect), which, as the model predicts, does
not affect the required return.

5. CONCLUSIONS

In a competitive equilibrium, uncertainty over market demand or average produc-
tivity affects irreversible investment through the feedback of industry-wide capacity

10 Note from (17) that u minus the mean of b is affected by uncertainty in the same qualitative
way as is u itself, because the mean is much less sensitive to uncertainty than is u. When the
discount rate is zero, the mean of b is unaffected by uncertainty.

! These estimates should be taken with caution. Even if the model were not true, generally there
will be a positive association between the variance of the increments of a random variable and the
maximum of the random variable. We do not purport these results as a test of the model; they are at
best suggestive numbers, especially when compared with the theoretical values reported in Table 1.
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expansion and new entry on the distribution of prices. If demand increases, existing
firms will expand or new firms will enter until the market clears. From the point of
view of an individual firm, this limits the amount that price can rise under good
industry outcomes. But if investment is irreversible, there is no similar mechanism to
prevent price from falling under bad outcomes. Each firm takes price as given, but
knows that the distribution of future prices is affected by the irreversibility of
investment industry-wide, which leads it to raise the trigger point at which it is
willing to invest. Idiosyncratic shocks, which affect only an individual firm, do not
induce entry and thus should have less impact on the firm’s willingness to invest.

We have tried to clarify these channels through which aggregate and idiosyncratic
uncertainty affect investment and industry evolution. Our model is simple enough so
that it can be solved using standard dynamic programming methods, but we have
emphasized the effects of uncertainty on the conditional distribution of the marginal
profitability of capital, and shown how this distribution can be derived and used as
an alternative means of determining and understanding the behavior of firms and
the resulting industry equilibrium.

It is useful to compare our model with standard NPV models of investment based
on the CAPM. In those models, it is systematic (economy-wide) uncertainty that
affects the discount rate. In our model, aggregate uncertainty, which is related to
but not the same as systematic uncertainty, increases the trigger point, which
corresponds to a higher required rate of return. Thus the mechanisms are very
different, but the effects of different sources of uncertainty are similar as in
NPV-CAPM models. We have ignored CAPM effects; they may magnify the effects
of aggregate uncertainty that we have derived. However, a recent study by Leahy
and Whited (1993) using firm-level data finds that CAPM effects are negligible,
whereas the effects of irreversibility seem substantial.

The model we present is highly stylized and makes a number of simplifying
assumptions. Some are important and should be kept in mind when interpreting our
results. First, as we noted in the empirical section, if there is a flexible factor, or if
the firm can costlessly and temporarily shut down when price falls below variable
cost, the marginal profit function will be convex in price and in exogenous productiv-
ity. Then for an industry of fixed size, an increase in idiosyncratic uncertainty will
raise the present value of an additional unit of capital, and so to preserve the
zero-profit condition, the trigger point at which entry occurs must decline.

Second, we have ignored abandonment. Suppose a productive unit can be
scrapped at any time for some positive value. This puts a floor on the value of the
unit. (The unit will be scrapped once the combination of price and its productivity
reach the point where its value equals the scrap value.) This possibility raises the
value of the unit for any combination of price and expected productivity, which
lowers the entry point u, and hence reduces the effect of aggregate uncertainty
described by our model. Also, an increase in idiosyncratic uncertainty will raise the
value of the unit. The reason is that potential entrants cannot know what their
relative productivity will be until they enter. However, exit is done selectively, when
idiosyncratic productivity is low ex post. Selective exit raises the value of a unit,
lowering the critical cutoff point for entry. Hence a scrap value reduces the negative
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effect of aggregate uncertainty and creates a positive effect of idiosyncratic uncer-
tainty. Also, the combination of faster entry and the incentive to exit when
conditions are bad tends to reduce the variability of price.'?

A price floor will have an effect similar to that of a scrap value, but only for
aggregate uncertainty. It also reduces the negative effect of aggregate uncertainty on
entry by limiting one of the two possible reasons for bad aggregate outcomes. (Bad
aggregate outcomes that are due to a decline in average industry productivity are
still possible.) However, a price floor will not alter the effect (or lack thereof) of
idiosyncratic uncertainty.

Obviously such extensions of the model may alter the absolute effects of aggregate
and idiosyncratic uncertainty. However, these extensions will not alter the basic
mechanism that generates the asymmetry in the roles of these two types of
uncertainty.

Massachusetts Institute of Technology, U.S. A.

APPENDIX

A. The Density Function and Conditional Expectation of B(t). Let y=b —u,
and g(y,t) be the density of y at time ¢, so that f(b,t) =g(b —u,t). In this setup,
finding the path of the conditional density of b(¢) amounts to solving the problem
defined below by (A.1) to (A.6):

1
(A1) 8y:1) = 50,8,,(y,1) = Bgy(y, 1),
(Tb2
(A2) 8(0,1) = ﬁgy(O,t),
(A3) | lim g(y,t)=0,
y—o> -

(A4) g(y,t)=0 Vy<Oand¢>0,
(AS) [’ g(rydy=1 vizo,

* _ /0 x<0
(A6) [ s0s={3 X0,

A solution to a similar problem, although with a different initial condition, can be
found in Bertola and Caballero (1994). Here we only outline the basic steps of the
solution, which is obtained by the method of Separation of Variables.

12 This is strictly correct only when A(¢) is stationary (possibly around a deterministic trend),
since otherwise the variance of price becomes infinite. But even if A4(t) had a stochastic trend
component, the statement would hold for finite intervals.
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Writing the solution of the homogeneous problem as g(y,¢) = T(¢)Y(y), we can
decompose the problem into two ordinary differential equations:

(A7) T'(t) + AT(t) =0,

2B

2
(A.8) Y'(y) - a—sz’(y) + a—sz(y) =0,

subject to the boundary conditions above, with A a constant. The solution method
has the following steps: First, find the values of A for which the homogenous
problem has a solution. Second, characterize each of these solutions. And third,
combine these solutions to satisfy the inhomogenous initial condition.

The characteristic equation of (A.8) has real solutions for A < 68/4, where
6=28/02 It is easy to verify that the only real solution that satisfies the
homogenous boundary conditions occurs when A =0, which yields the particular
solution:

(A9) Y(y;A=0)=0e%.

However, there is a continuum of solutions for values of A > 683/4, which have the
form:

(7]
(A.10) Y(y;:/;)=B(t/1)e("/2)’(cos (//y+5:lj-sin l/ly),
where
_[ex 6?
=\ 57

The coefficients B(y) are identified by the initial condition, yielding:

Al B _2_ v
(A.11) (lﬂ)—;m-

Combining (A.9), (A.10) and (A.11) we obtain the solution for g(y,t):

(A.12)
e~ (BU*/0)

2 o
) =06 + Ze—(Bosirosy (2
(1) P /o (42 +02/4)

0
(1// cos gy + Esin l//y) dy.
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The expression for the conditional expectation is now obtained by solving the
integral in the expression:

E[B(1)IB(0) =U] = Uf_owe”g(y,t) dy.

Hence,
(A.13) E[B(1)B(0)=U]=U 2P +e'BZ’/2”"me/\(z) e~/ dy
’ O'b2 + 2ﬁ 0
where
7172
(A.14) Mz) =

(z+B%/0s)(z+B*/og +2B/0} +1)°
We now substitute eqn. (A.13) back into (10) evaluated at x = u, which yields:

W(u) (5+7) )
where
(A.15)
28 2(8+y) Mz)
A(B"Tb’8+7)=0.b2+2[3+ T j(; o'b22+[32/0'b2+2(8+7)dz.

The first term in the expression for A(:,-,-) summarizes the impact of the various
parameters on the ergodic mean, while the second term encompasses the transition
from the value of B(¢) at entry and its unconditional (ergodic) mean. Clearly, the
latter will be more important when firms give more weight to the short runm, ie.,
when (8 + vy) is large.

Given A(,-,-), the value of U can be found, as before, from the free entry
condition:

6+ vy

A.l16 U=F——.
( ) A( B s Op» o+ 'Y)
We have again arrived at an expression for U (and thus the optimal investment
rule), but this time by deriving the path for the expected marginal revenue product
and utilizing the free entry condition.

B. The Data and Calculation of b(t). Our raw database was originally devel-
oped by Brian K. Sliker at M.I.T., and is used with his permission. We calculate b(¢)
based on (24) using two- and four-digit SIC data for the real value of output
(ROUTPUT), real inputs of capital (RK), materials (RMAT), and labor hours
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(TOTHRS), and the corresponding price deflators. TOTHRS is the sum of hours for
production workers (PWHRS) and nonproduction workers (NPWHRS), where the
latter is estimated as the product of nonproduction worker employment (NPWEMP)
and average hours per employee for production workers (the mean of
PWHRS /PWEMP).

We calculate the labor and materials shares by setting «;, and a,, equal to the
mean values of TLC /NOUTPUT and NMAT/NOUTPUT respectively, where TLC
is total labor costs, NMAT is the nominal value of materials inputs, and NOUTPUT
is the nominal value of output. Letting ¢ = «; /(a; + ), we then compute the
Solow residual, s,, as:

=Y~ (1 - aK)hr —agk,,

where y, = log(ROUTPUT), h,= ¢l, + (1 — ¢)m,, I, = 1og(TOTHRS), m, =
log(RMAT), and k, =log(RK). Finally, b(z) is given by:

b(t) =log[ (1 — ax) "™ *F ey | +(1/ay)s,

1 —_
— —— K[ $(log TLC — 1,) + (1 — )log PMAT — log POUTPUT].
ag
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