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Uncertainty in the Theory of
Renewable Resource Markets

ROBERT S. PINDYCK
Massachusetts Institute of Technology

The natural growth rate of most renewable resource stocks is in part stochastic. This paper
examines the implications of such ecological uncertainty for competitive equilibrium in a market
with property rights. We show that stochastic fluctuations add a risk premium to the rate of
return required to keep a unit of stock in situ, and we examine the effects of fluctuations on
resource rent. Examples are used to show that extraction can increase, decrease, or be left
unchanged as the variance of the fluctuations increases, depending on the extent of market
“self-correction”. Regulatory implications are also discussed.

1. INTRODUCTION

Renewable resource economics has traditionally been concerned with the study of dynami-
cally optimal harvesting policies given a deterministic function for the natural growth of
the resource stock. Issues have included the existence and characteristics of steady-state
equilibria for the optimally managed resource, the need for and design of regulatory
policies to prevent over-exploitation, and conditions under which (as a social optimum
or otherwise) the resource will be exploited to extinction." Much of this work has been
based on the assumption of a fixed and exogenous price for the harvested resource
(typically resulting in “bang-bang” solutions for the harvesting policy). However some
recent papers make price endogenous, and thereby describe how the extraction rate, and
the rate of return and asset value of the resource behave in a competitive market with
property rights.?

For virtually all resources, the natural rate of growth of the stock (or “biomass”) is
in fact stochastic. This is well appreciated by biologists and ecologists, and a growing
body of literature in population ecology has focused on the development of stochastic
models of resource growth dynamics, and the characterization of steady-state probability
distributions for resource stocks that are either unexploited or else harvested according
to some fixed rule.?

The presence of “ecological” uncertainty raises interesting questions about the
behaviour of renewable resource markets. First, how does such uncertainty affect the
value and (expected) rate of return dynamics of the in sifu resource stock? Second, how
does it affect the rate of extraction in a competitive market with property rights? Related
to this, what are the implications for the degree of regulation needed in cases where
property rights cannot be assigned or maintained? These are the questions that are
addressed in this paper.

Other papers have already examined the optimal rate of extraction from a stochasti-
cally growing resource stock (typically to maximize the expected flow of utility from net
revenue). For example, using a continuous-time geometric random walk for the biomass
growth function (i.e. infinite carrying capacity), Gleit (1978) finds the optimal extraction
rate that maximizes the expected integral of an isoelastic utility function of net revenue.
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He shows that as the variance of the growth rate increases, the optimal extraction rate
increases. Smith (1978) solves the same problem but using a reciprocal utility function
and the more realistic logistic growth function, and finds the optimal extraction rate
reduced by uncertainty. Also, Ludwig (1979) and Ludwig and Varah (1979) use perturba-
tion methods to obtain approximate numerical solutions to the stochastic harvesting
problem for a logistic growth function. However, in these and related papers (as in much
of the deterministic literature), price is fixed and exogenous.*

In this paper the focus is on markets with well-defined property rights, in which
prices are determined endogenously—or equivalently, markets in which supply is optimally
socially managed. As Levhari, Michener and Mirman (1981) demonstrate clearly, such
markets can be analyzed in the standard framework of capital theory. In particular, the
dynamics of price and the resource stock are jointly determined by the equilibrium
requirement that any unexploited in situ unit yield a competitive rate of return, or
equivalently, that the net capital gain (properly defined) from holding the unit equal the
market rate of interest.

We examine and interpret this equilibrium condition in a stochastic context, i.e. when
“asset” growth is in part random. Where possible we point out parallels with exhaustible
resource markets. Also, through the use of several examples, we demonstrate the ways
in which stock growth uncertainty can influence the rate of resource extraction, and the
value of resource “rent”. This provides insight into the role of uncertainty in resource
markets, and the implications for regulation in cases where property rights cannot be
maintained.

In the next section we review competitive market behaviour under certainty, and
briefly discuss the rate of return condition that holds in equilibrium. Section 3 sets forth
the stochastic model, derives the corresponding rate of return condition, and discusses
the ways in which uncertainty affects resource extraction. Section 4 deals with the
stochastic analogue of a steady-state equilibrium. Section 5 illustrates the effects of uncer-
tainty on rent and the rate of extraction via three examples, which show how extraction
can be increased, decreased, or left unchanged by uncertainty, depending on the charac-
teristics of demand, cost, and stock growth. The concluding section discusses regulatory
implications, and suggests directions for further work.

2. MARKET BEHAVIOUR UNDER CERTAINTY

We begin by reviewing the behaviour of renewable resource markets in a deterministic
context. As is usually done, we assume the dynamics of the resource stock x is given by
an equation of the form

x=f(x)—q(0) (1)

where f(x) is strictly concave, with f(0) = f(K) =0, K > 0 is the “carrying capacity”’, and
q(1) is the rate of extraction or “harvest”. Total extraction cost is given by c(x)g, with
marginal cost ¢(x) decreasing and strictly convex, and ¢(0) = .} Finally, price is deter-
mined by a downward sloping market demand curve p(q) so that the profit function
I1=p(q)q— c(x)q is strictly concave.

We assume the market is competitive, but with property rights clearly defined. As
Levhari, Michener and Mirman (1981) demonstrate in a discrete-time context, this is
equivalent to a centrally planned economy in which q(#) is chosen over time to maximize
the flow of discounted net surplus. We therefore refer to this g(¢) as the optimal extraction
rate (as opposed to the rates that would prevail in the open-access or monopoly cases).
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In some resource markets (particularly fisheries), property rights cannot be assigned or
enforced; then this extraction rate illustrates an “ideal””, and provides a guideline for
regulation.

Market equilibrium is given by the solution of °

max, Jw[p—c(x)]qe"a‘dt 2

0o

subject to equation (1), with p taken as exogenous in the maximization, but p and ¢q
satisfy the market demand condition. (The discount rate 8 is assumed equal to the market
rate of interest.) A model of this form has been examined by Berck (1981), and here
we only point out its more important features.

First, note that the undiscounted shadow price, or rent, associated with a unit of
resource stock is given by:

A, =p—c(x). (3)

As for an exhaustible resource, this rent is the scarcity value of the marginal in situ unit,
i.e. the ““user cost” associated with extracting the unit. It is also the price at which the
unit would change hands, were there a competitive market for in situ stock.® Finally,
note that competitive producers appear to make positive profits, but those profits are the
amortized cost of resource stock ownership (or rental payments to some other owner of
the stock).

Solution of this model is straightforward, and yields an equation for the dynamics
of price that can be written in terms of resource rent:

L(p=c)=8(p=)=f (M(p=0)+ (e 4)

This says that the (absolute) rate of capital gain on 1 unit of stock must equal the total
cost of holding the unit—i.e. the opportunity cost of foregone interest, less the gain from
the increase in the total stock growth rate attributable to that unit (which can be positive
or negative), plus the change in total harvesting cost resulting from that unit (which will
be negative). If ¢'(x) =0, equation (4) becomes the well known Hotelling (1931) rule
for an exhaustible resource, except that now resource rent (p—c) grows at the net rate
of interest, i.e. the market rate & less the marginal rate of natural growth f'(x).
Alternatively, we can write equation (4) as a rate of return condition:

(d/dt)(p—c)

c'(x)q
(p—0) >

AP

(49

i.e. the total return associated with holding a unit of stock must equal the market rate
of interest. Finally, the equation can be written simply in terms of the rate of change of
price.

p=8(p—c)—f (x)(p—c)+c'(x)f(x). (5)
Note that by setting f'(x) =0, equation (5) describes the price dynamics for a competitively

produced exhaustible resource for which extraction cost is a decreasing function of the
reserve level, and f(x) the rate of new reserve discoveries.’
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Equations (4) and (5) hold in competitive market equilibrium at any point in time.
A steady-state equilibrium is defined by p = x =0. From (5) we see that in a steady-state
equilibrium,

—c'(x)f(x)

—f'(x)

i.e. price is equal to marginal extraction cost, plus rent. Since f(x)=gq if ¥=0, in
steady-state equilibrium rent is the capitalized value of future increases in cost resulting
from a 1-unit reduction in the resource stock. Note that the capitalization is based on a
rate that reflects the opportunity cost of the in situ unit, namely the market interest rate
less the marginal contribution of the unit to the stock growth rate. Again, 6 —f'(x) is a
net interest rate, i.e. an internal rate of return for the resource owner; he can invest the
proceeds of a harvested unit at the rate §, but harvesting that unit means reducing the
rate of growth of the entire stock by an amount f'(x). Also, observe from (6) that a
steady-state equilibrium requires that f'(x) <48 (or else it would pay to let the resource
grow unharvested indefinitely), and that this condition is guaranteed by the concavity of
f(x).

The corresponding conditions for alternative market structures are easy to derive.
If the resource is extracted by a monopolist, price is replaced by marginal revenue in
equations (3)-(6). The monopolist under-extracts, so that the resource stock is always
larger, and as for an exhaustible resource, rent is smaller. (Since the monopolist extracts
at a lower rate, he attaches a lower value to the marginal in situ unit.) If the resource
is extracted in a competitive market without property rights (the open-access case),
extraction expands until price equals marginal cost, and rent is zero.

The market equilibrium conditions described above are based on a general—but
deterministic—model. Let us now re-examine these conditions using an analogous
stochastic model.

(6)

p*=c(x)+

3. A STOCHASTIC MODEL

Equation (1) says that the change in the resource stock can be predicted exactly from
the current stock level and extraction rate. For most resources these changes are in fact
partly random. A convenient way of capturing this is to use a stochastic differential
equation of the Ito type to describe the stock dynamics. In particular, we replace equation
(1) with

dx=[f(x)—q(t)]dt+o(x)dz 7N

with o'(x)>0, ¢(0)=0, and dz=s(t)~/ dt. Here £(t) is a serially uncorrelated and
normally distributed random variable with unit variance, i.e. z(¢) is a Wiener process.
Equation (7) implies that the current resource stock is known with certainty, but the
instantaneous change in the stock is (in part) random. Also, o(x) is specified so as to
ensure that the resource stock x is always non-negative. Stochastic differential equations
of this type have found increasing application in economics, but justification for the use
of (7) in this paper also has support from the population ecology literature.®

We assume that resource firms are risk-neutral. In a competitive market equilibrium
(again assuming well-defined property rights) each firm chooses its extraction rate g’ to
maximize its expected sum over time of discounted profits, subject to equation (7), and
again with price exogenous in the maximization, but price and aggregate extraction g
satisfying the market demand function. Before solving this problem it is important to

Copyright © 2001 All RightsReserved



PINDYCK RENEWABLE RESOURCE MARKETS 293

stress that the solution p and q is the same as the solution to the social welfare problem,
i.e. p and q maximize the expected sum over time of discounted net surplus.’

This problem is best approached using stochastic dynamic programming. The value
function for the i-th firm, V’, is its present value of profits:

V'=Vi(x) =max, E, I I'(7)e %" "dr (8)

t
where E, indicates the expectation at time t, and II' =[ p— c(x)]lq". Then the fundamental
equation of optimality is
8V'dt =max, {II'(t)dt+ EdV'} 9)

i.e. for a risk-neutral firm, the required instantaneous return on the resource stock (8Vide)
has two components, the instantaneous net cash flow II'(¢)dt, and the instantaneous
expected capital gain E,dV'. Also, on the margin any increase in net cash flow will just
be offset by a decrease in expected capital gain.

We will assume that there is a large number n of identical firms which own equal
shares in a unitized resource stock. (Or, equivalently, firms own their own resource
stocks, but with identical growth dynamics, the aggregate of which is given by equatlon
(7), and identical costs.) Then, the fundamental equation of optimality can be written as:!

8V =max, {pg'— c(x)q' +[f(x)—ng'1Vi+50*(x) Vi} (10)

where subscripts denote partial derivatives, i.e. Vi =8V'/ax. This equation is linear in
q', so the maximization implies

i {q:nax’ ifp—c(x)> nV; = ‘7.\:

_ 4 11
7700, ifp-c(x)<nV.i=V, (1)

and V = nV' is the aggregate value of the resource stock to producers. With a downward
sloping demand curve, market clearing will ensure total output g = nq" is such that

V,=p(q)—c(x). (12)

Let V be the social value function, i.e. the integral of the expected flow of consumer plus
producer surplus. By going through the same steps as above to maximize V it is easily
seen that V, = V,. Thus V,, i.e. resource rent, is the social and market value of the marginal
unit of in situ stock. As in the deterministic case, it is just equal to the profit that can be
obtained by extracting and selling the unit.

If rent V, were known, equation (12) could be solved for g:

g*(x)=p [V tc(x)] (13)

Rent is not known, but the value function V(x) can be found by writing the social
optimality condition equivalent to equation (10), and substituting equation (13) for g(x).
That yields the following equation that V(x) must satisfy:

*(x)
5V=J.0 P(‘I)dQ“C(x)q*(x)+[f(x)_q*(x)]vx+%o_2(x) V.. (14)

The competitive equilibrium is found by solving this differential equation for V(x), and
using (13) to determine g(x). In Section 5, solutions are obtained for three examples to
illustrate the effects of uncertainty on resource rent and the rate of extraction. But first,
let us examine how uncertainty affects the rate of return on the resource stock.
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Differentiate equation (14) with respect to x:
8V, =[p—c(x)—V,]8g*/ax—c'(x)g*+f'(x) V,
+ 0 (x)o(x) Vi +[ f(x) = ¥ Vs +367(%) Vi (15)

The terms in the first set of brackets sum to zero, so (15) can be re-written as:

8Vi=—c'(x)q*+f(x) V. +0'(x)0(x) Ver + (1/ dt) EA(V,) (16)
Also, equation (12) implies that:
(1/d0)Ed(V,) =(1/dt)Ed[p— c(x)]. (17)

Now combine equations (12), (16), and (17) and rearrange to obtain a rate of return
condition analogous to equation (4') from the deterministic case:

U/dNEAP=C) , vy CDT_ 5\ iyox)A) (18)
(p-¢) (p—c)
where A(x)=-V,,/V, A(x) can be thought of as an index of absolute risk aversion;
it reflects the premium that resource owners would pay to eliminate stock growth
uncertainty.'!

Because o'(x)>0, the rate of return condition in equation (18) differs from the
deterministic case in that the market interest rate & must be augmented by a “risk
premium” equal to the increase in stock growth variance attributable to the marginal in
situ unit times the index of implicit risk aversion.’? This “variance effect” increases the
expected rate of capital gain needed to hold the marginal in situ unit, rather than extract
and sell it. Because stochastic fluctuations are costly, it pays to extract more of the
resource, thereby reducing the variance of the remaining stock. By itself, this reduces
resource rent and increases the rate of extraction. However, rent and the extraction rate
are affected in other ways as well.

To see this, note that stochastic fluctuations reduce the value of the resource stock
in two ways. First, because the growth function f(x) is concave, stochastic fluctuations
in x reduce the expected rate of growth of x (an implication of Jensen’s inequality). In
effect, stochastic fluctuations increase the physical scarcity of the resource. This increases
resource rent, and reduces the rate of extraction. Second, because the cost function c(x)
is convex, stochastic fluctuations in x increase expected extraction costs over time (again
by Jensen’s inequality). Because cost-raising fluctuations occur continuously, they create
an incentive for resource owners to increase the rate of extraction and thereby reduce
the amount of increased cost.'?

Stochastic fluctuations will thus affect the rate of extraction in three different ways:
(i) Because fluctuations reduce the value of the stock, and because their variance is an
increasing function of the stock level, there is an incentive to reduce the stock level by
harvesting faster. (ii) Fluctuations increase expected extraction costs over time, and this
also creates an incentive to extract at a faster rate. (iii) Given a fixed extraction rate, at
any stock level x fluctuations reduce the expected growth rate of the stock, and this in
turn reduces the extraction rate. Given a particular current stock level x, the net effect
of uncertainty on the current rate of extraction is therefore indeterminate.

The problem for a monopolistic resource owner can be solved in the same way, but
replacing p by p(q) in equation (10). Equations (12), (14), and (18) will again apply,
but with price replaced by marginal revenue.

c'(x)q*
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4. STEADY STATE BEHAVIOUR

In the case of an exhaustible resource, we can ask how uncertainty, monopoly power,
etc. affect the rate of extraction as that rate eventually falls to zero. Production from a
renewable resource stock need not fall to zero, and we are also interested in the behaviour
of the steady-state equilibrium. In a deterministic model the steady-state equilibrium is
easily found by setting p=%=0. When the resource stock grows stochastically, that
equilibrium can only be described in terms of probability distributions and moments.
Depending on f(x), o(x), and p(q), the stock x may eventually fluctuate around some
steady-state expected value. Alternatively, the equilibrium q*(x) might yield a degenerate
steady-state distribution for x, i.e. with probability 1 the stock will eventually fall to zero.
As we will see, it can be the case that competitive (and optimal) extraction drives the
stock to zero with probability 1 in the presence of stochastic fluctuations, but not in their
absence.

Substituting the equilibrium extraction rate ¢*(x) into equation (7) yields a stochastic
differential equation that completely describes the evolution of x, ie. dx=
[f(x)—q*(x)]dt+a(x)dz. The steady-state probability distribution for x can then be
found from the Kolmogorov forward equation. As Merton (1975) has shown, if that
distribution is not degenerate, it is given by:

exp [2 er M’ﬂ dv] (19)

o*(v)

m
Tl X) =
(=720
with m chosen so that m.(x) integrates to unity. From this distribution one can obtain
the steady-state expected value for the stock X.. Similarly, writing

dg*(x) = g% dx+3q* (dx)’

and substituting (7) for dx, one has a stochastic differential equation for ¢*, from which
one can obtain the steady-state expected extraction rate gz.

Assuming non-degenerate steady-state distributions, the concavity of f(x) ensures
that g% falls as o increases. However, the effect of increases in o” on the current rate
of extraction ¢*(x) will depend on the particular growth function f(x), and the response
of demand to price changes. As we saw earlier, until a steady-state equilibrium is reached,
the extraction rate might be higher, lower, or left unchanged. This is best illustrated
through some examples.

5. EXAMPLES

As explained above, equations (13) and (14) provide a differential equation that can be
solved for the value function V(x) and rent V,. Then the extraction rate g*(x) can be
determined from equation (13), and the steady-state distribution 7(x) from (19). We
go through these steps in three examples, in each case determining how V,, g*(x), and
g% change as the stock growth variance (and other parameters) are changed.

In each example, o(x) = ox, i.e. percentage changes in the stock dx/x have a random
component that is normally distributed. This specification is intuitively appealing, and is
used widely in the population ecology literature. In addition, all of the examples utilize
an isoelastic demand function, q( p) = bp~", and isoelastic marginal cost function, c(x) =
¢x”. In each succeeding example we (a) increase the elasticity of demand #, (b) change
the growth function so that it is increasingly skewed to the left, and (c) reduce the elasticity
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of marginal cost y. (The resulting demand, growth, and cost functions are all quite
plausible.)

In each of the examples the extraction rule g*(x) is linear, and since f(x) is concave,
the steady -state expected extraction rate g% falls as o increases (in Example 3, g% =0
forany o> 0). By changing f(x), n,and y, we observe very different effects of uncertainty
on rent and the rate of extraction across the examples. This in turn has interesting
implications for the regularion of renewable resource stocks in the presence of uncertainty.

Example 1
In this first example we use the logistic function for f(x), i.e.
f(x)=rx(1-x/K) (20)

where K is the carrying capacity. This function is symmetric around a maximum at K /2.
We set the elasticity of demand, 7, equal to 3, and the elasticity of marginal cost, ¥, equal
to 2. Equation (14) then becomes:

8V ==2b(V,+c/x*)" +[rx—(r/K)x* ]V, +ic*x*V,,. (21)
The solution to this equation is:'*
V(x)=—¢y/x—¢r/6K (22)
where
26+ 2b[bP* + c(r+ 56— 0‘2)2]1/2

T (r+8—a?)?
Rent is therefore
Ve=61/x" (23)
and the extraction rate is
g*(x)=b(¢1+c)™"*x. (24)

Observe that 3¢,/30°> 0. Stochastic fluctuations reduce V, the total social value of
the resource, which must always be the case since V is concave (so that A(x)>0). In
this example, fluctuations also increase resource rent and therefore reduce the extraction
rate at every stock level. To see why, let us first examine the steady-state equilibrium
for this example.

It is easily shown that a non-degenerate steady-state distribution for x exists if

a?<2r—2b(¢,;+c) V2

(Otherwise x - 0 with probability 1.)*° If this condition is met, x has the following gamma
distribution in equilibrium:

2_ 2 —
(2',/0_2K)(201/0 l)x281/¢r Ze 2rx/a?K

TooX) = T(6./0=1) (25)
where
6,=r—b(¢,+c)" V3,
and I'( ) is the gamma function. From (25) we determine that
¥o=K[1—a?/2r—b/r(¢y+c)"? (26)
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and
gt =K[(1—0%/20)b/ (d1+ )2~ b/ r(¢1+ )] 27)

It is straightforward (but tedious) to show that 9%u/ 302 <0 and 8% /80°<0.'® Also,
letting ¢ - o, we see that the expected steady-state unexploited stock is

4, =K(1-0%/2r),

which falls as o increases.

Because the growth function f(x) is concave, an increase in o? increases the physical
scarcity of the resource stock by reducing its expected growth rate, and this increases
rent. In this example, this increase in rent outweighs the decreases in rent associated
with the convexity of c(x) and the fact that o'(x)=0>0. As a result, the extraction
rate is reduced at every stock level x. As the next two examples show, increasing the
elasticity of demand and skewing the growth function f(x) to the left reduces the effect
of changes in o on the physical scarcity of the resource, so that the overall effect on
rent and the extraction rate can be reversed.

Example 2
In this example we use the Gompertz function for f(x):

f(x)=rxlog (K/x) (28)

where K is again the carrying capacity. Note that this function is skewed to the left
relative to the logistic function of Example 1, and has a maximum at K/e. We set both
the elasticity of demand 7 and the elasticity of marginal cost y to 1. Equation (14)
becomes:

8V=—b+blogb—blog(V,.+c/x)+rxlog(K/x) V,+102x%V,, (29)

the solution to which is:

V(x)= log x+ ¢, (30)

(r+9%)

where

_1 b(r+8) 3 3
¢2_6{b10g[———1+(r+8)c] b+(rlogK a/2)/(r+6)}.

Resource rent V, and the extraction rate g*(x) are given by:

V.=b/(r+8)x (31)
and
__b(rt+9)
T = T (32)

Now rent and the extraction rate are unaffected by stochastic fluctuations (although
the total value of the resource stock is again reduced, since 3¢,/ 80> <0). Compared to
the logistic function, the Gompertz function rises more rapidly for small x, and then falls
more slowly. This and the more efastic demand function increase the extent of market
self-correction when the resource stock falls randomly. This can also be seen from the
steady-state properties.
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A non-degenerate steady-state distribution exists if
o?<2rlog K —2b(r+8)/[b+(r+8)c],
and since o= 0, this also requires K > 1 and
b<rlogK[b+(r+8)c]/(r+4)."7
(Again, x>0 with probability 1 otherwise.) The steady-state distribution is:
ool X) = (m/ g?) 5~/ 708 X420/ 72 (33)

where

6,=rlog K —b(r+8)/[b+(r+6)c],
and

m=a(w/r)"/? exp (—03/ro*+ 0,/ r— a*/ 4r).
The steady-state expected stock and extraction rate are therefore given by:

-ioo - Ke—b(r+6)/r[b+(r+6)c]—az/4r (34)

Gx =b(r+8)x%./[b+(r+8)cl. (35)

Again, 8§%/90° <0 because of the concavity of f(x). However, if the conditions
needed for a non-degenerate steady-state distribution are satisfied, 8G% /aa? is smaller
in magnitude than in Example 1.'® Here the scarcity-related increase in rent resulting
from an increase in o2 is smaller, and is just offset by the reduction in rent due to convex
extraction costs and the risk premium. The net result is that at any current stock level
x, rent and the extraction rate are unchanged as a? increases, even though the steady-state
expected stock and extraction rate fall.

Also observe that the parameters can be such that x and q fall to zero with probability
1 if the stock is exploited, but x has a non-degenerate distribution in the absence of
exploitation. This is the case if

2rlog K —2b(r+8)/[b+(r+8)c]l<o’<2rlog K. (36)

Thus it may be socially optimal to exploit a resource stock to extinction when there are
stochastic fluctuations, although this would not be the case in a world of certainty.

Example 3
This example shows how stochastic fluctuations can increase the rate of extraction. The
growth function is now:

f(x)=rxY*—rx/KY2 (37)

K is again the carrying capacity, and the function has its maximum at K/4, so it is even
more skewed to the left. For small x, the expected (absolute) change in the stock is of
order x'/? but the standard deviation of that change is of order x. As a result, the
unexploited resource stock does not have a non-degenerate steady-state distribution, i.e.
for any o®>0, x will eventually fall to zero. The exploited stock will likewise fall to
zero, but we can ask how the rate of extraction (along the path to ¢ =0) changes as o
rises.
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To complete the example, we set the elasticity of demand n =2, and the elasticity
of marginal cost y=1/2. Equation (14) becomes
BV =b(Ve+c/x"3)  +1(x" 2= x/ KV, +30°2°V,,, (38)
which has the solution:
V(x)=2¢3x" 2+ rd3/ 8 (39)
where
bs=—c/2+c2+4b/ (26 + 1/ K+ %/ 4)]'/2.

Rent and the extraction rate are therefore:

Vo= 2 (40)
and
*y e DX
TG @

Since d¢3/90> <0, stochastic fluctuations reduce rent and increase the extraction
rate at any stock level x. This is a consequence of the larger elasticity of demand and
more skewed growth function. Here an increase in o? again increases rent through its
effect on resource growth,'” but this is outweighed by the reduction in rent occurring
because ¢"(x)>0 and A(x)>0.

It is also interesting to compare these results with those for a monopolist resource
owner. We can do that in this example because the elasticity of demand exceeds unity.
For the monopoly case, price p(q) in equations (13) and (14) is replaced by the marginal
revenue function MR(q), and then (14) is solved as usual for V(x). The result is:

Vm(x) :2¢3mx1/2+r¢3m/‘s (42)
where

b3m=—/2+H*+3b/28+1/K*+0* /)]

Rent and the extraction rate are:

VI =¢ymx /2 (43)
and
" _ bx
L TrRs (44)

Production is lower than in the competitive case, and rent is smaller. (The monopolist
views the marginal in situ unit as less scarce because he will extract less anyway.) The
total value of the resource stock, V™, is also lower, as we would expect. Uncertainty,
however, has the same effect as in the competitive case, reducing rent and increasing the
extraction rate for any stock level.

5. CONCLUSIONS

1. As for an exhaustible resource, an in situ unit of renewable resource stock is an asset
which, in a competitive market, must yield a total return that is competitive. Stochastic
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fluctuations in the stock add a risk premium to that required return, to the extent that
the marginal unit contributes to the variance of the fluctuations. Also, because marginal
extraction cost is a convex function of the stock, stochastic fluctuations will on average
increase that cost over time. At any stock level, these effects reduce rent and increase
the rate of extraction.

2. Whether the resource stock eventually fluctuates around a non-zero steady-state
expected value or falls to zero, an increase in the variance of stock fluctuations reduces
the expected growth rate of the stock. This increases rent and reduces the extraction
rate. As a result, the overall effect of an increase in variance may be to decrease the
extraction rate ¢*(x), increase it, or leave it unchanged. As the examples demonstrate,
when the growth function is more skewed to the left (i.e. higher rates of growth at lower
stock levels) and demand is more elastic, the result is more likely to be an increase in
the extraction rate. This is intuitively appealing in that a skewed growth function and
more elastic demand function provide stronger homeostatic mechanisms for the correction
of random decreases in the stock.

3. This has implications for the degree of regulation needed when property rights
cannot be assigned and maintained—the case for many resource stocks. The conventional
wisdom has been that ecological uncertainty increases the need for regulation. However,
we have seen in Section 5 that more or less regulation may be in order depending on
the extent and speed of self-correction in the system, i.e. depending on the biology of
the resource and the characteristics of market demand. If the natural recovery of the
resource stock after a sharp drop is rapid, and if demand is sufficiently elastic so that the
extraction rate falls when the stock is low, then less regulation may be needed. Further-
more, there may be instances when it is optimal to allow a competitive market to eventually
drive the resource stock to zero, even though that might not be the case in a world of
certainty. Uncertainty may have important implications for regulation, but those implica-
tions will have to be carefully worked out for the particular resource market in question.

Now some caveats are needed, particularly with respect to our conclusions regarding
regulation. The model developed here contains a number of simplifications, some of
which may overstate the degree of homeostasis that actually exists in renewable resource
markets.

Perhaps most important, in this model stochastic fluctuations in x are continuous in
time, and the current resource stock x can be observed without error. The optimal
extraction rate ¢*(x) is likewise assumed to adapt continously over time. This kind of
continuous observation and adaptation may be too much to expect, however, in actual
markets. If stock observations occur with error and significant lags, if demand and
extraction respond only slowly to price changes, and if firms make optimization errors,
the “second-best” extraction policy might be much more conservationist. This is especially
likely if the resource growth function is such that a small amount of “over-harvesting”
(e.g. following a stochastic drop in stock size) can result in a catastrophic collapse of the
stock.

Further work is needed to deal with such problems as errors and lags in stock
observations, dynamically sub-optimal behaviour on the part of resource firms, and other
aspects of market structure that could exacerbate the effect of uncertainty, or otherwise
increase the chances for catastrophic over-exploitation of an unregulated open-access
stock. One approach that may provide insight into these problems is to introduce
investment in quasi-fixed capital stocks (e.g. fishing fleets) into models such as this one.
Such capital stocks impose rigidities on extraction levels, rigidities which have been shown
in deterministic models to (temporarily) cause severe over-exploitation.”® Introducing
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quasi-fixed capital may greatly complicate a stochastic model, but results might be obtained
via numerical approximation techniques, as in Ludwig (1979).

First version received April 1983; final version accepted November 1983 (Eds.).

Research leading to this paper has been supported by the National Science Foundation under Grant No.
SES-8012667, and that support is gratefully acknowledged. The author also wants to thank Fischer Black,
Colin Clark, Donald Ludwig, Marc Mangel, Gordon Munro, Julio Rotemberg, Richard Schmalensee, Martin
Weitzman, and especially Barry Smith for helpful discussions, comments, and suggestions.

NOTES

1. The literature in this area is a large one. For a clear and thorough introduction and overview, see
Clark (1976). Detailed discussions of these issues can also be found in Beddington, Watts and Wright (1975),
Berck (1979), Clark (1973), Clark and Munro (1975), and Lewis and Schmalensee (1977).

2. See Berck (1981) and Levhari, Michener and Mirman (1981). These papers are more in the spirit
of the exhaustible resource literature.

3. See, for example, Beddington and May (1977), Goel and Richter-Dyn (1974), May (1974), May,
Beddington, Horwood and Shepherd (1978), Reed (1978), and Tuckwell (1974).

4. In a sense, Smith’s (1978) work is an exception, since he maximizes the expected flow of discounted
utility from consumption, and ignores harvesting costs. His extraction rate is therefore the same as that for a
competitive market (with property rights) and an endogenous price equal to marginal utility. In related work,
Hutchinson and Fischer (1979) obtain approximate numerical solutions for the maximization of the expected
flow of discounted net revenues (taking price fixed), for alternative stochastic versions of the logistic model.
Reed (1979), using a discrete-time model and again taking price as fixed, shows that under broad cost assumptions
the optimal harvesting policy is given by a feedback rule that forces the resource stock back to an optimal
escapement level as rapidly as possible. Also, Smith (1980) derives the steady-state distribution for a logistic
growth function with fixed harvesting effort, and then estimates the parameters (including the effect of
uncertainty) using data for a particular fishery. Andersen (1981) uses Smith’s steady-state distribution results
to examine the effects of uncertainty, but in a static (steady-state equilibrium) context.

5. Some authors make marginal extraction cost constant (or zero), and impose the condition x Z0. But
this simply means that marginal extraction cost is highly convex, e.g. is of the form c(x)=cy+ ¢ x™ ", with
n-o0. It is more realistic to make n> 0, but finite.

6. Of course this requires that property rights could be assigned and enforced. In either case, rent
represents the social value of the unit, and best measures in situ resource scarcity, as it does for an exhaustible
resource. For discussions, see Brown and Field (1978) and Fisher (1979).

8. See, for example, Goel and Richter-Dyn (1974), May (1974), Turelli (1977), and Tuckwell (1974).
Also, Merton (1975) used an Ito process of this type to describe the labour force dynamics in a stochastic
model of economic growth. In most applications o(x) = ox, i.e. future values of x are lognormally distributed.
Of course there are resource markets for which this description of uncertainty would be a poor one; for example,
a seasonal fish stock like saimon.

9. ‘That is, uncertainty does not change the fact that the competitive equilibrium is optimal (if firms are
risk-neutral). This is shown formally and in general by Lucas and Prescott (1971). Of course for many resource
markets this model of perfect competition with property rights will not apply, and we must then view the
solution as an “ideal”, and a guideline for regulatory policy.

10. Using Ito’s Lemma, write the stochastic differential dV* as:

dV'=Vidx+iV', (dx)>
Substituting (7) for dx, and noting that ¢ =nq" and E,(dz) =0,
EdV'=[f(x)—nq'1Vidi+3o?(x)V,.dt

Equation (10) is obtained by substituting this expression in eqn. (9). For an introduction to the techniques
used in this paper, see Chow (1979) and Merton (1971, 1975).

11. The value function V is a derived utility function, and A(x) measures its curvature. Firms are
risk-neutral, but since Il is concave, V is concave, and A(x)>0.

12. Recall that we restrict o”(x) to be positive so that the resource stock is always non-negative. If
o’'(x) =0 the expected rate of return dynamics is the same as in the deterministic case, i.e. for any x, the

expected percentage rate of growth of rent is unaffected by uncertainty—although the level of rent may differ.
13. This can be seen by writing dc as:

dc=c'(x)dx+1ic"(x)(dx)? (i)
so that
(1/d)Edc = ¢’ (0] f(x)—g*1+30%(x)¢"(x). (ii)
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Substituting (ii) into equation (18) and rearranging yields an equation for the expected dynamics of price
analogous to equation (5) for the deterministic case:

(1/dt)Edp=8(p—c)—f'(x)(p—c)+c'(x) f(x)
+o'(x)o(x) A(x)(p—c) +10%(x)c"(x). (iii)

Since ¢(x) is convex by assumption, the last term in (iii) is positive, and for any value of x has the effect of
increasing the expected rate of growth of price. This result also applies to an exhaustible resource when there
are stochastic reserve fluctuations and marginal extraction cost is a convext function of reserves. Note that
setting f(x) = f'(x) =0'(x) =0 in equation (iii) gives eqn. (15) on page 1209 of my earlier paper (1980).

14. Smith (1978) solves a problem identical to this, except with zero extraction cost. Also note that in
this example, | p(q)dg =—b?/q+ A. We set the arbitrary constant A =0, which is why V(x) is negative (but
increasing in x).

15. A sufficient condition for a degenerate distribution is that I: To(X)dx is unbounded.

16. If ¢=0, 3%../30>=0 and 8g% /90* <0, i.e. the reduction in the extraction rate is just sufficient to
leave the expected stock unchanged.

17. The latter requirements result from the fact that as x>0, the natural growth rate of the stock
approaches r log K.

18. This is easiest to see by setting ¢ =0 in both examples (for algebraic simplicity), and applying the
necessary conditions for a non-degenerate steady-state distribution.

19. The stock will eventually fall to zero even if there is no extraction. However, rent, the relevant
measure of scarcity, is the sacrifice (i.e. reduced PDV of future profits) that results from extraction of the
marginal in situ unit.

20. See, for example, Clark, Clarke and Munro (1979).
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