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1. Introduction

In two papers Pindyck (2000, 2002) developed option-theoretic models of environmental policy
timing when there is a stock pollutant and there is economic and/or environmental uncertainty. The
general framework postulated a stochastic process for a stock pollutant so that there is uncertainty
over the future level of the pollutant (i.e., environmental uncertainty), as well as a stochastic process
that shifts a social cost function, so that there is uncertainty about the future social cost of any
particular level of the pollutant stock. These papers addressed the question of when it would be
optimal to switch from a high emissions regime to a lower emissions regime.
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Optimal stopping problems in one dimension are relatively easy to solve and, in certain settings, it
may even be possible to obtain closed form solutions. In general, the solution involves finding a
threshold for the state variable that determines when it is optimal to “stop,” i.e., to adopt the policy
and reduce emissions. In the continuous time framework, an ordinary differential equation (ODE) has
to be solved along with the so-called value matching and smooth pasting boundary conditions that
apply at the threshold. If a general closed form expression is available for the solution of an ODE, the
constant parameters and the threshold are simultaneously determined using the conditions at the
unknown threshold. In contrast, optimal stopping problems with two or more state variables involve
solving a partial differential equation (PDE) instead of an ODE. Closed form solutions may not exist for
the relevant PDE, in which case numerical techniques are needed to solve the problems.

In the most general form of Pindyck’s models, the state space is two dimensional. Pindyck proposes
closed form solutions to his models that involve a set of unknown constants. Although the proposed
solution satisfies some of the optimality conditions, the boundary conditions cannot be satisfied
unless the “constants” in these conditions are, in fact, functions of the state variables. As a result, the
proposed analytical solutions do not provide the correct optimal stopping rules.

In this paper, we discuss how the models developed by Pindyck can be solved using numerical
techniques, and we report on the nature of the solutions that we obtained. We describe an efficient
numerical solution method based on the collocation approach and the complementarity representa-
tion of the optimal stopping problem. The numerical solutions display important qualitative
differences from Pindyck’s proposed solutions.

To keep the discussion short we briefly review the most general form of the model and the
conditions satisfied by the solution. We then discuss a numerical approach to obtain approximations
to the optimal value function and decision rule. We close with a presentation of key features of the
solution and contrast that with the solutions presented in the original papers.

2. Analytical framework

A stock pollutant M, is controlled by a flow variable of emissions E,. It is assumed that the current
level of emissions is Eq but that it can be lowered, at some cost, to E; <Eq. The stock pollutant M,
evolves according to:

dM = (BE — M)dt + o»dz, (1)

where z, is a standard Brownian motion. The flow of social benefits is given by B(6;, M;) where 6, is a
social cost variable which evolves stochastically according to:

db = afdt + 0160dz, (2)

It is assumed that the two diffusions are independent, i.e., £[dz;dz,] = 0, and that the cost of reducing
the emission flow, K(E), is completely sunk.

Pindyck poses the social planner’s problem of determining the optimal time to reduce the
emissions level and the optimal permanent emissions level. The objective of the policy maker is to
maximize the expected discounted social welfare:

W = max & [/o e ""B(0;, M;)dt — e "TK(E,) (3)
where T is the unknown optimal time to adopt a once-and-for-all emission reduction policy, & is the
conditional expectation operator based on the information at t=0 and r is the discount rate. The social
planner’s problem is then to determine when to implement the emission reduction policy as a
function of the stochastic state variables, M and 6.

The form of the social benefit function B(6,, M;) plays an important role in the characterization of
the optimal policy rule. Pindyck (2000) shows that when B(6, M) is linear in the stock pollutant M, the
optimal policy becomes independent of M and can be obtained in closed form. The case of quadratic
costs is also considered, but in this case the solution does depend on levels of both M and 6. It is this
case, in which B(6;, M;) = —0;M?, that concerns us here.
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It is possible to obtain the expected discounted flow of social benefits given that the emissions level
cannot be changed. Using the facts that £[0;|0g] = e*6y, e[MMo]=e °*Mo+(1—e *)BE/S) and
Var[M¢|Mo] = (1 — e~2%%)(03/28), it can be shown that

@ 0 28E 28°F? o2
t 2 _ 0 2 2
SO[/O € GtM‘d”MO’GO’E} _r+28a<M°+r+8aM0+(ro¢)(r+8o¢)+roc (4)

This expectation, which is a function of the current state variables and the current level of
emissions, will be denoted R(6, M, E).

The optimal stopping problem can be solved in terms of a value function W(8, M) and a stopping
curve 6*(M) that satisfy the following Hamilton-Jacobi-Bellman equation for values of the state for
which it is optimal to continue (6 <6*(M)):

W (O, M) = —OM? + abWy(0, M) + (BEo — SM)W (0, M) + %0%92 Wo(0, M)
1
+ 5 03W (60, M) (%)

where subscripts denote partial derivatives, e.g., Wy(6, M)=0W/00. In addition, the following
boundary conditions must be satisfied:

W(O" (M), M) = R(®" (M), M. E;) — K(E;),

Wo(8" (M), M) = Rg(8' (M), M. E: ),

W (6" (M), M) = Ru (6" (M), M, Ey), 6)
W(O,M) =0,

Jim W(6,M) —R(6.M.Eo) = 0

The first boundary condition is the value matching condition, the second and third are smooth
pasting conditions, the fourth condition arises due to the fact that 6 has an absorbing barrier at =0 and
the fifth boundary condition arises due to the fact that it is never optimal to reset the emissions level if
M is infinitely negative and hence, in the limit, the value function should approach R(8, M, Ej).

It would be nice if one could find closed form expressions that satisfy these conditions. In his
original papers, Pindyck proposes functional forms for W that include unspecified constants. He
correctly notes that these functions satisfy the Hamilton-Jacobi-Bellman equation. In order for the
proposed solutions to satisfy the boundary conditions, however, the “constants” were solved as
functions of 8 and M. In doing so, however, the proposed solutions no longer satisfy the Hamilton-
Jacobi-Bellman equation, thereby leading to erroneous solutions. This appears to be a relatively
common mistake (the second author has reviewed a number of manuscripts with this error) and was
also made in an article by Conrad (2000) in this journal.

3. Numerical solution of the models

An alternative formulation of the optimality conditions that leads to a numerical approach for
approximating the value function is given by Brekke and Oksendal (1994). In their formulation the
continuous d-dimensional state process S is described by a diffusion of the form

ds = p(S)dt + o (S)dw (7)

where w is a d x 1 drift vector, o is a d x d diffusion matrix and W is the d-dimensional vector of
independent Wiener processes. An agent can choose between receiving a flow of payments of f{(S) per
unit time (continuation) and a one-time reward of U(S) (stopping), after which no further rewards are
received. The agent’s problem is then to maximize the expected discounted flow of payments received
and the optimal policy is to choose when to stop:

V() = max & /T e " f(Sp)dt + e "TU(ST)|So = S (8)
0
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Let the infinitesimal generator of state process be given by

1 d d 82
L= ZM'(S)85+§ZZE ) 35,35, ®)

i=1 j=1

where X(S)=3" roi(S)oji(S). Brekke and Oksendal (1994) shows that the optimal value function V(S)
satisfies the set of complementarity conditions

rV(S)> LV(S) + f(S) (10)
and
V(S)>U(S) (11)

with one of the conditions satisfied with equality at each value of S. An equivalent form of these
conditions can be written as

0 = min[rV(S) — LV(S) — f(S),V(S) — U(S)] (12)

Note that the stopping curve is not explicitly found in this framework. Instead the continuation
region is given by the set of points at which 0 = rV(S) — £V(S) — f(S), the stopping region is the set of
points at which 0=V(S)—U(S) and the stopping curve is the set of points where both conditions are
met.

The solution of this optimal stopping problem necessitates obtaining the unknown value function
V(S). An approximation to this unknown function can be obtained using the projection method (Judd,
1998; Miranda and Fackler, 2002). The value function V(S) is approximated by ¢(S)c, where ¢ is a set of
n basis functions and c is an n-vector of coefficients. The values of ¢ can be obtained by collocation
which solves the complementarity condition at a set of n nodal points. The approximate condition
then can be written as

0=min[r® — LP)c— f, Dc—-U] (13)

where @ is an n x n matrix of ¢(S) evaluated at the n nodal points, fis an n-vector of f{S) and U is an n-
vector of U(S), both evaluated at the nodal points. When piecewise linear functions are used to
approximate V, the partial derivatives in £® are obtained using finite differences. Eq. (13) is a linear
complementarity problem which can be solved with a root finding algorithm such as Newton'’s
method. The fact that min(a,b) has kinks where a=b and is thus non-differentiable can lead to
difficulties for Newton’s method. It can, however, be replaced by the so-called Fischer-Burmeister
function (Fischer, 1992),

Aab)=a+b—/a2+b. (14)

or by other functions that have the same zero-contours as the min function. Another alternative
solution method is the smoothing-Newton method of Qi and Liao (1999).

In general, boundary conditions may need to be imposed to obtain unique correct solutions. In
economics applications the appropriate boundary conditions are typically determined by economic
considerations. Numerically, the complementarity condition given above is replaced at boundary
nodes by the appropriate boundary conditions.

For Pindyck’s general model, the optimality condition is

0 = min [rW — a8W,, — (BEy — SM)W), — %O%QZWQQ - %o%WMM +6M? W +R(O,M, E;)

+ K(Ey)]. (15)

Here the stopping value is the negative of the cost of the switch, K(E), plus the discounted flow of
pollution costs at the new emissions level, R(6, M, E). This can be solved for a set of nodal points on
[0,0] x [0, M]. The state variable M, by definition, can take negative values; however approximating the
value function in [0, M] would have negligible effects on the optimal policy because the drift term for
the process is positive and thus the probability of the state variable taking negative values is very low.



M. Balikcioglu et al. / Resource and Energy Economics 33 (2011) 761-768 765

We performed a sensitivity analysis on the approximation region, and determined that a lack of nodal
points in the negative region does not alter the optimal policy. The appropriate boundary condition for
this problem is W(0, M)=0 because zero is an absorbing barrier for ; if 6 hits zero, it will stay at zero
forever and thus the pollutant stock will generate no further costs to society.

4. Results

We now present the optimal solutions for two of the special cases discussed in Pindyck’s original
papers. The first includes only economic uncertainty, and the second includes both economic and
environmental uncertainty. We also provide some results for a general case not considered in the
original papers in which there is both economic and environmental uncertainty and the pollution
decay rate is positive. Code for generating the results presented here are available from the second
author.
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Fig. 1. Stopping boundary, 6*(M) (economic uncertainty only). (a) §=0, 01=0.1and0.4. (b) 01=0.1, §=0.01and0.02
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Fig. 2. Stopping boundary, 8*(M) (economic and ecological uncertainty with §=0). (a) Pindyck’s solution, o1=0.1, 0.2 and 0.4. (b)
Numerical solution, o7=0.1, 0.2and 0.4.

4.1. Economic uncertainty

Pindyck (2000) considered the case in which there was uncertainty only about future pollution
costs (02=0). Here Pindyck’s proposed solution is compared to the numerical solution using the
following parameter values: discount rate r=0.04, emission level E;=0.3 million-tons/year, E;=0,
a=0.01, B=1, K=kEq=$4000 million. In Fig. 1 the stopping boundaries obtained for the two solutions
are displayed, with & measured in million dollars/(million tons)?. In Fig. 1a the decay rate of the stock
pollutant is set as § =0, and the stopping boundaries are drawn for 6,=0.1 and 0, =0.4. In Fig. 1b 5, =0.1
and the stopping boundaries are shown for §=0.01 and §=0.02."

! The parameters used here are similar to those used by Pindyck except that the scales have been changed to make the values
closer to unity. Specifically M is denominated in million tons rather than tons and monetary units are in million dollars rather
than dollars. Such rescaling is important for obtaining numerical results.
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Fig. 3. Stopping boundary, 8*(M) (general model).

Uncertainty and the decay rate of the stock pollutant both play important roles in the policy adoption.
An increase in either uncertainty and the depreciation rate raises the policy adoption threshold as
expected. There are, however, quantitative differences in the proposed and numerical solutions. In
addition, a significant qualitative difference lies in the fact that for Pindyck’s proposed solution 6*(M)
crosses the M =0 axis. This leads to the counterintuitive (and incorrect) conclusion that it can be optimal
to incur the sunk cost of emissions reduction even when the pollution level is zero.

4.2. Economic and ecological uncertainty

Pindyck (2002) considered the case in which there was uncertainty about both future pollution
costs and the stock of pollution. He proposed a solution when the decay rate of the stock pollutant is
6=0. In this section, we first provide numerical solutions when §=0 and then explore the impact of
alternative values of § on the optimal stopping curves.

The optimal stopping boundaries for Pindyck’s proposed solution and for the numerical solution
are illustrated in Fig. 2 for the case of §=0 and the parameter values r=0.04, Eo=0.3 million-tons/year,
«=0.01, 0=1 million tons, B8=1, and K=kEy=$4000 million. Fig. 2a shows the optimal stopping
boundaries of Pindyck’s solution and Fig. 2b shows the optimal stopping boundaries obtained from the
numerical solution. In both cases, the boundaries are shown for o, equal to 0.1, 0.2 and 0.4. Although
not evident in the original paper, for some parameter values there can be values of M at which the
proposed stopping boundaries exhibit discontinuities and, as a result, are not necessarily increasing as
the social cost uncertainty increases.” These discontinuities are evident in Fig. 2a. On the other hand,
the results of the numerical solution indicate that an increase in uncertainty always results in a higher
optimal stopping threshold, and no discontinuities occur, as is seen in Fig. 2b.

Numerical solutions can be easily obtained for positive decay rates. To illustrate, we solved the
general model numerically for § equal to 0, 0.01 and 0.02 (with o7=0.1). The resulting optimal
stopping boundaries are shown in Fig. 3. As expected an increase in decay rate of the stock
pollutant leads to a higher value of the stopping threshold 6*. It should be noted that the often-
used geometric Brownian motion assumption is not needed with numerical solutions. Other,
possibly more realistic, processes could therefore be used to describe the dynamics of the cost
variable 6.

2 The discontinuities arise at point where the y parameter, defined in Eq. (44) of Pindyck (2002), is equal to either 1 or 0.
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