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Introduction

How much environmental damage would result from unabated water pollution, greenhouse
gas (GHG) emissions, toxic waste disposal, and other potentially destructive activities? And
whatever that environmental damage is expected to be, what economic and social cost will it
have? In other words, what is the benefit of taking costly actions today or in the near future to
reduce rates of pollution and emissions, thereby reducing damages in the future?
These questions are at the heart of environmental policy. What makes these questions inter-

esting—and difficult—are the considerable uncertainties involved: over the underlying physical
or ecological processes, over the economic impacts of environmental damage, and over techno-
logical change that might reduce those economic impacts and/or reduce the cost of limiting the
environmental damage in the first place. These inherent uncertainties are especially pertinent for
environmental damage that occurs or lasts over long time horizons, such as nuclear waste dis-
posal, deforestation, and—my focus in this article—GHG emissions and climate change.
Uncertainty is often incorporated into the evaluation of climate change policy by applying

Monte Carlo simulation methods to an integrated assessment model (IAM). Such models
‘‘integrate’’ a description of GHG emissions and their impact on temperature and other
aspects of climate (a climate science model) with projections of current and future abatement
costs and a description of how changes in climate affect output, consumption, and other
economic variables (an economic model). An IAM might be compact and highly aggregated,
or large, complex, and regionally disaggregated. But, it will always contain physical and eco-
nomic relationships that are subject to uncertainty over functional form and parameter val-
ues.1 In Monte Carlo simulations, the functional forms are usually assumed to be knownwith
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certainty, but parameter values for each individual simulation are drawn from probability
distributions that might be estimated, otherwise inferred from data, or based on assumptions.
By running hundreds or thousands of simulations, expected values and confidence intervals
can be calculated for variables of interest. Adding some assumption about discount rates, one
can compute and compare the present values of expected costs and benefits from some policy,
along with confidence intervals.2

The validity of these types of approaches has been thrown into question by the ‘‘dismal
theorem,’’ developed in a recent article by Weitzman (2009a). The basic idea behind the dis-
mal theorem is straightforward. Suppose we are concerned with the increase in global mean
temperature over the rest of this century, which Iwill denote by T. Suppose we believe that T is
normally distributed with a known mean, m. Note that the normal distribution is thin tailed,
that is, its upper tail, which reflects probabilities of very high values of T, declines to zero faster
than exponentially. (I will say more about this later.) Finally, suppose we do not know the
variance of the distribution and therefore estimate the variance using all available data, with
Bayesian updating of our estimate as new data become available. In this case the posterior
distribution for T (i.e., the distribution conditional on our estimation process for the var-
iance) is necessarily fat tailed, meaning that its upper tail declines to zero more slowly than
exponentially. To keep things clear, I will refer to this result as ‘‘Part 1’’ of the dismal theorem.
Before proceeding, it is important to note that there are other routes by which one could

conclude that the distribution for T has a fat tail. For example, structural climate models with
feedback loops can transform thin-tailed distributions for input variables into fat-tailed dis-
tributions for output variables such as temperature.3 Or, one might infer a fat-tailed distri-
bution simply from observing distributions for T derived from existing climate science and
economic studies.
Why does it matter whether or not the distribution for T is fat tailed? This brings us to what

I will call ‘‘Part 2’’ of the dismal theorem. Suppose higher temperatures cause ‘‘damage’’ by
directly causing a reduction in consumption, which for simplicity I will model as

C ¼ C0

1 þ T
ð1Þ

where C0 is consumption in the absence of any warming. I will assume that a reduction in C
directly reduces social welfare via a utility function U(C), which I will take to have the widely
used constant relative risk aversion (CRRA) form, that is,

UðCÞ ¼ 1

1� g
C1�g ð2Þ

2An alternative approach, used in Pindyck (2009, 2010), is to calibrate probability distributions for variables
of interest (e.g., temperature in the year 2100) from estimates of expected values and confidence intervals
derived from climate science and economic studies done by others. In work related to this article, Newbold
and Daigneault (2009) explore how alternative probability distributions and damage functions affect will-
ingness to pay to reduce emissions.

3See, for example, Roe and Baker (2007), Weitzman (2009b), and Mahadevan and Deutch (2010).
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Thus marginal utility isU0(C)¼ C�gU 0ðCÞ ¼ C�g, and g is the index of relative risk aver-
sion.4 Note that this CRRA utility function implies that as consumption approaches zero,
marginal utility becomes infinite.
Now consider what happens in the upper tail of the distribution for T. Very high values of T

imply very low values for C, and thus very high values for marginal utility. If T has a thin-
tailed distribution, the probabilities of extremely high values of T will be sufficiently small
that the expected value of marginal utility will be finite. But if T has a fat-tailed distribution,
those probabilities of extremely high values of Twill be large enough to make expected mar-
ginal utility infinite. And what�s wrong with that? It means that the expected gain from any
policy that would reduce warming is unbounded. The reason is that with fat tails, the expected
gain in utility from preventing or limiting increases in Twill be infinite. This, in turn, has an
alarming consequence: it means that society should be willing to sacrifice close to 100 percent
of gross domestic product (GDP) to reduce GHG emissions and thereby limit warming.
As a guide to policy, the conclusion that we should be willing to sacrifice close to 100

percent of GDP to reduce GHG emissions is not very useful, or even credible, and it is unlikely
that one would interpret the dismal theorem in this way. A more useful interpretation—and
the one that Weitzman (2010, 2011) appears to support—is that with fat tails, traditional
benefit–cost analysis based on expected values (and this would include Monte Carlo simu-
lation exercises with IAMs, nomatter the number of simulations) can be very misleading, and
in particular will underestimate the gains from abatement. It also implies that when evalu-
ating or designing a climate policy, we need to pay much more attention to the likelihood and
possible consequences of extreme outcomes.
While this interpretation makes sense, there is a problem with both the dismal theorem

itself and the implications I have just outlined. As popular as it is among economists (largely
because of the analytical tractability it provides), there is something not quite right about the
CRRA utility function of equation 2 when it is applied to extreme events. What does it mean
to say that marginal utility becomes infinite as consumption approaches zero?Marginal utility
should indeed become very large when consumption approaches zero—after all, zero con-
sumption usually implies death. But ‘‘very large’’ is quite different from infinite. Perhaps
marginal utility should approach the value of a statistical life (VSL) or (because an environ-
mental catastrophe so bad that it drives total consumption close to zero might also mean the
end for future generations) some multiple—even a large multiple—of VSL. The point here is
that if we put some upper limit on the CRRA utility function so that marginal utility remains
finite as consumption approaches zero, then Part 2 of the dismal theorem no longer holds:
even if T has a fat-tailed distribution, the expected gain from a policy that would reduce
warming is no longer unbounded, and society should not be willing to spend close to
100 percent of GDP on such a policy.
We can call the part of the utility function that applies to very low values of C (correspond-

ing to very high values of T) as the ‘‘tail’’ of the utility function. I would then argue that there
are two kinds of ‘‘fat tails’’ that we need to consider. There is fat-tailed uncertainty of the
kind that Weitzman (2009a, 2010) has focused on and there are fat-tailed damage or
utility functions, such as the CRRA utility function discussed above, for which marginal

4The index of relative risk aversion is defined as IRRA ¼ –CU$(C)/U0(C), which for the utility function of
equation 2 is gC�g/C�g ¼ g.
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utility approaches infinity as C becomes very small. This article will show that in terms of
the implications for the economics of climate change, both kinds of ‘‘tails’’ are equally
relevant.5

In the next section, I clarify some of the differences between fat-tailed and thin-tailed dis-
tributions and provide an example by comparing two particular probability distributions for
temperature change—the fat-tailed Pareto distribution and the thin-tailed exponential dis-
tribution. In the following section, I combine these two distributions with a CRRA utility
function that has been modified by removing the ‘‘fat’’ part of the tail so that marginal utility
is bounded at some upper limit. This will help to elucidate the implications of uncertainty
(fat-tailed or otherwise) for climate change policy.6 Next, I discuss environmental and other
kinds of catastrophes more generally. I present some conclusions in the final section.

Fat-Tailed versus Thin-Tailed Uncertainty

A thin-tailed probability distribution is one for which the upper tail declines to zero expo-
nentially or faster. Such a distribution has a moment generating function, and all moments
exist. An example of a thin-tailed distribution that I use in this article is the exponential
distribution. If the increase in temperature at some point in the future, T, is exponentially
distributed, its probability density function, g(T), for T > 0, is:

gðTÞ ¼ ke�kT ð3Þ

The kth moment is E(Tk) ¼ k!/kk, so the mean is 1/k and the variance around the mean
is 1/k2.
A fat-tailed probability distribution is one for which the upper tail declines toward zero

more slowly than exponentially, so there is no moment generating function. The example
I use in this article is the Pareto or power distribution:

f ðTÞ ¼ að1 þ TÞ�a�1 ð4Þ

where a> 0 and T� 0. The ‘‘fatness’’ of this distribution is determined by the parameter a; the
kth moment of the distribution will exist only for k< a. Thus, the smaller is the value of a, the
‘‘fatter’’ the distribution. For example, if a¼ 1/2, themean and variance will be infinite (andwe
might call the distribution extremely fat, or obese). If a¼ 3/2, the mean of T is 1/(a� 1)¼ 2,
but the variance and higher moments do not exist.

5This article is part of a symposium on Fat Tails and the Economics of Climate Change. The other articles in
the symposium are Nordhaus (2011) and Weitzman (2011).
6One important aspect of uncertainty, which I do not discuss in this article, is its interaction with the irre-
versibilities inherent in climate change policy. Atmospheric GHG concentrations decay very slowly, so that
the environmental impact of emissions is partly irreversible. But any policy to reduce emissions imposes sunk
costs on society (e.g., to better insulate homes, improve automobile gas mileage), and these sunk costs are
also an irreversibility. These two kinds of irreversibility have opposite implications for climate change policy.
For a discussion of these effects, see Pindyck (2007), and for a more technical treatment, see Pindyck (2002).
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For policy purposes, what difference does it make whether T follows an exponential or
a Pareto distribution? To address this question, I will choose a and k so that for both
distributions, the probability that T is greater than or equal to 4.5�C (the upper end of
the ‘‘likely’’ range for temperature change by the end of the century according to the
Intergovernmental Panel on Climate Change (IPCC) (2007) is 10 percent. Thus, I set k
¼ 0.50 and a ¼ 4/3. (The expected value of T is then 2�C for the exponential distribution
and 3�C for the Pareto distribution.) Table 1 shows the upper tails for these distributions, that
is, the probabilities of T exceeding various values, and can be compared to Table 1 in
Weitzman (2011).7 Note that the probabilities of temperatures exceeding 6�C or higher
are much larger for the fat-tailed Pareto distribution. Weitzman (2010, 2011) argues that
there is indeed a sizeable probability of a very large outcome for T, an outcome that could
be catastrophic.
These differences in the two distributions can also be seen graphically. Figure 1a shows the

two distributions for temperature changes in the range of 0–10�C. For each distribution, the
probability of a temperature change greater than 4.5�C is about 10 percent. Note that both
functions drop off sharply for temperature changes above 6�C, and the tail weights appear to
be about the same for these high temperatures. However, Figure 1b shows the two distribu-
tions for temperature changes in the range of 10–30�C, with the vertical scale magnified.
Clearly the Pareto distribution falls to zeromuchmore slowly than the thin-tailed exponential
distribution.
As these numbers and those in Weitzman (2011) suggest, if our concern is with the likeli-

hood of a catastrophic outcome—which we might associate with a temperature increase
greater than 6�C—then the magnitude and behavior of the upper tail of the distribution
seems critical. But how can we decide whether the Pareto, exponential, or some other
(fat-or thin-tailed) probability distribution is the ‘‘correct’’ one for, say, the change in global
mean temperature over the next century? As Weitzman (2009a, 2009b) has shown, one can
argue that based on structural uncertainty, whatever the distribution, it should be fat tailed.
But such arguments are hardly dispositive. First, I am not aware of any data that would
allow us to test alternative distributional hypotheses or directly estimate the parameters
of some given distribution.8 Second, although one can construct theoretical models (or
complicated IAMs) that transform distributions for inputs into distributions for outputs,

Table 1. Temperature probabilities for exponential distribution (with k ¼ .50) and Pareto distribution

(with a ¼ 4/3)

T* ¼ 2�C 3�C 4.5�C 6�C 10�C 15�C 20�C E(T)

Exponential: Prob(T � T*) 0.361 0.223 0.105 0.050 0.0067 0.00055 0.000045 2�C
Pareto: Prob(T � T*) 0.230 0.161 0.103 0.075 0.041 0.025 0.017 3�C

7Weitzman compares a fat-tailed Pareto distribution to a thin-tailed normal distribution. Although we use
different thin-tailed distributions, the basic comparison is similar—the Pareto distribution has much more
mass than either thin-tailed distribution at temperatures of 6�C and higher.
8In Pindyck (2009, 2010), I specify a (thin-tailed) displaced gamma distribution for T and calibrate the
parameters to fit the mean, 86 percent and 95 percent points based on studies compiled by IPCC
(2007). But I do not do any statistical test of whether this is the ‘‘correct’’ distribution.
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there is no consensus on a single model nor is there a consensus on input distributions. In any
case, depending on parameter values, such models can yield either thin- or fat-tailed
distributions.9

Figure 1 (a) Pareto and exponential distributions for increases in global mean temperature, T; (b) Pareto

and exponential distributions for large increases in global mean temperature, T

9For example, Mahadevan and Deutch (2010) developed a theoretical model of warming that yields a thin-
tailed distribution for temperature change for some parameter values and a fat-tailed distribution for others.
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If the concern is a catastrophic outcome, then perhaps it is more conservative to assume
that the relevant distribution is fat-tailed. But we cannot draw such a conclusion without first
addressing the implications of fat versus thin tails for expected losses and for policy. I turn to
this issue in the next section.

Implications of Fat versus Thin Tails

To make this discussion as simple and straightforward as possible, I will use a stripped down
model that directly connects temperature to welfare. In particular, I will assume that higher
temperatures reduce consumption according to equation 1, and with no loss of generality
I will set C0 ¼ 1. Note that this ‘‘damage function’’ leads to losses at high temperatures
far worse than those projected by the Nordhaus (2008) DICE model and summarized by
Weitzman (2011) in his table 3. For example, the DICE model projects a 19 percent loss
of GDP and consumption with a rise in temperature of 10�C, while equation 1 projects
a 91 percent loss of consumption for that temperature change. Of course, consumption itself
is not the relevant variable—we need some kind of social utility function to measure the
welfare effect of a 19 percent or 91 percent loss of consumption. I will use the CRRA function
given by equation 2. I will also assume zero discounting of utility and zero economic growth
in the absence of warming so that there is also no consumption discounting. Thus if Tremains
at zero, consumption and utility both remain constant over time.10

Calculating Marginal Utility

Based on equation 1, which directly connects consumption and temperature, marginal utility
can be rewritten as a function of temperature in a very simple way: MU(T)¼ (Tþ 1)g, where,
again, g is the index of risk aversion. Thus as T grows and consumption falls, the marginal
utility of one more unit of consumption grows. Setting g equal to either 2 or 3, which is well
within the consensus range among economists, I can then calculate expected marginal utility
using the Pareto and exponential distributions for T (given by equations 3 and 4 above).
Figure 2 shows the probability-weighted marginal utility as a function of the temperature

increase, T, for probability weights given by the Pareto and exponential distributions, where
g ¼ 2.11 Note that when weighted by the exponential distribution, marginal utility peaks at
a temperature change of about 4�C and then drops rapidly to zero for high values of T. When
weighted by the Pareto distribution, however, the probability weights for high temperatures
are large enough so that marginal utility does not fall to zero—at any value of T. Indeed, this is
why expected marginal utility is infinite under the Pareto distribution.
For policy purposes, our concern is with expected marginal utility because that is what deter-

mines the expected benefit from a policy that would reduce or limit T. Under the exponential
distribution for Tand assuming that the index of risk aversion g¼ 2, expectedmarginal utility is
given by E(MU) ¼ 1 þ 2/k þ 2/k2, so that with k¼ 1/2, E(MU) ¼ 13. However, under the

10In the deterministic Ramsey growth model, the consumption discount rate is the rate of interest, which is
given by R¼ d þ gg, where d is the rate of time preference (the rate at which utility is discounted, and that I
assume is zero) and g is the real rate of growth of consumption.
11The graph shows f(T)(T þ 1)2 and g(T)(T þ 1)2, where f(T) and g(T) are given by equations 3 and 4.
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Pareto distribution for T, expected marginal utility is infinite. This is why the Pareto, or any
other fat-tailed distribution, implies a ‘‘willingness to pay’’ (WTP) of 100 percent of GDP to
limit T by even a small amount, and why the dismal theorem is so dismal.

Putting an Upper Limit on Marginal Utility

But suppose we believe that there is some upper limit to marginal utility, so that no matter
how high the temperature (and thus no matter how low is total consumption), marginal
utility cannot be infinite. That upper limit might reflect the finite but very large value of
a unit of consumption when total consumption is only a small fraction of today�s consump-
tion. Or it might reflect finite but very large a fraction of the value of a human life (assuming
that an environmental catastrophe causes a huge loss of consumption which in turn leads to
the death of some fraction of the population), or it might be amultiple of the value of a human
life (to reflect the fractional or total loss of future generations). I will assume that marginal
utility reaches its maximum at some temperature Tm, and that for temperatures above Tm,
marginal utility remains constant at that maximum level. For example, we might believe that
any temperature change above 10�C would be catastrophic in that it would lead to roughly
a 90 percent loss of consumption (which certainly seems catastrophic to me).
With this assumption and given our CRRA utility function, marginal utility is MU(T)¼

(T þ 1)g for T < Tm, but MU(T)¼ l(Tm þ 1)g for T � Tm, where l is the multiplier on
maximum marginal utility. This means that if l ¼ 1, when T � Tm, marginal utility simply
remains at the value it reaches at Tm, but if l > 1, marginal utility jumps to a multiple of its
value at Tm and then remains at this level for any temperature above Tm. This is illustrated in
Figure 3, which showsmarginal utility as a function of temperature for g¼ 2, l¼ 2, and Tm¼
15�C. Note that if T ¼ 0 (no warming), C ¼MU ¼ 1. If T ¼ 15�C, C ¼ 1/16 ¼ 0.06, that is,

Figure 2 Probability-weighted marginal utility as a function of increase in temperature, T
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consumption falls by 94 percent, and marginal utility would jump by a factor of about 500 to
2(16)2 ¼ 512, which is shy of infinity but very large. (A reader who feels that these numbers
are not sufficiently ‘‘catastrophic’’ can try other numbers for l, etc.)
With this limit on marginal utility, expected marginal utility will be finite, even if T follows

the Pareto (or any other fat-tailed) distribution. Figure 4 shows expected marginal utility as
a function of the temperature Tm at which marginal utility reaches its maximum value of
l(Tm þ 1)g, for both the exponential and Pareto distributions, and with g ¼ 2.12 For the
solid lines, l ¼ 1, and for the dashed lines, l ¼ 3. Note that for the Pareto distribution,
expected marginal utility is always increasing with Tm but is finite for any finite Tm and
any finite maximum marginal utility. The fact that the tail of the Pareto distribution falls
to zero more slowly than exponentially as T increases no longer matters because marginal
utility no longer increases without bound. For the exponential distribution, if l> 1, expected
marginal utility first increases to a maximum and then decreases to an asymptotic value that is
independent of l.13 (The reason the asymptotic value of expected marginal utility is inde-
pendent of l is that the exponential distribution declines to zero rapidly as the temperature
change becomes large.)

Figure 3 Marginal utility as a function of increase in temperature, T (g ¼ l ¼ 2, Tm ¼ 15�C).

12Expected marginal utility under the Pareto distribution is given by: E½MUðTmÞ� ¼
Ð Tm

0 að1þ
TÞg�a�1dT þ lð1þ TmÞg

ÐN
Tm

að1þ TÞ�a�1dT ¼ a
g�a½ð1þ TmÞg�a � 1� þ lð1þ TmÞg�a. Figure 4 shows

E[MU(Tm)] for g ¼ 2 and a ¼ 4/3. Expected marginal utility under the exponential distribution is:
E½MUðTmÞ� ¼

Ð Tm

0 kð1þ TÞge�kTdT þ lð1þ TmÞge�kTm . The integral on the right-hand side must be eval-
uated numerically. Figure 4 shows E[MU(Tm)] for g ¼ 2 and k ¼ 1/2.
13Using the equation in the previous footnote for E[MU(Tm)] for the exponential distribution, take the de-
rivative with respect to Tm, and note that for l > 1 that derivative is positive (negative) if
Tm < ð>Þ gl

kðl�1Þ � 1. For g ¼ 2, l ¼ 3, and k ¼ 1/2, E[MU(Tm)] reaches a maximum at Tm ¼ 5�C.
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The most important result from Figure 4, however, is that it shows that for either value of l,
there is a range of Tm for which expectedmarginal utility is larger for the (thin-tailed) exponential
distribution than for the (fat-tailed) Pareto distribution. Thus, there is a range of Tm for which the
expected benefit of an abatement policy, and thus the WTP for that policy, is greater for the
exponential than for the Pareto distribution. When l¼ 1, that range extends from 0�C to nearly
10�C, and when l ¼ 3, it extends from 0�C to 6�C. These calculations illustrate a simple but
important point. The value of an abatement policy to avoid (or insure against) a catastrophic
climate outcome depends on two equally important factors: (a) the probability distribution gov-
erning outcomes (e.g., the probability of a temperature change large enough to be ‘‘catastrophic’’);
and (b) the impact of a catastrophic outcome, which might be summarized in the form of lost
consumption and the resulting increase in the marginal utility of consumption.

A Misplaced Focus on Fat versus Thin Tails

I do not mean to downplay the importance of the probability distribution governing out-
comes. As Figure 4 shows, if l ¼ 3 and marginal utility happens to reach its maximum value
at, say, Tm¼ 15�C, the Pareto distributionwill yield amuch larger value for expectedmarginal
utility than will the exponential distribution. Thus, it is important to determine (as best as we
can) what distribution is most realistic. However, the focus on whether that distribution is fat
or thin tailed is misplaced. For example, by changing the parameter k in equation 3, one can
obtain an exponential distribution that would yield a very high expected marginal utility at
Tm ¼ 15�C. This can be seen in Figure 5, which is the same as Figure 4 except that the

Figure 4 Expected marginal utility as a function of the increase in temperature, Tm, at which marginal utility

reaches its maximum value

Fat Tails, Thin Tails, and Climate Change Policy 267

 at M
IT

 L
ibraries on D

ecem
ber 21, 2011

http://reep.oxfordjournals.org/
D

ow
nloaded from

 

http://reep.oxfordjournals.org/


parameter k in the exponential distribution has been reduced from 1/2 to 1/3 (so that both the
mean temperature and standard deviation are now 3�C). Note that this small change in k
greatly increases the range of Tm over which expected marginal utility is larger for the ex-
ponential distribution than for the Pareto distribution.
In my stripped down, simple model, I assumed that the only uncertainty was about T, and

that given T, we can precisely determine C and the resulting marginal utility. In reality, there is
considerable uncertainty over the relationship between temperature and economic variables
such as consumption (probably more uncertainty than there is over temperature itself). There
is also uncertainty over the measurement of total welfare, and the use of a simple CRRAutility
function is clearly an oversimplification. I could have introduced additional uncertainties and
made the model more complicated, but the basic results would still hold: Expected marginal
utility, and thus the expected benefit from abatement, depends not only on the probability
distribution governing climate outcomes but also on the relationship between those out-
comes and consumption and welfare. Furthermore, whether the probability distribution hap-
pens to be fat or thin tailed is not by itself the determining factor.
These results are also quite robust to the choice of parameters. In my analysis above, I set

the index of risk aversion, g, equal to 2. However, the macroeconomics and finance literatures
would put this parameter in the range of 1.5–4. Figure 6 is the same as Figure 4 (k is again 1/2),
except that g has been increased to 3. Note that expected marginal utility rises more rapidly
under the Pareto distribution than it did before, because now marginal utility is calculated as
(1 þ T)3. However, there is still a range (although somewhat smaller) of Tm over which
expected marginal utility is larger for the exponential distribution. Readers can experiment

Figure 5 Expected marginal utility as a function of the increase in temperature, Tm, at which marginal utility

reaches its maximum value, with k ¼ 1/3
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with other parameter values for the probability distributions (a and k), the index of risk
aversion g, and the multiplier l on maximum marginal utility.14

Catastrophic Outcomes

Many environmental economists would agree that our central concern with respect to cli-
mate change policy should be the possibility that ‘‘business as usual’’ will lead to a cata-
strophic outcome, that is, warming to such a degree, and with such a large impact, that
welfare (as measured by some function of GDP or more broadly) will fall substantially and
irreversibly. It is difficult to justify the immediate imposition of a very stringent abatement
policy (something much more stringent than, say, the emission reductions specified in the
Kyoto Accord) based on ‘‘likely’’ scenarios for GHG emissions, temperature change, eco-
nomic impacts, and abatement costs.15 As Weitzman (2011) has argued, the case for an
immediate stringent policy might then be justified as an ‘‘insurance policy’’ against a cat-
astrophic outcome. But is such an insurance policy, which would be costly, indeed
warranted?

Climate Catastrophes

Figure 6 Expected marginal utility as a function of the increase in temperature, Tm, at which marginal utility

reaches its maximum value, with g ¼ 3

14The MATLAB program used to generate the results in this paper is available from the author on request.
15An exception is the Stern (2007) Review, but as several authors have pointed out, that study makes assump-
tions about outcomes, abatement costs, and discount rates that are well outside the consensus range.

Fat Tails, Thin Tails, and Climate Change Policy 269

 at M
IT

 L
ibraries on D

ecem
ber 21, 2011

http://reep.oxfordjournals.org/
D

ow
nloaded from

 

http://reep.oxfordjournals.org/


Does buying insurance now against a catastrophic climate outcome make sense? It may or
may not. As with any insurance policy, the answer depends on the cost of the insurance and
the likelihood and impact of a catastrophe. The cost of the insurance might indeed be war-
ranted if the probability of a catastrophe is sufficiently large and the likely impact is suffi-
ciently catastrophic. But note that we don�t need a fat-tailed probability distribution to
determine that ‘‘climate insurance’’ is economically justified. All we need is a significant
(and it can be small) probability of a catastrophe, combined with a large benefit from averting
or reducing the impact of that catastrophic outcome. As shown in the previous section,
depending on parameter values, the specific damage function, and the welfare measure,
the justification for ‘‘climate insurance’’ could well be based on a probability distribution
for climate outcomes that is thin tailed.
We could push this conclusion even further so that much of the analysis in studies such

as Weitzman (2010, 2011) could be bypassed altogether. If there is a significant probability
(whether based on a fat- or thin-tailed distribution) of T> 10�C, and if the outcome that T
> 10�C would be catastrophic according to some generally agreed upon criteria, then
clearly we should act quickly. We do not need a complicated analysis or a debate about
social utility functions to come to this conclusion. If we face a near existential and not
totally improbable threat, and we can do something to avert or at least reduce it, then
we should do something about it.
Of course, determining the probability of a catastrophic outcome and its impact is no

easy matter. We have very little useful data and a very limited understanding of both the
climate science and the related economics. Referring back to Table 1, is the probability of
T > 10�C less than 1 percent or greater than 4 percent? If we believe that T follows the
fat-tailed Pareto distribution (because of ‘‘structural uncertainty’’ or because of feedback
loops in the climate system), then the larger probability would apply. And if we are
concerned with only these extreme outcomes, then the fat-tailed distribution implies
a much stronger policy response.
However, if we are evaluating climate policies with a concern for all possible outcomes,

then the fat-tailed distribution need not imply a stronger abatement policy. As illustrated
in the previous section, once we bound the damages from warming (or more precisely,
the welfare effects of those damages), it is no longer clear a priori which distribution, fat
tailed or thin tailed, supports the stronger abatement policy.

Other Catastrophes

Let�s return to the question of whether strong action (i.e., stringent abatement) can be jus-
tified as an insurance policy against a climate catastrophe. As explained above, answering this
question is difficult because we know so little about the probability and likely impact of cli-
mate catastrophe. But that is not the only difficulty. Suppose we could somehow determine
the probability distribution for various climate outcomes as well as the distribution for the
impacts of those outcomes.16 Then, given a parameterized social utility function, we could in
principle estimate the net benefits from various abatement policies and the WTP to avoid

16Pindyck (2009, 2010) calibrates such distributions to sets of studies done by others, but that is a far cry from
saying that we ‘‘know’’ the true distributions.
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extreme outcomes (i.e., the WTP for insurance to avoid a climate catastrophe). Suppose fur-
ther that this WTP turned out to be large—say 10 percent of GDP. If 10 percent of GDP were
sufficient to pay for an abatement policy that would indeed avert an extreme outcome, should
we not go ahead and buy this insurance?
If a climate catastrophe were our only concern, then the answer would be straightforward—

yes, we should buy the insurance.17 But matters are more complicated because a climate
catastrophe is only one of a number of potential catastrophes that could cause major dam-
age on a global scale. Readers can use their imaginations to come up with their own exam-
ples, but a few that come to my mind include a nuclear or biological terrorist attack (far
worse than 9/11), a highly contagious ‘‘mega-virus’’ that spreads uncontrollably, or an en-
vironmental catastrophe unrelated to GHG emissions and climate change.18 These other
potential catastrophes may be just as likely (or even more likely) to occur as a climate ca-
tastrophe, and could occur much sooner and with much less warning (and thus less time to
adapt). Just as with climate, the likelihood and/or impact of these catastrophes could be
reduced by taking costly action now.
Suppose that with no other potential catastrophes, the WTP to avoid a climate catastrophe

is 10 percent of GDP. How would this WTP change once we took into account the other
potential catastrophes? First, suppose that all potential catastrophes were equally likely
and were ‘‘homogenous’’ in the sense that the likelihood, impact, and cost of reducing
the likelihood and/or impact were the same for any one of them. Then, the WTP for climate
would be affected in two ways, depending on the total number of potential catastrophes, their
likelihood and expected impact, and the social utility function. On the one hand, the non-
climate potential catastrophes would reduce the expected growth rate of GDP, thereby
reducing expected future GDP and increasing expected future marginal utility before a climate
catastrophe occurred. This in turn would increase the benefit of avoiding the further reduc-
tion of GDP that would result from a climate catastrophe. On the other hand, because all of
these potential catastrophes are equally threatening, the WTP to avoid each one must be the
same, which implies a large fraction of GDP would be needed to keep us safe. This ‘‘income
effect’’ would reduce the WTP for climate. Unless the number of potential catastrophes is
small, this ‘‘income effect’’ will dominate, so that the WTP for climate will fall. To see
why, consider an extreme example in which there are twelve potential catastrophes, each with
a WTP (when taken individually) of 10 percent of GDP. Spending 120 percent of GDP on
catastrophe avoidance is clearly not feasible, so when taken as a group, the WTP for each
potential catastrophe would have to fall.
Making matters more complicated, potential catastrophes are not homogenous and, as

with climate change, are subject to considerable uncertainties (and disagreement) over their
likelihood, impact, and costs of avoidance and mitigation. For example, should we buy ‘‘in-
surance’’ to reduce the likelihood of nuclear terrorism (by spending more to inspect all goods
that enter the United States, by gathering more extensive intelligence, etc.)? As with climate

17The answer is actually not quite so straightforward, because if what we mean by a catastrophe is something
that substantially reduces GDP, we would also have to account for general equilibrium effects, which are
missing from standard benefit–cost analyses. See Pindyck and Wang (2010) for details.
18For additional examples, see Posner (2004) and Bostrom and Ćirković (2008). For a sobering discussion of
the likelihood and possible impact of nuclear terrorism, see Allison (2004).
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change, it depends on the expected costs and benefits of that insurance. But it also depends on
the other potential catastrophes that we face and might insure against and the probability
distributions governing their occurrence and impact.19 For some or all of these potential
catastrophes, one could argue that there are structural uncertainties that would make the
probability distributions fat tailed. However, if social welfare is bounded so that expected
marginal benefits cannot be infinite, the fat-tailed versus thin-tailed distinction by itself gives
us little guidance for policy.

Conclusions

The design of climate change policy is complicated by the considerable uncertainties over the
benefits and costs of abatement. Even if we knew what atmospheric GHG concentrations
would be over the coming century under alternative abatement policies (including no policy),
we do not know the temperature changes that would result, never mind the economic impact
of any particular temperature change, and the welfare effect of that economic impact. Worse,
we do not even know the probability distributions for future temperatures and impacts, mak-
ing any kind of benefit–cost analysis based on expected values challenging to say the least.
As Weitzman (2009a) and others have shown, there are good reasons to think that those

probability distributions are fat tailed, which has the ‘‘dismal’’ implication that if social
welfare is measured using the expectation of a CRRA utility function, we should be willing
to sacrifice close to 100 percent of GDP to reduce GHG emissions and limit temperature
increases. The reason is that as temperature increases without limit, so does marginal
utility, and with a fat-tailed distribution the probabilities of extremely high values of
T will be large enough to make expected marginal utility infinite. I have argued here,
however, that the notion of an unbounded marginal utility makes little sense and that
once we put a bound on marginal utility, the ‘‘dismal’’ implication of fat tails goes away:
expected marginal utility will be finite no matter whether the distribution for T is fat or
thin tailed. Furthermore, depending on the bound on marginal utility, the index of risk
aversion, and the damage function, a thin-tailed distribution can actually yield a higher
expected marginal utility than a fat-tailed one.
Of course, a fat-tailed distribution for temperature will have . . . fat tails, making the

probability of an extreme outcome larger than it would be under a thin-tailed distribution
(Table 1, Figure 1b). Weitzman (2010, 2011) suggests that this in turn justifies stringent abate-
ment as an ‘‘insurance policy’’ against an extreme outcome. If our only concern is with avoid-
ing an extreme outcome, then a fat-tailed distribution makes such an insurance policy much
easier to justify. But as with any insurance policy, what matters for climate insurance is the
cost of the insurance (in this case the cost of abatement) and its expected benefit, in terms of
how it will shift the distribution for possible outcomes. Thus, what is important here is the
entire distribution for outcomes and not necessarily whether that distribution has fat or thin
tails. Once again, depending on the damage function, parameter values, and so on, climate
insurance might turn out to be easier to justify with a thin-tailed distribution for outcomes.

19Pindyck and Wang (2010) estimate the WTP (in terms of a permanent tax on consumption) to reduce the
likelihood or expected impact of a generic catastrophe that could occur repeatedly and would reduce the
useable capital stock by a random amount. Using a calibrated general equilibrium model, they estimate the
likelihood and expected impact of such a catastrophe.
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The case for climate insurance is made more complicated (and harder to justify) by the
fact that we face other potential catastrophes that could have impacts of magnitudes that
are similar to those of a climate catastrophe. If catastrophes—climate or otherwise—
would each reduce GDP and consumption by a substantial amount, then they cannot
be treated independently. That is, potential nonclimate catastrophes will affect the
WTP to avert or reduce a climate catastrophe and affect the economics of ‘‘climate
insurance.’’
So where does this leave us? The points raised in this article do not imply that we can

dismiss the possibility of an extreme outcome (a climate catastrophe), or that a stringent
abatement policy (i.e., purchasing ‘‘climate insurance’’) is unwarranted. On the contrary,
the possibility of an extreme outcome is central to the design and evaluation of a climate
policy. We need to assess as best we can the probability distributions for climate outcomes
and their impact, with an emphasis on the more extreme outcomes. We also need to better
understand the cost of shifting those distributions, that is, the cost of ‘‘climate insurance.’’ And
all of this needs to be done in the context of budget constraints and other societal needs,
including schools, highways, and defense, as well as the cost of ‘‘insurance’’ against other
potential catastrophes.

References

Allison, Graham. 2004. Nuclear terrorism: The
ultimate preventable catastrophe. New York: Henry
Holt & Company.

Bostrom, Nick, and Milan Ćirković, eds. 2008.
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