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Investment decisions and outlays are often made sequentially. For example, the rate at which 
construction proceeds is usually flexible and can be adjusted with the arrival of new information. 
Traditional discounted cash flow methods which treat the pattern of investment as fixed ignore 
this flexibility and understate the value of the project. This paper uses contingent claims analysis 
to derive optimal decision rules and to value such investments. We determine the effects of time to 
build, opportunity cost and uncertainty on the investment decision. For reasonable parameter 
values, we show how a simple NPV rule can lead to gross errors. 

1. Introduction 

Many investment projects have the following characteristics: (i) investment 
decisions and associated cash outlays occur sequentially over time, (ii) there is 
a maximum rate at which outlays and construction can proceed - it takes 
‘time to build’ - and (iii) the project yields no cash return until it is com- 
pleted. The firm’s investment problem is to choose a contingent plan for 
making these sequential - and irreversible - expenditures over time. The 
arrival of new information might lead the firm to depart from the spending 
scenario originally planned; the firm might accelerate or decelerate the rate of 
investment, or simply stop the program in midstream. 

Examples of industries for which these characteristics are especially im- 
portant include aircraft and mining. The production of a new line of aircraft 
requires engineering, prototype production, testing, and final tooling stages 
that together can take eight to ten years to complete. The construction of a 
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new underground mine, or the development of a large petrochemical plant are 
projects that usually require at least five or six years, with clear constraints on 
the pattern of expenditures. In other industries the lead times may be 
somewhat shorter, but are still important. 

Traditional discounted cash flow criteria, which treat the spending pattern 
as fixed, are inadequate for evaluatin g such projects. Likewise, neoclassical 
investment theory,’ which treats individual units of capital as homogeneous, 
interchangeable, and individually productive, fails to provide a realistic de- 
scription of investment behavior under uncertainty. Adapting the neoclassical 
framework by introducing adjustment costs, whereby the cost of new capital 
rises with the rate of investment, does not deal with the fundamental 
problem - most real projects are composed of heterogeneous units of capital 
that must be installed in sequence, and are unproductive until the project is 
complete.2 Indeed, the importance of sequential investment and time to build 
have been demonstrated by Kydland and Prescott (1982) in the context of a 
general equilibrium model. They have suggested that such a model yields a 
much better description of cyclical fluctuations than does the standard adjust- 
ment cost framework. 

Our paper should be viewed in the context of several recent strands of 
research, all of which have helped to provide a better microeconomic founda- 
tion for investment behavior. First, Roberts and Weitzman (1981) examine 
projects with sequential outlays using a model that stresses the role of 
information gathering. In their model, each stage of investment yields in- 
formation that reduces the uncertainty over the value of the completed project. 
This is most applicable to R&D projects in which the role of learning is 
critical3 Since the project can be stopped in mid-stream, it might pay to go 
ahead with the early stages of the project even though ex ante the net present 
value of the entire project is negative. Hence the use of a net present value rule 
for such projects, particularly one based on a single risk-adjusted discount 
rate, might reject investments that should be undertaken. 

Second, in related papers, Bemanke (1983) and Cukierman (1980) examine 
investment decisions for which information about project value arrives inde- 
pendently of the cash outlays. They consider incentives to postpone expendi- 
tures until more information arrives. In their models the project involves a 
single expenditure, and there is no time to build. However, the investment 
expenditure is irreversible, a firm can choose only a subset of the available 
projects (so that investing in one set of projects excludes all others) and (unlike 
in Roberts and Weitzman) the firm obtains information before beginning the 
project. They show that uncertainty over project returns creates an incentive 

‘See Hall and Jorgenson (1967). 

*For an overview of the adjustment cost literature, see Nickel1 (1978). 

‘For an application to synthetic fuels, see Weitzman, Nrwey and Rabin (1981). 
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(an ‘option value’) to postpone the investment and wait for more information 
to arrive, even if the firm is risk neutral.4 This is just the opposite result from 
that in Roberts and Weitzman; here a naive net present value rule might 
accepf projects that should be rejected or postponed. Both authors use their 
models to explain the cyclical nature of aggregate investment spending; a 
recession is associated with greater uncertainty over future cash flows because 
firms reduce their investment spendin g until some of that uncertainty is 
resolved. 

The models developed in Roberts and Weitzman, Bemanke, and Cukierman 
are not explicitly based on valuation in financial markets. Thus, a manager 
following their investment criteria may not be maximizing the firm’s value to 
stockholders. For example, although the assumption of risk neutrality allows 
Bemanke and Cukierman to underscore the effects of irreversibility, as distinct 
from risk aversion, extending their models to a more general setting is not 
straightforward; the correct risk premium cannot be determined indepen- 
dently of the optimal decision rule. 

The third strand of work, and that most closely associated with this paper, is 
best represented by McDonald and Siegel (1986).5 They also stress the option 
value of postponing an irreversible investment, but not as a means of accu- 
mulating information. Instead, the payoff from completing the project has a 
current value consistent with capital market equilibrium. This value fluctuates 
stochastically over time (independently of any investment expenditures), so 
that its future value is always unknown. Access to the investment opportunity 
(perhaps purchased or obtained as the result of R&D) is analogous to holding 
a call option on a dividend-paying common stock, where ‘exercising’ the 
option is equivalent to making the investment expenditure. As with such 
financial options, increased risk increases the incentive to delay the investment 
expenditure, and for any positive amount of risk, the expenditure is made only 
when the project’s value exceeds costs by a positive amount. These results are 
similar to those in Bemanke and Cukierman, but for a different reason. 

This paper is also concerned with the option value of being able to delay 
irreversible investment expenditures, but here we focus on a series of expendi- 
tures that must be made sequentially, that cannot exceed some maximum rate, 
and that become productive only after the entire sequence is completed. For 
example, a project requiring a total outlay of $5 million might have a 

4This notion of an ‘option value’ is quite different from the one that we develop in this paper. 
In Bemanke, as in earlier papers such as Arrow and Fisher (1974) and Henry (1974), the option 
refers to a choice of projects (or irrevocable disposition of a natural resource in Arrow and Fisher) 
that is foregone once the expenditure has been made. 

‘Related papers include McDonald and Siegel (1985) and Paddock, Siegel and Smith (1983). 
Also, Baldwin (1982) analyzes sequential and irreversible investment decisions when investment 
opportunities arrive randomly. She values the entire sequence of opportunities and shows that, as 
in McDonald and Siegel (1986). a simple discounted cash flow rule can lead to over-investment. 
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maximum rate of investment of $1 million per year, so that the minimum time 
to build is 5 years. Such a project can be viewed as a compound option: each 
unit of investment buys an option on the next unit. Evaluating the project 
requires a decision rule that determines whether an additional dollar should be 
spent given any arbitray cumulative amount that has already been spent. That 
decision rule will depend on the underlying value that the project would have 
today if completed, the remaining expenditure required for completion. as well 
as parameters describing risk and the opportunity cost of delaying completion. 

This paper is in the spirit of recent work on capital budgeting with 
option-equivalent cash ~OWS.~ Our approach assumes that the value of a 
completed project is spanned by a set of traded assets and that the distribution 
of future values is given. Option pricin g techniques are used to derive the 
relationship between the value of the investment program (what a firm would 
pay for the right to undertake the przgram) and the value of the project once 
completed. 

We have several objectives. First, we show how a decision rule, applicable to 
each stage in the development of a project, can be derived and applied to 
project evaluation. Second, we show how the value of an investment program 
and the decision to invest depend on the maximum rate at which expenditures 
can productively be made (i.e., on the ‘time to build’). Finally, we will see how 
time to build interacts with uncertainty to affect investment spending, and in 
particular, how the depressive effect of increased uncertainty on investment 
spending is magnified. 

The next section describes the nature of the investment program, and our 
assumptions regarding the distribution of future values of a completed project. 
It also outlines our approach to deriving the optimal investment rule. Section 3 
presents numerical results for a simple example that shows how risk, oppor- 
tunity cost, and time to build interact to affect the investment decision, Section 
4 uses the model to examine the economic value of construction time Aexibil- 
ity. The concluding section discusses some implications of our results for 
aggregate investment behavior. 

2. A simple model of investment when there is time to build 

2. I. The model 

Consider a program to build a factory. The program involves a sequence of 
investment outlays, corresponding to the specific steps involved in construc- 
tion. The payoff to completing the program is the market value of a completed 
factory. This market value is the present value of the stream of uncertain 
future cash flows from operating the factory. The owner of the factory, 

6For related work, see Myers and Majd (1983) and Brennan and Schwartz (1985). For an 
overview, see Mason and ~Mertoo (1985). 



S. Majd and R.S. Pin&& Sequential inoestmenr decisions 11 

receiving these cash flows, earns an equilibrium rate of return as determined 
by the market. 

Note that we are not assuming that shares in identical factories are traded in 
the market and. therefore, have an observable price. We are only assuming 
that we could calculate the value that would prevail if such shares were traded 
by applying appropriate capital budgeting methods to the cash flows from the 
completed factory. This market value will, of course, fluctuate stochastically 
over time, reflecting new information about future cash flows. 

We take the market value of the completed factory, denoted by V, as 
exogenous, and assume that, during the construction period, it evolves accord- 
ing to the lognormal process: 

dI’= (p- 6)L’dt + aVdz, (1) 

where dz is the increment of a Weiner process. The last term in (1) char- 
acterizes the unexpected component of changes in V. The central feature is 
that future values of V are afwuys uncertain, and are distributed lognormally. 
The degree of uncertainty depends only on how far into the future one looks. 
Unlike the stylized R&D projects of Roberts and Weitzman where learning 
takes place at each stage of investment, uncertainty about future values of V is 
independent of the proportion of the project already completed.’ Nor is such 
uncertainty resolved by waiting, as in the models of Bemanke and Cukierman. 

The parameter p is the expected rate of return from owning a completed 
factory. It is the equilibrium rate established by the capital market, and 
includes an appropriate risk premium. Eq. (1) says that the expected rate of 
capital gain on the factory is less than cc; 6 represents the opportunity cost of 
delaying completion of the project. 

If the completed factory is infinitely lived, then eq. (1) also represents the 
evolution of V during the operating period. Specifically, 6V will represent the 
instantaneous rate of cash flow from operating the factory. Because these 
payouts are not received until construction is completed, 6 is the rate of 
opportunity cost. We assume that 6 is constant. In the case of an infinitely 
lived project, this is consistent with future cash flows being a constant 
proportion of the market value of the operating factory.* 

Eq. (1) is an abstraction from most real projects. If variable costs are positive 
and managers have the option to shut down temporarily when the price of the 
output is below variable cost, and/or the option to abandon the project 

‘We could irkduce learning in our model by making u a function of the stage of completion. 
Letting K denote the total amount of investment remaining for completion. we would make 
IJ = o(K), u’(K) > 0, and a(O) = 0. We ignore learning in this paper in order to focus on the 
implications of time to build. 

‘A constant payout rate, 6, and required return, p, imply infinite project life: 

v0 = irn,eec’dr = ~T8Voe(“-8)k-“rdl s T- QJ. 

Note that this also implies that the expected rate of change of V is p - 6 
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completely, V will not follow a lognormal process even if the price of the 
output of the factory does.’ If variable cost is positive and managers do not 
have the option to shut down (perhaps because of regulatory constraints), V 
can become negative, again in conflict with the assumption of lognormality. 
Here we ignore these possibilities (and any other options implicit in operating 
the completed factory) in order to focus on the options implicit in the 
construction phase. 

There are few real projects that last forever. In principle, future investments 
(e.g., maintenance) can be made to maintain the productivity of the project 
indefinitely. To be consistent with eq. (l), we would interpret the cash payout 
SV, as being net of these future investments. (Another way of handling 
maintenance investments is discussed below.) But not all projects can be made 
to last forever by appropriate future maintenance investments. For example, 
most natural resource projects have finite lives because there is a finite 
quantity of reserves in the ground. For many oil and gas wells, it is common to 
assume an exponentially declining extraction rate, but since the price of the 
natural resource will not be constant, cash flows will not be a constant 
proportion of project value. 

If the completed factory has a finite life, then eq. (1) cannot represent the 
evolution of V during the operating period. In particular, cash flows from 
operating the factory will not be a constant proportion of the market value of 
the factory: the last cash flow is 100 percent of the remaining value. However, 
under the assumptions discussed above (i.e., no operating costs or operating 
options during the life of the factory), eq. (1) will still represent the evolution 
of Vduring the construction period, but with a different interpretation of the 
constant, 6. 

This can be demonstrated by the following example. Assume that the price 
of the output of the factory, P, evolves according to the lognormal process 
dP = (p - G)Pdt + aPdz, where p is the equilibrium rate of return on a 
security that is perfectly correlated with P. (If the output can be stored, 6P is 
the instantaneous convenience yield from storage, i.e., the flow of convenience 
benefits from holding inventory.) Let r be the time at which construction is 
complete, and T be the operating life of the factory. The value of the factory 
at completion (i.e., the payoff to the investment program) is given by 

V(T) = /,E,{ P(s)}e-““ds = /,‘P( r)e(‘-“‘se-“sds 

= P(7)[(1- e-“T)/6] = W(7), 

where $I is a constant that depends on 6 and T. 

9For analyses of these options, see McDonald and Siegel (1985). Brennan and Schwartz (1985) 
and Myers and Majd (1983). 
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Since the payoff to completing the investment program is proportional to 
the price of the output at completion, its present value at any earlier time (i.e., 
before completion) will also be proportional to the contemporaneous price of 
the output: V(t) = @P(t) for t 2 T. Hence dV= (IL - S)Vdt + aVdr, during the 
construction period. Here, 6 is still a rate of opportunity cost, but arises from 
the fact that the expected growth rate of price, and hence of V, is less than the 
risk-adjusted return on a security that has the same risk as P. Of course the 
value of an operating factory will not evolve according to eq. (1); it will decay 
faster, and at a time-varying rate, because of the cash flows from operations.” 
But this is irrelevant for the investment decision, which depends only on the 
dynamics of V up to the time construction is complete. 

The example above demonstrates the dynamics for V during the construc- 
tion period [eq. (l)] do not preclude a completed project with finite life. Of 
course, eq. (1) will not be appropriate for all projects. More elaborate 
dynamics, based on different assumptions about the dynamics of output price, 
operating costs, etc., may be necessary. We proceed with the assumption that 
the dymanics of V during the construction period are given by eq. (1) in order 
to focus on the effects of time to build. 

If, for some period of time, the payoff to completing the factory is expected 
to grow at the rate p (i.e., 6 = 0), there will be no opportunity cost from 
delaying construction, but there will be a savings from delaying the investment 
expenditure. Hence investment will not occur during such a period. It is 
because the value of most real projects grows at an expected rate less p that 
there is an incentive to invest. 

An important assumption in our model is that the factory cannot be built 
overnight. There is a maximum rate at which construction and investment can 
proceed - it takes time to build. Because completion of the project requires 
some minimum amount of time, the payoff from completion is unknown 
during the construction period. However, we assume that the total required 
investment is known. 

We assume that the minimum rate of construction and investment is zero, 
and that construction can be halted and later resumed without cost. In reality, 
we would expect some continuing costs associated with maintaining the 
partially completed factory (e.g., to prevent ‘rusting’), and with maintaining 
the capital and labor resources needed to resume construction. We also assume 
that investment is completely irreoersible; capital in place has no alternative 
use, and therefore zero salvage value. For simplicity, we ignore these added 
features, although it is straightforward to extend our model to include them. 

lo During the operating period ( t z= +) we have 

VW-& T+T-rP(S)e(P-()re-P~d~= P,[(l -e-s(T+r-‘))/G] =$,(t)P(t) 

From Ito’s Lemma, dV-(p-6++,/+)Vdt+aVdz, where the proportional rate of change. 
$+/+. is strictly negative and varies over time. 
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For expositional ease, in the example in section 3, we assume that the 
maximum rate of investment is constant. This is unrealistic for most real 
projects, where the constraints on the maximum rate of investment generally 
depend on the stage of construction, Our model allows the maximum rate of 
investment to be a (known) function of the amount of total investment 
remaining. 

Allowing the maximum rate of investment to vary with the stage of 
construction also provides a way to account for any future investments 
required to maintain an infinite life for the completed project. If we assume 
that the timing and magnitude of these maintenance investments (during the 
infinite life of the factory) are known with certainty. we can include their 
present value as a require component of the investment in the final stage of 
construction. In other words, in the last instant before construction is com- 
pleted, the investment required to complete the project includes the present 
value of the future maintenance investments. 

To see how the constraint of time to build affects investment decisions, we 
must determine the market value of the entire investment program. This market 
value is what a value-maximizing firm would pay for the right to undertake the 
program. It will correspond to an optimal program of investment outlays, 
which will, of course, be contingent on the evolution of V. 

We can characterize this investment decision as an optimal control problem. 
There are two state variables, the total amount of investment remaining for 
completion, K, and the current market value of a completed factory, V. The 
control variable is the rate of investment, I. The problem is to choose the 
control rule, I *(V, K), which maximizes the value of the investment program. 
I *(V, K) is simply a rule that determines the optimal rate of investment, given 
the instantaneous values of V and K. It is subject to the constraint 0 I 
Z *( V, K) 5 k, where k is the maximum rate of investment. 

Because there are no adjustment costs or costs associated with changing the 
level of investment, the problem has a ‘bang-bang’ solution: the instantaneous 
level of investment will be either 0 or k. In turn, the optimal decision rule 
reduces to a cutoff value for a completed project, V*(K), such that invest- 
ment occurs at the maximum rate k for V> V*, and there is no investment 
otherwise. As we will see, the optimal decision rule V*(K) is determined 
simultaneously with the current market value of the investment program. 

2.2. Solution 

The equilibrium market value of the investment program and the optimal 
current level of investment, I*, will depend on the values of the two state 
variables, V and K. In our model I * is either k or 0, depending on whether 
the current value of V is above or below the cutoff value, V*(K). We will find 
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it convenient to denote the value of the investment program when V > V* 
(upper region) by F( V, K ), and when V < V * (lower region) by f( V, K ). 

Formally, the investment program is a contingent claim. However, it is not a 
simple contingent claim: at every instant the manger can choose whether or 
not to invest and continue construction. Hence the project is a compound 
option, where each expenditure buys an option to make the next expenditure. 
Although this complicates the solution procedure, the same techniques used to 
value options in securities markets can be applied to value the investment 
program. 

Using a continuous time framework, Merton (1977) derives the valuation 
equations for general contingent claims. His approach relies on continuous 
trading of specified assets to replicate the payoff to the contingent claim. 
Nevertheless, this approach is also valid when the assets that must be included 
in the replicating portfolio are not traded in financial markets. What is 
necessary is a capital market sufficiently complete that the new project does 
not change the opportunity set available to investors. If this is the case, 
managers need only calculate the value of the underlying asset, V, that is 
consistent with the equilibrium valuation model implied by the capital market. 
For example, if the CAPM holds and the manager can estimate the underlying 
asset’s beta from prices of traded securities, then he can correctly calculate V. 
Also, given the relationship that must hold between the values of traded 
options and stocks, he can calculate the value of any contingent claim on V 
(e.g., this investment program). 

Since the market value of the completed factory includes the value of any 
subsequent operating options, the value of these options must be included in 
the calculation of I’. For example, the manager might have the option of 
shutting down (temporarily or permanently) the completed factory. Thus the 
calculation of V might involve more than a simple discounted cash flow 
analysis. As mentioned above, including the value of such operating options 
generally will affect the dynamics of V. 

The option pricing approach yields a valuation equation relating the value 
of the contingent claim (the investment program) to the value of the underly- 
ing asset (the completed factory). Since the value of the investment program 
depends on whether the value of the completed factory, V, is above or below 
V *, for notational convenience we write a separate valuation equation for 
each region, i.e., for F( V, K) and f( V, K). It is straightforward to show that 
F and f must satisfy the following partial differential equations: 

(:)u2ff2fyy+ (r-6)+-rf=O, (2’4 
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subject to the boundary conditions 

F( V-,0) = I/, (3a) 

lilll Fv( V, K) = eeSKlk, 
V-CC (3’4 

f(O,K) = 0, 

f(V/+,K) = F(V*,K), 

fv(V*,K) =~v(~*J). 

(34 

(3d) 

(3e) 

The first boundary condition states that when the project is completed, the 
value of the investment program is the market value of a completed factory. 

As the value of the completed project becomes very large relative to the 
total investment K, the option ‘premium’ becomes negligible, and the value of 
the program approaches the value of the completed project. However, the 
value of the investment program will increase less rapidly than the value of a 
completed project. As V becomes large, construction outlays will be made at 
the maximum rate, k, but there is still a foregone opportunity cost. Hence for 
very large V, the increase in the value of the investment program for a 1 dollar 
increase in V is given by 

1-I 
K’kae’“-““e-“dt = e-Wk, 

0 

This condition is shown as (3b) above. 
Condition (3~) states that the minimum value of the investment program is 

zero, and is reached when V is zero. Finally, conditions (3d) and (3e) require 
that the value of the investment program be continuous and differentiable at 
the cutoff value V*.” 

Eq. (2b) has the analytic solution 

f(V) = UP, 

where 

(4) 

The coefficient a must be determined jointly with the solution for F in the 
upper region, via the shared boundary conditions (3d) and (3e). This would be 

“See Merton’s (1973) footnote 6 regarding (3e). Intuitively, if a small change in the value of the 
contingent claim in response to a small change in the value of the underlying asset is greater in 
one direction than another, moving the free boundary in that direction would result in a net 
increase in the value of the contingent claim. 
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straightforward if eq. (2a) also had an analytical solution; since it does not, a 
numerical approach is required. 

First, we eliminate a using eq. (4) and the boundary conditions (3d) and 
(3e): 

F(V*,K) = (V*/a)F,(V*,K). (5) 

Then we numerically solve eqs. (2a), (2b), and the conditions (3a)-(3c) and (5) 
using a finite difference method. This procedure transforms the continuous 
variables V and K into discrete variables, and the partial differential equations 
into finite difference equations. These equations can be solved algebraically, 
and the solution proceeds as a backward dynamic program which incorporates 
the optimal investment decisions at each point. Hence the cutoff value, 
V *(K) (the optimal boundary between the two regions), is solved for simulta- 
neously with the value of the investment program.12 (Details of this procedure 
are in an appendix, which is available from the authors on request.) 

The reader might note that the investment problem posed above is one of 
stochastic dynamic programming. Indeed, eqs. (2a) and (2b) are the Bellman 
equation under risk neutrality. As Cox and Ross (1976, pp. 153-155) have 
explained, given the current market value of the underlying asset, V, the 
contingent claims approach is equivalent to dynamic programming with risk 
neutrality. Any adjustment for risk is embodied in V, so that it is not necessary 
to know the risk-adjusted rate of return on the contingent claim. 

In the next section we apply the solution procedure to a simple and stylized 
example. This serves to illustrate how the procedure works, and how time to 
build and uncertainty interact to affect investment decisions. 

3. A numerical example 

Consider an infinitely-lived project that requires a total investment (K) of 
$6 million, which can be spent productively at a rate no faster than $1 million 
per year (k). We assume the riskless rate of interest (r) is 2% per year. The 
value of the underlying asset, V, evolves according to eq. (1); we will vary 6 
and u, but as a ‘base case’, we take S = 0.06 and u = 0.20 (annual rates). 

Payout rates on projects can vary enormously from one project to another, 
so that this value of 6 percent should be viewed as reasonable, but not 
necessarily representative. The standard deviation of the rate of return on the 
stock market as a whole has been about 20 percent on average. Although this 
represents a diversified portfolio of assets, it also includes the effects of 

‘*See Hawkins (1982) for a similar model with analytic solutions in both regions. For an 
overview of numerical methods for solving option problems, see Geske and Shastri (1985). For a 
useful discussion of finite difference methods, see Brennaa and Schwartz (1978). 
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Table 1 

Value of the investment program, f, as a function of the value of the completed project, V, and 
the total remaining investment, K. (To conserve space, we only show values of the investment 
program for values of K in multiples of $1 million and for values of V up to $42.52 million.) 
Starred entries indicate the optimal investment rule: for each value of K, investment should be 
undertaken only if V is above the value corresponding to the starred entry. The value of V 
corresponding to each starred entry is the cutoff value, P(K). The assumed parameters for the 
problem are: risk-free rate r = 0.02, standard deviation e = 0.20, rate of opportunity cost 6 = 0.06, 

and maximum rate of investment k = $1 million per year. 

Value of the 
completed 
project, V $6 

Total remaining investment, K (millions of dollars) 

S5 $4 $3 $2 $1 $0 

542.52 
36.60 
31.50 
27.11 
23.34 
20.09 
17.29 
14.88 
12.81 
11.02 
9.49 
8.17 
7.03 
6.05 
5.21 
4.48 
3.86 
3.32 
2.86 
2.46 
2.12 
1.82 
1.57 
1.35 
1.16 
1.00 
0.00 

$23.70 $26.47 $29.37 
19.62 22.12 24.75 
16.10 18.38 20.76 
13.07 15.16 17.34 
10.46 12.38 14.39 
8.22 10.00 11.85 
6.23 7.94 9.67 
4.63 6.18 7.78 
3.20 4.65 6.17 
2.02’ 3.34 4.77 
1.22 2.23’ 3.57 
0.74 1.34 2.54 
0.44 0.81 1.65’ 
0.27 0.49 1.00 
0.18 0.29 0.60 
0.10 0.18 0.36 
0.06 0.11 0.22 
0.04 0.06 0.13 
0.02 0.04 0.08 
0.01 0.02 0.05 
0.01 0.01 0.03 
0.00 0.01 0.02 
0.00 0.01 0.01 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 
0.00 0.00 0.00 

$32.42 $35.62 
27.50 30.39 
23.26 25.88 
19.62 22.00 
16.48 18.67 * 
13.78 15.79 
11.46 13.32 
9.46 11.19 
7.73 9.36 
6.25 7.79 
4.98 6.43 
3.88 5.26 
2.93 4.26 
2.12 3.39 
1.42* 2.65 
0.86 2.00 
0.52 1.45 
0.31 0.98* 
0.19 0.59 
0.11 0.36 
0.07 0.21 
0.04 0.13 
0.02 0.08 
0.02 0.05 
0.01 0.03 
0.01 0.02 
0.00 0.00 

$38.98 $42.52 
33.42 36.60 
28.62 31.50 
24.50 27.11 
20.95 23.34 
17.89 20.90 
15.26 17.29 
13.00 14.88 
11.05 12.81 
9.37 11.02 
7.93 9.49 
6.69 8.17 
5.62 7.03 
4.70 6.05 
3.91 5.21 
3.23 4.48 
2.64 3.86 
2.13 3.32 
1.70 2.86 
1.32 2.46 
1.00 2.12 
0.73’ 1.82 
0.44 1.57 
0.27 1.35 
0.16 1.16 
0.10 1.00 
0.00 0.00’ 

leverage on equity returns, and, therefore, might be a reasonable number for 
an average asset. 

As discussed in the appendix, the solution procedure requires a discretiza- 
tion of the variables V and K; for this example, we assume investment outlays 
are made quarterly; i.e., K is measured in discrete units of $0.25 million. 

The base case solution is shown in table 1. Each entry is the value of the 
investment program for different levels of V and K. Entries with an asterisk 
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Table 2 

Cutoff value of completed project, p, above which investment occurs, for different values of the 
rate of opportunity cost, 6, and standard deviation, 0. Also shown is V**, the cutoff value 
adjusted for foregone cash flows due to the opportunity cost, S V, when construction proceeds at 
the maximum rate (risk-free rate r = 0.02, total remaining investment K = $6 million, maximum 
rate of investment k = $1 million per year). Vote: Present value of investment outflow at 

maximum rate of investment = K’ = $5.65 million. 

Standard 
deviation, o 

Cutoff 
value 

Annual rate of opportunity cost, 
6 (millions of dollars) 

0.02 0.06 0.12 

0.10 V’ 11.02 9.03 12.43 
V” 9.11 6.30 6.05 

V* 20.09 11.02 12.81 
0.20 V** 17.82 7.69 7.03 

V’ 121.51 24.53 20.09 
0.40 v** 107.77 17.11 9.78 

denote the cutoff value, V*(K). For example, a project with $5 million of 
investment outlays remaining has a cutoff value V*(K) of $9.49 million: if V 
is currently $9.49 million or more it pays to invest this quarter, otherwise it 
does not (although one would resume investing should V later rise above $9.49 
million). At this critical level the value of the contingent claim is $2.23 million; 
this is the equilibrium market value of the right to the investment program.13 

Observe that table 1 can be used to make optimal investment decisions as 
construction of this project proceeds (i.e., as K falls from $6 million to zero). 
It can also be used to evaluate any project requiring a total outlay of $1, 
$2,. . . , $6 million, but with the same values for the risk-free rate, r, the rate of 
opportunity cost, 6, the standard deviation, u, and the maximum rate of 
investment, k. 

We are interested in the sensitivity of the investment decision to the 
parameters u, 6, and k. This decision is summarized by the cutoff value 
V*(K). Table 2 shows, for the initial investment decision (i.e., when K = 6) 
how the cutoff value changes in response to changes in u and 6. (The middle 
entry in table 2 corresponds to the base case shown in table 1.) 

Observe that V* increases when u is increased: i.e., with greater risk, the 
value of a completed project today would have to be higher to induce 
investment. Like most financial options, the value of the investment program, 
f, is a convex function of the value of the underlying asset, V, and therefore 
increases as the standard deviation of V increases. Recall that the only reason 
to invest at any value of V is the opportunity cost 8, which in our example of 

“To conserve space, the table shows only values of the investment program for values of K in 
multiples of $1 million and for values of V up to M2.52 million. 
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an infinitely-lived project represents the foregone cash flows. Because one is 
not obliged to exercise the option to invest, greater uncertainty over the future 
payoffs can only increase the value of the contingent claim, and increase the 
incentive to hold it rather than exercise it. This is an important point made by 
McDonald and Siegel (1986). 

The dependence of V * and S is less obvious. One might expect that a 
higher opportunity cost of delaying the project, would reduce the cutoff value, 
V *, and increase the incentive to invest. This would indeed be the case if the 
project could be built instantly, as in the model of McDonald and Siegel 
(1986). But the fact that it takes time to build the project creates a countervail- 
ing effect. The payoff from the project, V, is only obtained at completion and 
must be adjusted for the foregone cash flows during construction [the expected 
rate of growth of V is only (cl - S)]. Time to build therefore reduces the value 
of the payoff at, completion, and as 6 increases, it reduces it by a larger 
amount. This in turn reduces the incentive to invest, i.e., increases the current 
critical cutoff value V *. As table 2 shows, for high rates of opportunity cost 
this second effect predominates; for (I = 0.10 and 0.20, V * rises when 6 is 
increased from 0.06 to 0.12. 

It is useful to calculate the critical cutoff value net of the present value of 
the expected flow of opportunity cost (6V), assuming that investment expendi- 
tures are made at the maximum rate. This value, V * *, is simply 

v**= v*- 
/ 

K’k&‘*e(P-8)fe-Ptdt = vee-"K/k, 
0 

(6) 

where the second term on the right is the present value of the expected flow of 
opportunity cost (e.g., foregone rent) during the construction period. 

Values for V * * are shown for each case in table 2. Increasing 6 increases 
the opportunity cost of delaying the project (leading to a lower critical cutoff 
value), and also increases the opportunity cost necessarily incurred because of 
time to build (leading to a higher cutoff value). V * * corrects for the latter, 
and, as shown in the table, for any value of u, it declines as 6 increases. 

Table 2 also shows the importance of the contingent nature of the invest- 
ment program. A ‘naive’ discounted cash flow criterion would ignore flexibility 
during the construction period, and assume a fixed scenario for the investment 
outlays. Under this naive criterion, one would invest if the present value of 
investment outlays under the assumed scenario is less than the present value of 
the payoff at completion. Assuming investment occurs at the maximum rate, 
the present value of the payoff at completion is the current value of a 
completed project, V, less the foregone cash flows during construction, which 
is given by 

P(t) = V( t ) - l,K/*6V( l)e-“‘dT = V( t)eesKjk, 
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MAXIMUM INVESTMENT RATE, k 

Fig. 1. Cutoff value for investment, V*, as a function of the maximum rate of investment, k, 
corresponding to two different levels of opportunity cost, 8. V* is the value of a completed 

project above which it is optimal to proceed with the next stage of investment. 

and the present value of investment outlays is given by 

K*= 
/ 

K’kke-r+d7 = (1 - eerKlk)k/r, 
0 

(8) 

For our example, the present value of investment outlays made at the 
maximum rate is K * = $5.65 million. Even making a rough correction for time 
to build by subtracting off the foregone cash flows as in eq. (6) the critical 
cutoff value (which would then be V * * ) is still significantly higher than K * 
for any reasonable value of u and S, and match higher if u is large and/or 6 is 
small. The discretionary nature of the investment program increases the 
threshold still further; V* is significantly larger than V * *, particularly for 
large values of 6. For our base case of (I = 0.20 and 6 = 0.06, V* is $11.02 
million, about double the present value of the investment outlays K *. 

We can obtain further insight into the ways in which uncertainty and time 
to build interact in affecting the investment decision by calculating V* for 
different values of k, the maximum rate of investment. Fig. 1 shows V* as a 
function of k for 6 = 0.03 and 0.12, and K= 6.14 Observe that if the rate of 
opportunity cost is small (S = 0.03), changes in k have very little effect on V *. 

I4 Our calculations are subject to numerical error because of the finite difference approximation. 
Absent such errors, the points plotted in figs. 1,2, and 3 would lie on smooth curves. 
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Fig. 2. Cutoff value for investment, V*, as a function of the opportunity cost. S. corresponding to 
two different values for the maximum rate of investment. k. V* is the value of a completed 

project above which it is optimal to proceed with the next stage of investment. 

(V then has an expected rate of growth close to y, the equilibrium market 
rate.) Hence the ability to speed up construction has little effect on the value 
of the investment program, or on the investment decision. However, if the 
rate of opportunity cost is large (8 = 0.12), V * is fairly sensitive to k. Small 
values of k correspond to long minimum construction times. Hence the 
minimum present value of the opportunity cost during the construction period 
is large, reducing the value of the investment program, and increasing the 
current critical value V*. [If V* is adjusted for the flow of opportunity cost 
during the construction period, the resulting cutoff value (Y * *) uill not be 
very sensitive to k.] Thus time to build is more important for investment 
decisions where most of the return on the underlying asset is in the form of a 
payout stream rather than price appreciation. 

Fig. 2 shows V* as a function of 6, for k = 0.5 (a 12-year minimum 
construction period) and 2.0 (a 3-year minimum construction period). In both 
cases, V * falls as 6 is increased from 0.01 to 0.04. (Remember that as the rate 
of opportunity cos’t becomes small, the critical value for investment becomes 
large; in the limit of zero opportunity cost one would never exercise the right 
to invest.) However, as 6 increases, the effect on V* depends on the maximum 
rate of investment. If that maximum rate is high, V* remains low over a wide 
range of 6 (but is still 30-50 percent greater than the present value of the 
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investment outlays). But if k is small, V * can depend critically on 6. Thus for 
projects where the minimum time to build is long, knowledge of the rate of 
opportunity cost 6 is particularly critical input to the investment decision. 

We have used numerical examples to illustrate how investment decisions are 
affected by the sequential and contingent nature of construction outlays. The 
difference between the results of our calculations and those based on a ‘naive’ 
application of DCF rules will depend on the parameters of the problem, but as 
table 2 shows, for very reasonable parameter values, these differences can be 
large. Indeed, the range of values for e in table 2 (0.1 to 0.4) is quite 
conservative. For many projects u will exceed 0.4, so that the naive DCF rule 
will be grossly misleading. 

4. The value of construction time flexibility 

Many projects can be built with alternative construction technologies. An 
important way in which these technologies can differ is in terms of flexibility 
over the rate of construction. Generally, technologies offering greater flexibil- 
ity are more costly, so that increased cost must be balanced against the value 
of increased construction time flexibility. Our model provides a straightfor- 
ward way to determine the value of that increased flexibility. 

In our model, construction time flexibility is measured by the maximum rate 
of construction, k. Higher k corresponds to greater flexibility, i.e., a shorter 
minimum construction time, K/k. The value of the investment program 
f( V, K) increases as k increases, and the change in f corresponding to a 
change in k measures the value of the extra flexibility. This value of extra 
flexibility will depend on V and K, as well as other parameters of the problem, 
such as 6 and u. 

We can determine the incremental value of construction time flexibility by 
examining the way in which the value of the investment program f changes as 
k changes. We calculate and compare the values of the investment program f 
for different values of k, holding all other variables constant. In particular, 
since alternative construction technologies are assumed to lead to the same 
completed project, its current value I/ must also be held constant. The 
incremental value of flexibility is then given by the slope of f(k).15 

Fig. 3 shows the results of such a calculation for the base case parameters 
from the preceding section. We show f(k) for two different values of the 
completed project, Vi = 10 and V, = 15. As fig. 3 shows, for each value of the 

“Another measure of the incremental value of flexibility is the change in /(V, K: k)/K (the 
value of the investment program per dollar of total required investment) corresponding to changes 
in the minimum construction times K/k. Note, however, that f( V, k; k) is not linear homoge- 
neous in K, so that the resulting measure will still depend on K. 
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Fig. 3. Value of the investment program, /, as a function of the maximum rate of investment, X. 
corresponding to two different values for a completed project, V. The horizontal lines represent 

the asymptotes corresponding to an infinite rate of investment (i.e.. no time to build). 

completed project, the value of the investment program increases as k in- 
creases. Note also that the incremental value of flexibility falls as k increases. 
For V= 10, the value of the investment program with maximum flexibility 
(corresponding to k = x)) is 4.0, and for V= 15 it is 9.0, and these values are 
shown as horizontal lines in the figure.16 

Consider two different construction technologies with the same total con- 
struction cost K = 6, but with different maximum rates of investment (k = 0.5 
for the first, and k = 1.0 for the second). At V= 10, the incremental value of 
the more flexible technology (k = 1) is A f/Ak = 0.977/0.5 = 1.954. This incre- 
mental value will be higher if the value of the completed project is higher; at 
V= 15, the incremental value is 5.520. 

In general, greater flexibility might be accompanied by a different total 
investment K. Because the value of the investment program, f( I’, K; k), is not 
linear homogeneous in K (see footnote 15) we cannot isolate the value of the 

“%e case of k = c4 means there is no time to build. This corresponds to a perpetual call 
option on a stock paying a constant proportional dividend, with exercise price K. The analytical 
solution is f( V) = (IV” for Y I V’ and f(V) = V- K for V> V’. Here cx is given in eq. (4). 
u = ( V* - K)/ I’*).. and V* = aK/( a - 1) is the cutoff value above which the option is exercised 
(i.e., the factory is built). In our example, V* = 8.6. Since V = 10 and 15 exceeds this critical value. 
f( V, K; co) = V - K. See Merton (1973) for a derivation. Note that this is also the model used in 
McDonald and Siegel (1986). 
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greater flexibility in such cases simply by comparing f( V, K; k)/K for each 
technology. However, we can still rank the technologies by comparing 

f(V K; k). 

5. Concluding remarks 

We have shown how optimal investment rules can be determined for 
projects with sequential investment outlays and maximum construction rates. 
An important feature of such projects is that the pattern of expenditures can 
be adjusted as new information arrives. For such projects, we have shown that 
traditional discounted cash how criteria based on a fixed pattern of expendi- 
tures can lead to grossly incorrect investment decisions. As our calculations 
for different values of u, 6, and k have illustrated (table 2, and figs. 1, 2 and 
3), the effects of time to build are greatest when uncertainty is greatest, when 
the opportunity cost of delay is greatest, and when the maximum rate of 
construction is lowest. 

There are some important caveats. First, our simplifying assumption that V 
is lognormally distributed and that the payout rate, IS, is constant will be exact 
for very few projects, and for some projects may be a poor approximation. 
Second, our optimal investment rule critically depends on the current value of 
a completed project, V, as well as the parameters u, and S. We have assumed 
that these numbers are known, but in fact it may be difficult or impossible to 
estimate them accurately. Third, in some cases the value of the completed 
project, and the rate of opportunity cost 6 are endogenous to the problem. 
This would be the case, for example, if the value of the completed project and 
its cash flows are affected by potential entry by competitors. Then the values 
of 6 and V, as well as the optimal decision rule, must be determined 
simultaneously (e.g., as a Nash equilibrium for the resulting non-cooperative 
game). 

Although there are many situations where the specific assumptions of our 
model will not be satisfied, we believe that the qualitative results will continue 
to hold. In particular, uncertainty is likely to have a depressive effect on the 
level of investment, an effect which is likely to be magnified when there is time 
to build. 

Our primary focus in this paper has been investment decisions from the 
point of view of a single firm. However, our results also have implications for 
the behavior of aggregate investment spending, and in particular the role of 
risk in the economy. As in the models of Bemanke, Cukierman and McDonald 
and Siegel (1983), we find that investment decisions can be extremely sensitive 
to the level of risk (which we measure by the parameter a). Indeed, this 
sensitivity is greater than that suggested by traditional investment models. 
In our model, this greater sensitivity is due to the flexibility that the firm 
has in making sequential investment outlays; in the models of Bemanke and 
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Cukierrnan, it is due to the reduction of unceriainty that results from learning. 
For different reasons. therefore, our results reinforce the view that aggregate 
investment spending is likely to be highly sensitive to changes in perceived 
risk.” 
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