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Abstract

Because of the uncertainties and irreversibilities that are often inherent in environmental
degradation, its prevention, and its economic consequences, environmental policy design can
involve important problems of timing. I use a simple two-period model to illustrate these opti-
mal timing problems and their implications for environmental policy. I then lay out and solve
a continuous-time model of policy adoption in which the policy itself entails sunk costs, and
environmental damage is irreversible. The model generalizes earlier work in that it includes two
stochastic state variables; one captures uncertainty over environmental change, and the other
captures uncertainty over the social costs of environmental damage. Solutions of the model are
used to show the implications of these two types of uncertainty for the timing of policy adoption.
? 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Optimal timing (or “stopping”) problems are an important class of stochastic control
problems that arise in economics and ?nance, as well as other ?elds. Unlike “continuous
control” problems, in which one or more control variables are adjusted continuously
and optimally over time to maximize some objective function, these problems involve

∗ Tel.: +1-617-253-6641; fax: +1-617-258-6855.
E-mail address: rpindyck@mit.edu (R.S. Pindyck).

0165-1889/02/$ - see front matter ? 2002 Elsevier Science B.V. All rights reserved.
PII: S0165 -1889(01)00090 -2



1678 R.S. Pindyck / Journal of Economic Dynamics & Control 26 (2002) 1677–1697

the optimal timing of a discrete action. 1 Important examples include optimal exercise
rules for ?nancial options (e.g., ?nding the threshold price of a dividend-paying stock
at which it is optimal to exercise a call option on that stock), and optimal capital
investment and disinvestment decisions (e.g., ?nding the threshold prices of copper at
which it is optimal to shut down an existing copper mine or invest in a new mine). 2

As illustrated by a small but growing literature, optimal timing problems of this
sort also arise in environmental economics. These problems are of the following basic
form: At what point should society adopt a (costly) policy to reduce emissions of
some environmental pollutant? The traditional approach to this problem applies stan-
dard cost–bene?t analysis (a simple NPV rule in capital budgeting terms), and would
thus recommend adopting a policy if the present value of the expected Iow of bene-
?ts exceeds the present value of the expected Iow of costs. This standard approach,
however, ignores three important characteristics of most environmental problems. First,
there is almost always uncertainty over the future costs and bene?ts of adopting a par-
ticular policy. With global warming, for example, we do not know how much average
temperatures will rise with or without reduced emissions of greenhouse gases (GHG)
such as CO2, nor do we know the economic impact of higher temperatures. Second,
there are usually important irreversibilities associated with environmental policy. These
irreversibilities can arise not only with respect to environmental damage itself, but also
with respect to the costs of adopting policies to reduce the damage. Third, policy adop-
tion is rarely a now or never proposition; in most cases it is feasible to delay action
and wait for new information. These uncertainties, irreversibilities, and the possibility
of delay can signi?cantly aLect the optimal timing of policy adoption.

There are two kinds of irreversibilities, and they work in opposite directions. First, an
environmental policy imposes sunk costs on society. For example, coal-burning utilities
might be forced to install scrubbers or pay more for low-sulfur coal, or ?rms might have
to scrap existing machines and invest in more fuel-eMcient ones. In addition, political
constraints may make an environmental policy itself diMcult to reverse, so that these
sunk costs are incurred over a long period of time, even if the original rationale for
the policy disappears. These kinds of sunk costs create an opportunity cost of adopting
a policy now, rather than waiting for more information, and this biases traditional
cost–bene?t analysis in favor of policy adoption. Second, environmental damage can
be partially or totally irreversible. For example, increases in GHG concentrations are
long lasting, and the damage to ecosystems from higher global temperatures (or from
acidi?ed lakes and streams, or the clear-cutting of forests) can be permanent. Thus,
adopting a policy now rather than waiting has a sunk bene&t, i.e., a negative opportunity
cost, which biases traditional cost–bene?t analysis against policy adoption. 3

1 Kendrick (1981) provides a textbook treatment of what I have termed “continuous control” problems. He
gives particular attention to stochastic adaptive control problems (in which optimal feedback rules are found
for the response of control variables to stochastic shocks in the state variables), as well as “dual control”
problems (in which control variables are adjusted to obtain information as well as directly the trajectories
of the state variables).

2 For a textbook treatment of such optimal capital investment decisions, see Dixit and Pindyck (1994).
3 This point was made some two decades ago by Arrow and Fisher (1974), Henry (1974), and

Krutilla and Fisher (1975).
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There are also two types of uncertainties that are relevant. The ?rst is economic
uncertainty, i.e., uncertainty over the future costs and bene?ts of environmental dam-
age and its reduction. In the case of global warming, even if we knew how large a
temperature increase to expect, we would not know the resulting cost to society—we
cannot predict how a temperature increase would aLect agricultural output, land use,
etc. The second is ecological uncertainty, i.e., uncertainty over the evolution of the
relevant ecosystems. For example, even if we knew that we could meet a speci?ed pol-
icy target for GHG emissions over the next 40 years, we would not know the resulting
levels of atmospheric GHG concentrations and average global equilibrium temperature
increase. 4

A number of recent studies have begun to examine the implications of irreversibil-
ity and uncertainty for environmental policy, at times drawing upon the theory of
irreversible investment decisions. I will not attempt to survey this literature here. 5

Instead, I will examine the optimal timing of environmental policy in two ways.
First, I lay out a simple two-period model, in which the choice is whether to adopt an

emissions-reducing policy now, or wait some ?xed period of time (e.g., 20 years), and
then, depending on new information that has arrived regarding the extent of environ-
mental degradation and its economic cost, either adopt the policy or reject it. Although
this model is very restrictive and in some ways unrealistic, it brings out many of the
key insights. 6

Second, I extend and generalize the continuous-time model of environmental policy
adoption in Pindyck (2000). In that model, an emissions-reducing policy can be adopted
at any time. Information arrives continually, but there is always uncertainty over the
future evolution of key environmental variables, and over the future costs and bene?ts
of policy adoption. As in this paper, I focused on how irreversibilities and uncertainty
interact in aLecting the timing of policy adoption. However, in that earlier work, I
included only one form of uncertainty at a time—economic or ecological—but not
both together. Here, I generalize the model to include both forms of uncertainty at
the same time. This provides additional insight into their individual eLects on policy
adoption, as well as the eLects of their interactions. In particular, I show that once the
stock of pollutant becomes moderately large, uncertainty over its future growth matters
much less than economic uncertainty for optimal policy adoption.

In the next section, I lay out the basic two-period model of policy adoption. Although
it is quite simple, the model illustrates how and why uncertainty aLects the timing and
design of an emissions-reducing policy. In Section 3, I present the continuous-time

4 For a forecasting model of CO2 emissions with an explicit treatment of forecast uncertainty, see
Schmalensee et al. (1998). For general discussions of the uncertainties inherent in the analysis of global
warming, see Cline (1992) and Solow (1991). Similar uncertainties exist with respect to acid rain. For
example, we are unable to accurately predict how particular levels of NOX emissions will aLect the future
acidity of lakes and rivers, or the viability of the ?sh populations that live in them.

5 Examples of this literature include Conrad (1992), Hendricks (1992), Kelly and Kolstad (1999), Kolstad
(1996), Narain and Fisher (1998), and Pindyck (1996, 2000).

6 Hammitt et al. (1992) use a two-period model to study implications of uncertainty for adoption of
policies to reduce GHG emissions, and show that under some conditions it may be desirable to wait for
additional information. Another related study is Peck and Teisburg (1992).
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model and show how it can be solved. By calculating solutions for diLerent combina-
tions of parameter values, I show how economic and ecological uncertainties aLect the
optimal timing of policy adoption. Section 4 concludes.

2. A two-period model

In a traditional cost–bene?t analysis of environmental policy, the problem typically
boils down to whether or not a particular policy should be adopted. When irreversibili-
ties are involved, the more appropriate question is when (if ever) it should be adopted.
In other words, adopting a policy today competes not only with never adopting the
policy, but also with adopting it next year, in two years, and so on. Thus, the policy
problem is one of optimal stopping.

As in Pindyck (1996, 2000), I will work with a bare-bones model that captures the
basic stock externality associated with many environmental problems in as simple a
way as possible, while still allowing us to capture key sources of uncertainty. Let Mt

be a state variable that summarizes one or more stocks of environmental pollutants,
e.g., the average concentration of CO2 in the atmosphere or the acidity level of a lake.
Let Et be a Iow variable that controls Mt . For example, Et might be the rate of CO2

or SO2 emissions. We will assume that in the absence of some policy intervention, Et
follows an exogenous trajectory. Ignoring uncertainty for the time being, the evolution
of Mt is then given by

dM=dt = �E(t) − �M (t); (1)

where � is the natural rate at which the stock of pollutant dissipates over time.
I will assume that the Iow of social cost (i.e., negative bene?t) associated with the

stock variable Mt can be speci?ed by a function B(Mt; 
t), where 
t shifts stochastically
over time reIecting changes in tastes and technologies. For example, if M is the GHG
concentration, shifts in 
 might reIect the arrival of new agricultural techniques that
reduce the social cost of a higher M , or demographic changes that raise the cost. One
would generally expect B(Mt; 
t) to be convex in Mt , but for simplicity I will assume
in this section that B is linear in M :

B(Mt; 
t) = −
tMt: (2)

I also begin with a restrictive assumption about the evolution of Et : Until a policy
is adopted, Et stays at the constant initial level E0, and policy adoption implies a
once-and-for-all reduction to a new and permanent level E1, with 06E16E0. Finally,
I assume that the social cost of adopting this policy is completely sunk, and its present
value at the time of adoption, which I denote by K(E1), is a function of the size of
the emission reduction.

The policy objective is to maximize the net present value function:

W = E0

∫ ∞

0
B(Mt; 
t)e−rt dt − E0K(E1)e−rT̃ (3)
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subject to Eq. (1). Here, T̃ is the (in general, unknown) time that the policy is adopted,
E0 − E1 is the amount that emissions are reduced, E0 denotes the expectation at time
t = 0, and r is the discount rate.

In this section, I make T exogenous. Thus the choices are to adopt the policy today
(making MT smaller than it would be otherwise), or to wait until time T and then,
after evaluating the situation, decide whether or not to adopt the policy. I will also
assume initially that if the policy is adopted, emissions are reduced from E0 to zero.
Hence, the sunk cost of policy adoption is simply a number, K . (Later in this section
I will consider the possibility of reducing E to some level E1¿ 0, and I will also
examine the adoption decision when the policy is partially reversible.)

For this problem to be interesting, we need to introduce some source of uncertainty.
I will assume that there is economic uncertainty but not ecological uncertainty, i.e.,
there is uncertainty over the evolution of 
t but not over the evolution of Mt . To
keep matters as simple as possible, I will assume that 
T will equal 
 or R
 with equal
probability, with 
¡ R
 and 1

2 (
 + R
) = 
0, the current value of 
. I will also assume
that 
 does not change after time T . Finally, I will consider the following decision
rule that applies if we wait until time T : Adopt the policy if and only if 
T = R
.
(I will choose parameter values so that this is indeed the optimal policy, given that
we have waited until time T to make a decision.)

By solving Eq. (1), we can determine Mt as a function of time. Suppose the policy
is adopted at time T , so that Et = E0 for t ¡T and Et = 0 for t¿T . Then,

Mt =

{
(�E0=�)(1 − e−�t) +M0e−�t for 06 t6T;

(�E0=�)(e�T − 1)e−�t +M0e−�t for t ¿T;
(4)

where M0 is the initial value of Mt . If the policy is never adopted, the ?rst line of
Eq. (4) applies for all t, so that Mt asymptotically approaches �E0=�. If the policy is
adopted at time 0, then Mt =M0e−�t .

First, suppose that the policy is never adopted. Then, denoting the value function in
this case by WN :

WN = −
∫ ∞

0

0Mte−rt dt = − 
0M0

(r + �)
− �E0
0

r(r + �)
: (5)

Next, suppose the policy is adopted at time t = 0. Then a sunk cost K is incurred
immediately, Et = 0 always, and the value function is

W0 = −
0M0

r + �
− K: (6)

A conventional cost–bene?t analysis would recommend adoption of the policy if the
net present value W0 −WN is positive, i.e., if �E0
0=r(r + �) − K ¿ 0.

Let us introduce some numbers so that we can compare these two alternatives:
the present value of the cost to society of policy adoption, K , is $2 billion, r =
0:04, �= 0:02, � = 1 (i.e., all emissions are completely absorbed into the ecosystem),
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Table 1
Parameter values

Parameter Value

r (discount rate) 0.04
� (pollutant decay rate) 0.02
� (absorption factor) 1
K (PV of cost of policy adoption) $2 billion
E0 (emission rate) 300; 000 tons=yr

0 (current social cost) $20=ton=yr

 (future social cost, low) $10=ton=yr
R
 (future social cost, high) $30=ton=yr
T (?xed delay time) 10 yr

E0 = 300; 000 tons=yr, and 
0 = $20=ton=yr. 7 In what follows, I will also assume that

= $10=ton=yr, and R
= $30=ton=yr. These parameter values are summarized in Table 1.

Given these numbers, �E0
0=r(r+�)=$2:5 billion. Since the conventionally measured
NPV of policy adoption is W0 − WN = �E0
0=r(r + �) − K = $0:5 billion, it would
appear desirable to adopt the policy now.

Suppose that instead we wait until time T and then adopt the policy only if 
T = R
.
Denoting the value function that corresponds to this course of action by WT , using
Eq. (4), and noting that the probability that 
T = R
 is 0.5, we have

WT = − 
0

r + �

(
M0 +

�E0

r

)
+

�E0

r(r + �)

(

0 − 1

2


)

e−rT − 1
2
Ke−rT : (7)

Is it better to adopt the policy at time t = 0 or wait until T? Comparing W0 to WT :

SWT =WT −W0 = K
(

1 − 1
2

e−rT
)
− �E0
0

r(r + �)
(1 − e−rT ) − �E0


2r(r + �)
e−rT :

(8)

It is better to wait until time T if and only if SWT ¿ 0.
This expression for SWT has three components. The ?rst term on the right-hand

side of Eq. (8) is the present value of the net expected cost savings from delay; the
sunk cost K is initially avoided, and there is only a 0.5 probability that it will have
to be incurred at time T . Hence, this term represents the opportunity cost of adopting
the policy now rather than waiting. The second and third terms are the present value
of the expected increase in social cost from environmental damage due to delay. The
second term is the cost of additional pollution between now and time T that results
from delay, and the last term—the probability that 
T = 
, times the present value of
the cost of additional pollution over time when 
T = 
 and Et = E0 for t¿T—is the
expected pollution cost from time T onwards. Thus the last two terms represent an
“opportunity bene?t” of adopting the policy now.

7 I am implicitly assuming that the discount rate r is the real risk-free rate of interest, so a value of 0.04 is
reasonable. A value of 0.02 for � is high for the rate of natural removal of atmospheric GHGs (a consensus
estimate would be closer to 0.005), but is low for acid concentrations in lakes.
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We can therefore rewrite Eq. (8) as

SWT = FC − FB;

where

FC = K(1 − 1
2 e−rT ) (9)

is the opportunity cost of adopting the policy now rather than waiting, and

FB =
�E0
0

r(r + �)
(1 − e−rT ) +

�E0

2r(r + �)

e−rT (10)

is the “opportunity bene?t” of adopting now rather than waiting. Note that the larger
is the decay rate �, i.e., the more reversible is environmental damage, the smaller is
this bene?t, and hence the greater is the incentive to delay. (As �→ ∞, environmental
damage becomes completely reversible, and FB → 0.) An increase in the discount rate,
r, increases FC and reduces FB, and thus also increases the incentive to delay.

In general, we can decide whether it is better to wait or adopt the policy now by
calculating FC and FB. For our numerical example, we will assume (arbitrarily) that
the ?xed time T is 10 yr. Substituting this and the other base case parameter values
into Eqs. (9) and (10) gives FC =$1:330 billion and FB =0:824+0:419=$1:243 billion.
Hence SWT = FC − FB = $0:087, so it is better to wait. In this case the opportunity
cost of current adoption slightly outweighs the opportunity bene?t.

We assumed that if we delayed the adoption decision until time T , it would then be
optimal to adopt the policy if 
T = R
, but not if 
T = 
. To check that this is indeed
the case, we can calculate the smallest value of 
T for which policy adoption at time
T is optimal. Since there is no possibility of delay after T , this is just the value of 

for which W0 −WN is zero. Using Eqs. (6) and (5), we see that this value is given by


̂T = r(r + �)K=�E0: (11)

For our base case parameter values, 
̂T =$16=ton=yr. Hence it would indeed be optimal
to adopt the policy at time T if 
T = R
= 30, but not if 
T = 
= 10.

Also, we assumed that policy adoption meant reducing E to zero. We could have
instead considered what the optimal amount of reduction should be. However, B(Mt; 
t)
is linear in Mt and Mt depends linearly on E (see Eq. (4)), so the bene?t of a marginal
reduction in E is independent of the level of E. Suppose, in addition, that the cost of
reducing E is proportional to the size of the reduction. Then if it is optimal to reduce E
at all, it will be optimal to reduce it to zero, so that the optimal timing is independent
of the size of the reduction. This will not be the case if the social cost function is
convex in Mt and=or the cost of emission reduction is a convex function of the size
of the reduction, as discussed below.

2.1. Irreversibility, uncertainty, and a “good news principle”

We assumed that the cost of policy adoption is completely sunk, but the bene?t
(in terms of reduced environmental damage) is only partially sunk (because �¿ 0).
Continuing with our numerical example, we can get further insight into the eLects of
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irreversibility and uncertainty by varying the degree to which the policy bene?t is sunk,
and by varying the amount of uncertainty over 
T .

First, suppose that the pollutant decay rate is smaller than assumed earlier—
speci?cally, that � is 0.01 instead of 0.02. Note that FC will equal $1.330 billion
as before, but now FB =0:989+0:503=$1:492 billion, so that SWT =−$0:162 billion.
In this case the greater irreversibility of environmental damage makes the opportunity
bene?t of current adoption greater than the opportunity cost, so that it is better to adopt
the policy now.

Second, let us increase the variance of 
T (while keeping its expectation the same)
by setting 
 and R
 equal to 0 and 40, respectively, instead of 10 and 30. This change
has no eLect on the opportunity cost of adopting now, because there is still a 0.5
probability that at time T we will regret having made the decision to spend K and
adopt the policy; FC is $1.330 billion as before. However, this increase in variance
reduces the opportunity bene?t of immediate adoption by reducing the social cost of
additional pollution for t ¿T under the “good” outcome (i.e., the outcome that 
T =
).
Setting � equal to its base case value of 0.02, we have FB =0:824+0=$0:824 billion,
so that SWT = 1:330− 0:824 = $0:506 billion, which is much larger than before. Even
if we lower � to 0.01 (so that environmental damage is more irreversible), FB = 0:989,
SWT = $0:341 billion, and it is still optimal to wait.

This result is an example of Bernanke’s (1983) “bad news principle”, although here
we might call it a “good news principle”. It is only the consequences of the outcome

T =
, an outcome that is good news for society but bad news for the ex post return on
policy-induced installed capital, that drive the net value of waiting. The consequences of
the “bad” outcome, i.e., that 
T = R
, make no diLerence whatsoever in this calculation.

This good news principle might seem counterintuitive at ?rst. Given the long-lasting
impact of environmental damage, one might think that the consequences of the high
social cost outcome (i.e., the outcome 
T = R
) should aLect the decision to wait and
continue polluting. But because the expected value of 
T remains the same as we
increase the variance, the value of waiting depends only on the regret that is avoided
under the good (low social cost) outcome. Increasing the variance of 
T increases the
regret that society would experience under the good outcome, and thereby increases
the incentive to wait.

2.2. Allowing for policy reversal

So far we have assumed that once a policy to reduce emissions to zero has been
adopted, it would remain in place inde?nitely. We now examine how the timing de-
cision changes when a policy adopted at time 0 can be at least partially reversed at
time T . In eLect, we will be relaxing our earlier assumption that the cost of policy
adoption is completely sunk.

We will assume that upon reversal, a fraction � of the cost K can be recovered.
This would be possible, for example, if K was at least in part the present value of
a Iow of sunk costs that could be terminated. (Of course, the investment decisions
of ?rms and consumers in response to a policy adopted at time 0 would be altered
by the awareness that there was some probability of policy reversal at time T . For
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example, consumers and ?rms would probably delay some of their emission-reducing
investments until they learned, at time T , whether the policy was going to be reversed.
But this is consistent with the theory; it simply makes the fraction � larger than it
would be without such an awareness.)

We again assume that 
T will equal 
 or R
, each with probability 0.5. We will also
assume that the parameter values are such that if the policy was not adopted at t = 0,
it would be adopted at t = T if and only if 
T = R
. However, if the policy is adopted
at t = 0, would we want to reverse it at time T if 
T = 
? Clearly, this will depend
on the value of �, i.e., the fraction of K that can be recovered.

As before, let W0 denote the value function when we adopt the policy at time 0, but
note that it is now diLerent because of the possibility of policy reversal. Speci?cally,
W0 must now include the value of society’s option (a put option) to reverse the policy
at time T and recover �K . Also, let WT again denote the value function when we wait
and only adopt the policy if 
T = R
. (In this simple two-period framework, we do not
allow for policy reversal after time T .)

To determine W0 in this case, we need the trajectory for Mt when the policy is
adopted at t = 0 and reversed at t = T . From Eq. (1), that trajectory is given by

Mt =

{
M0e−�t for 0 6 t 6 T;

(�E0=�)[1 − e−�(t−T )] +M0e−�t for t ¿T:
(12)

Now we can determine the minimum value of � for which it would be economical
to reverse the policy at t = T should 
T = 
. Reversal is economical if the present
value of the cost of continued emissions is less than the recoverable cost �K , i.e., if

(�E0
=�)
∫ ∞

T
[1 − e−�(t−T )]e−r(t−T ) dt ¡�K: (13)

This implies that the policy should be reversed if 
T = 
 at time T as long as

�¿�min =
�E0


r(r + �)K
: (14)

For our numerical example, with E0 = 300; 000 tons=yr, K = $2 billion, and 
 =
$10=ton=yr, �min = 0:625. Thus if �¡ 0:625, the option to reverse the policy at time
T has no value, and our earlier results still hold.

Suppose �¿�min, so that the policy would indeed be reversed if 
T = 
. Although
WT is still given by Eq. (7), by using Eq. (12) we can see that W0 is now given by

W0 = −
0M0

r + �
− �E0


2r(r + �)
e−rT + 1

2�Ke−rT − K: (15)

The second and third terms on the right-hand side of (15) represent the value of
the option to reverse the policy at time T . That option value is positive as long as
�¿�min.

Using Eqs. (7) and (15), we ?nd that SWT =WT −W0 is now given by

SWT = K[1 − 1
2 (1 + �)e−rT ] − �E0
0

r(r + �)
(1 − e−rT ): (16)
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The ?rst term on the right-hand side of (16) is the opportunity cost of early policy
adoption, which we have denoted by FC, and the second term is the opportunity bene?t,
FB. Comparing Eqs. (16) and (8), note that both FC and FB are now smaller. Compared
to the case where the policy cannot be reversed, FC is reduced by the amount 1

2�Ke−rT ,
which is the expected value of the portion of sunk cost that can be recovered. In
addition, FB no longer has the term in 
 , because now if 
T = 
 , the policy will be
reversed.

Returning to our numerical example, suppose that �=0:9, which exceeds �min. Then,

SWT = FC − FB = $0:726 billion − $0:824 billion = −$0:098 billion;

so that immediate adoption is better than waiting. The reason is that while the option
to reverse the policy has reduced both FC and FB, it has reduced FC by more. (FC

falls from $1.33 billion to $0.73 billion, a change of $0.60 billion, and FB falls from
$1.24 billion to $0.82 billion, a change of $0.42 billion.)

Suppose we increase the variance of 
T as we did before by letting 
 and R
 equal
0 and 40, respectively, rather than 10 and 30. If � = 0:9, SWT = −$97:8 million as
before, so the policy should still be adopted now. But note that increasing the variance
of 
T reduces the minimum value of � at which reversal is optimal if 
T =
. From Eq.
(14), we see that now �min = 0, so that once the policy has been adopted, reversal is
always optimal if 
T =
. But this does not mean that as long as 
=0, the policy should
be adopted now for any positive value of �. For example, if �= 0:1, SWT = $438:4
million, so it is clearly better to wait. By setting SWT = 0 (again with 
= 0), we can
?nd the smallest value of � for which early adoption is optimal. Using Eq. (16), that
value is �= 0:754. For �¿ 0:754, the put option is suMciently valuable so that early
adoption is economical.

Although 
 does not appear in Eq. (16), it is still only 
, and not R
, that aLects the
timing decision. The reason is that only 
 aLects 
min, and hence only 
 aLects whether
we would indeed exercise the put option should this low value of 
T be realized. This
is another example of the “good news principle” discussed earlier.

2.3. Partial reduction in emissions

Before moving to a more general model in which the time of adoption can be chosen
freely, we can exploit this simple framework further by allowing for a partial reduction
in emissions. This is of interest only if the cost of policy adoption is a convex function
of the amount of emission reduction (or, alternatively, if the bene?t function B(Mt; 
t) is
convex in Mt). Suppose that the cost of (permanently) reducing E from E0 to E1 ¿ 0 is

K = k1(E0 − E1) + k2(E0 − E1)2 (17)

with k1; k2 ¿ 0. Then the marginal cost of reducing E an additional unit below E1 is

k(E) = −dK
dE

= k1 + 2k2(E0 − E1): (18)

The problem now is to decide when to adopt a policy, and then, at the time of adoption,
to decide by how much to reduce emissions. As before, we will assume that 
T will
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equal 
 or R
 with equal probability, and that 
 does not change after time T . For
simplicity, we will assume that once a policy has been adopted it cannot be reversed.

Previously we solved Eq. (1) to determine the trajectory for Mt when Et = E0 for
t ¡T and Et = 0 for t ¿ T . Now, policy adoption at time T implies that Et =E1 ¿ 0
for t ¿ T , so the trajectory for Mt is given by 8

Mt =

{
(�E0=�)(1 − e−�t) +M0e−�t for 0 6 t 6 T;

(�E0=�)(e�T −1)e−�t +(�E1=�)[1−e−�(t−T )]+M0e−�t for t¿T:
(19)

First, suppose we reduce E from E0 to an arbitrary level E1 at t= 0. Then the value
function, which we will denote by W0(E1), is

W0(E1) = −
0M0

r + �
− �E1
0

r(r + �)
− K(E1): (20)

If we never adopt the policy, the value function is WN=−
0M0=(r+�)−�E0
0=r(r+�),
as before. Hence the conventionally measured NPV of policy adoption is

W0(E1) −WN =
�(E0 − E1)
0

r(r + �)
− K(E1): (21)

If we indeed adopt the policy at t = 0, we will choose E1 to maximize this NPV.
Using Eq. (17) for K(E1), the optimal value of E1 is

E∗
1 = E0 +

k1

2k2
− �
0

2k2r(r + �)
: (22)

Setting E1 = E∗
1 , the NPV of immediate adoption becomes

W0(E∗
1 ) −WN =

1
4k2

[
�
0

r(r + �)
− k1

]2

: (23)

Note that because E1 is chosen optimally, this NPV can never be negative.
A numerical example is again helpful. We will use the same parameter values as

before (see Table 1), and set k1 = 4000 and k2 = 0:02 (so that reducing E from
300; 000 tons=yr to zero would cost $3.0 billion). In this case, E∗

1 = 191; 667 tons=yr,
so that SE∗ = E0 − E∗

1 = 108; 333 tons=yr, K(SE∗) = $0:668 billion, and the NPV of
immediate policy adoption is W0(E∗

1 ) −WN = $0:234 billion.
So far we have compared reducing emissions to some amount E1 at time 0 to never

reducing them. Suppose instead that we wait until time T to decide how much (if at
all) to reduce emissions. If 
T = R
 we will reduce emissions to RE, but if 
T = 
 we
will reduce emissions less, to E¿ RE. Using Eq. (19) for Mt and for the time being
letting E and RE be arbitrary, we can determine that the value function WT (E; RE) is

WT (E; RE) = −
0M0

r + �
− �E0
0

r(r + �)
(1 − e−rT ) − �e−rT

2r(r + �)
(E
+ E
)

− 1
2K(E)e−rT − 1

2K( RE)e−rT : (24)

8 Note that Mt must now satisfy the boundary conditions MT = (�E0=�)(1− e−�T ) +M0e−�T and M∞ =
�E1=�.
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The values of E and RE must be chosen optimally to maximize WT (E; RE). Setting the
derivatives of WT (E; RE) with respect to E and RE equal to zero, the optimal emission
levels are:

E∗ = E0 +
k1

2k2
− �


2k2r(r + �)
; (25)

RE
∗

= E0 +
k1

2k2
− � R


2k2r(r + �)
: (26)

Should we reduce emissions now or wait until time T so that we can observe 
T ?
As before, we can compare W0 to WT , but now we must account for the fact that
the amount of emission reduction is determined optimally at the time of adoption, i.e.,
at t = 0 or T . To determine whether it is better to wait, we must calculate SWT =
WT (E∗; RE

∗
)−W0(E∗

1 ). Substituting E∗ and RE
∗

into Eq. (24) and E∗
1 into Eq. (20) gives

SWT =
k1

2k2

[
�
0

r(r + �)
− k1

2

]
(1 − e−rT ) − �2
2

0

4k2r2(r + �)2 +
�2(
 2 + R


2
)

8k2r2(r + �)2 e−rT :

(27)

Using Eqs. (22), (25), and (26), we can calculate that for our numerical example,
E∗

1 = 191; 667 tons=yr; E∗ = 295; 833, and RE
∗

= 87; 500. Hence we ?nd that SWT =
$0:068 billion. In this case the opportunity cost of reducing emissions immediately
outweighs the opportunity bene?t. Therefore, it is better to wait until time T , and then
reduce emissions by a large amount if 
T = R
, but reduce them only slightly if 
T = 
.

This numerical outcome is, of course, dependent on our choice of parameters for the
cost function K . For example, if we reduce k1 from 4000 to 1000 (so that the cost of
eliminating the ?rst ton of emissions is only $1,000), SWT becomes −$0:076 billion, so
that immediate policy adoption is preferred. The reason is that now greater reductions
in E are optimal for all possible values of 
 (now E∗

1 = 116; 667; E∗ = 220; 833, and
RE
∗

= 12; 500), so that the sunk bene?t of reducing E immediately is larger, and the
sunk cost is smaller.

As with the simpler versions of this two-period model, the timing decision also
depends on the variance of 
T . To see this, let us increase the variance by setting R

and 
 to 40 and 0, respectively. Now, using Eqs. (22), (25), and (26) again, we see
that E∗

1 = 191; 667 tons=yr as before, but E∗ = 400; 000 tons=yr; RE
∗

= 0, and SWT =
$0:503 billion. 9 Hence, the value of waiting increases. The reason is that the spread
between E∗ and RE

∗
is now larger, so that information arriving at time T has a bigger

impact on policy actions, and on the outcomes of those actions.

2.4. Summary

In this section we examined a highly simpli?ed problem in which there are only two
possible times at which a policy can be adopted—now, or a ?xed time T in the future.
Nonetheless, the examples illustrate how the optimal timing of policy adoption can be

9 Using Eq. (26), RE∗ = −16; 667. But we assume that negative values of E are not possible, so that E
will be reduced to 0 if 
T = R
.
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aLected in opposing ways by the interaction of uncertainty with each of two kinds
of irreversibilities. For example, by reducing the pollutant decay rate (i.e., by making
environmental damage more irreversible), we increased the opportunity bene?t of early
policy adoption to the point where it outweighed the opportunity cost. To explore this
tradeoL further, and determine how it depends on diLerent sources of uncertainty, we
need to move to a more general formulation in which the time of adoption is a free
choice variable. We turn to that next.

3. A continuous-time model

When the time of adoption is a free choice variable, the problem of maximizing the
present value function given by Eq. (3) becomes a classic optimal stopping problem:
We must ?nd the threshold curve, 
 ∗(M), that triggers policy adoption.

I generalize the model in Pindyck (2000) by allowing both 
t and Mt to evolve
stochastically. Speci?cally, I will assume that 
t follows a geometric Brownian motion:

d
= �
 dt + �1
 dz1 (28)

with �¡r, and that M follows a controlled arithmetic Brownian motion:

dM = (�E − �M) dt + �2 dz2: (29)

There is no reason to expect stochastic Iuctuations in 
 and M to be correlated, so I
will assume that Et(dz1 dz2) = 0 for all t. Finally, we will work with a social bene?t
function that is quadratic in M , i.e.,

B(
;M) = −
M 2: (30)

For simplicity, I will assume that policy adoption implies reducing emissions from
E0 to zero, at a sunk cost of K=kE0. The problem is to ?nd a rule for policy adoption
that maximizes the net present value function of Eq. (3) subject to Eq. (28) for the
evolution of 
, and Eq. (29) for the evolution of M .

This problem can be solved using dynamic programming by de?ning a net present
value function for each of two regions. Let WN(
;M) denote the value function for
the “no-adopt” region (in which Et = E0). Likewise, let WA(
;M) denote the value
function for the “adopt” region (in which Et = 0). Since B(Mt; 
t) =−
tM 2

t , we know
that WN(
;M) must satisfy the following Bellman equation:

rWN = −
M 2 + (�E0 − �M)WN
M + �
WN


 + 1
2�

2
1


2WN


 + 1

2�
2
2W

N
MM : (31)

(Partial derivatives are denoted by subscripts, e.g., WN
M = @WN=@M .) Likewise,

WA(
;M) must satisfy the Bellman equation:

rWA = −
M 2 − �MWA
M + �
WA


 + 1
2�

2
1


2WA


 + 1

2�
2
2W

A
MM : (32)

These two diLerential equations must be solved for WN(
;M) and WA(
;M) subject
to the following set of boundary conditions:

WA(0; M) = 0; (33)

WN(0; M) = 0; (34)
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WN(
 ∗(M); M) =WA(
 ∗(M); M) − K; (35)

WN

 (
 ∗(M); M) =WA


 (
 ∗(M); M) (36)

and

WN
M (
 ∗(M); M) =WA

M (
 ∗(M); M): (37)

Here, 
 ∗(M) is a free boundary, which must be found as part of the solution, and
which separates the adopt from the no-adopt regions. It is also the solution to the
stopping problem: Given M , the policy should be adopted if 
¿ 
 ∗(M). Boundary
conditions (33) and (34) reIect the fact that if 
 is ever zero, it will remain at zero
thereafter. Condition (35) is the value matching condition; it simply says that when

(M) = 
 ∗(M) and the option to adopt the policy is exercised, the payoL net of the
sunk cost K = kE0 is WA(
 ∗(M); M) − K . Finally, conditions (36) and (37) are the
“smooth pasting conditions”; if adoption at 
∗(M) is indeed optimal, the derivatives
of the value function must be continuous at 
 ∗(M).

3.1. Obtaining a solution

Although Eq. (32) can be solved analytically, it is not possible to obtain an analytical
solution for Eq. (31) and the free boundary 
 ∗(M). These equations can be solved
numerically, although doing so is nontrivial because (31) is an elliptic partial diLerential
equation. However, a complete analytical solution is possible if we set the decay rate,
�, to zero. Little is lost by doing so, and that is the approach I take here.

With �= 0, the analytical solution for WA(
;M) is

WA(
;M) = − 
M 2

r − � − �2
2


(r − �)2 : (38)

To ?nd a solution for WN(
;M), surmise that it has the form

WN(
;M) = 
 �G(M) − 
M 2

r − � − 2�2E2
0


(r − �)2 − 2�E0
M
(r − �)2 − �2

2

(r − �)2 ; (39)

where G(M) is an unknown function, with G′(M)¿ 0 and G(0)¿ 0. We will verify
that the solution is indeed of this form. In particular, we will try solutions for which
G(M) = ae�M , so that the homogeneous solution to the diLerential equation would be
of the form WN

h = a
 �e�M . Substituting this into the diLerential equation, rearranging
and canceling terms, gives the following equation:

r = ��+ 1
2�

2
1�(�− 1) + 1

2�
2
2�

2 + �E0�: (40)

Note that this is an equation in both � and �. Hence, we cannot solve this without
making use of other boundary conditions. In addition, we need to ?nd the value of a.

In total, there are four unknowns for which solutions must be found: �, �, a, and

 ∗(M). To solve for these four unknowns, we make use of Eq. (40), along with
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boundary conditions (35)–(37). 10 Boundary condition (35) implies

− 2�2E2
0


∗

(r − �)3 − 2�E0
 ∗M
(r − �)2 + a(
 ∗)�e�M = −K; (41)

boundary condition (36) yields

− 2�2E2
0

(r − �)3 − 2�E0M
(r − �)2 + a�(
 ∗)�−1e�M = 0; (42)

and boundary condition (37) yields

a�(
 ∗)�e�M = − 2�E0
 ∗

(r − �)2 : (43)

Eqs. (40)–(43) are all nonlinear, and must be solved simultaneously for �, �, a,
and 
 ∗(M). This is most easily done by multiplying Eq. (42) by 
 ∗, and then using
Eq. (43) to eliminate a(
 ∗)�e�M from that equation and from Eq. (41). The remaining
three equations then yield the following solution. De?ning  (M) ≡ (r − �)M + �E0,
the exponent �(M) is given by

�=
� 2 − 1

2�
2
1 

2 + (r − �)�E0 
�2

1 2 + �2
2(r − �)2

[
−1 +

√
1 +

2r[�2
1 2+�2

2(r − �)2]

[� − 1
2�

2
1 + (r − �)�E0]2

]
;

(44)

the exponent �(M) is given by

�= (r − �)�= (45)

and the optimal stopping boundary is given by


 ∗(M) =
�(r − �)3K

2(�− 1)�E0 (M)
: (46)

Finally, the variable a is given by

a=
2�E0

(r − �)2 �(

∗)1−�e−�M : (47)

Eqs. (44) and (46) completely determine the solution to the optimal timing prob-
lem: Emissions should be reduced to zero when 
 ¿ 
 ∗(M). It can be shown that

 ∗(M) is a declining function of M , as we would expect: the greater is the cur-
rent stock of pollutant, the lower is the critical social cost variable, 
 ∗, at which the
emission-reducing policy should be adopted. 11 These equations, together with Eqs. (45)

10 Eq. (40) is a quadratic in �, so condition (34) is used to rule out one of the two solutions for �.
11 Note that

d
 ∗

dM
=
@
 ∗

@�
@�
@ 

@ 
@M

+
@
 ∗

@ 
@ 
@M

:

From the equations above, @ =@M = r− �¿ 0 and @
 ∗=@�¡ 0. With some messy algebra, it can be shown
that @�=@ ¿ 0, and thus d
 ∗=dM ¡ 0.
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and (47) also determine the value of the option to adopt the emission-reducing policy,
namely a
 �e�M .

3.2. Characteristics of the solution

By calculating solutions for diLerent combinations of values for the parameters �1

and �2, we can explore how economic and ecological uncertainties aLect the optimal
timing of policy adoption. To do this, we must choose a range of values for these
parameters, as well as values for the other parameters in the model, that are consistent
with pollution and cost levels that could arise in practice. Although these calculations
are meant to be largely illustrative, they will be done in the context of GHG emissions
and global warming.

For the real interest rate, absorption parameter, and initial level of emissions we will
use the same values as in the two-period model: r=0:04, �=1, and E0=300; 000 tons=yr.
With the pollutant decay rate, �, equal to zero, this rate of emissions would add 30
million tons to the pollutant stock after 100 yr. 12 We will consider current pollutant
stocks (of human origin) in the range of 10–150 million tons. We will set the present
value of the cost of policy adoption, K , at $4 billion; although the actual cost is likely
to be much larger, over a long period of time, much of it should be reversible. We
will initially set �, the expected percentage rate of growth of 
, to zero, although we
will also calculate solutions for �= 0:01.

Finally, as initial values for the volatility parameters, we use �1 = 0:2 and �2 =
1; 000; 000, although we will also vary these numbers. This value for �1 implies an
annual standard deviation of 20 percent for the social cost generated by the pollutant
stock, and a standard deviation of 200 percent for a 100-yr time horizon, a number
that is consistent with current uncertainties over this cost. The value for �2 implies a
standard deviation of 10 million tons for the stock level after 100 yr, which is one-third
of the expected increase in the stock from unabated emissions. (In the case of climate
change, M is usually viewed as largely nonstochastic—see, e.g., Nordhaus (1994)—
and the real uncertainty is over temperature, which is the cause of economic damage.
However, changes in temperature depend, with a lag, on changes in M , so M is a
good proxy for the stochastic state variable.)

Fig. 1 shows the critical threshold 
 ∗(M) for values of M ranging from 0 to 16
million tons. The middle curve is 
 ∗(M) for the base values of �1 = 0:2 and �2 =
1; 000; 000, and 
 ∗(M) is also shown for �1 = 0, �2 = 1; 000; 000 and �1 = 0:4, �2 =
2; 000; 000. Note that these curves are downward sloping, as we would expect—a larger
M implies a larger social cost, and thus a lower value of 
 at which it is optimal to
adopt the policy.

For these parameters, the value of waiting is large. To see this, we can calculate a
traditional net present value for the adoption decision at the critical threshold 
 ∗(M).
Fig. 2 shows (for each of the three cases in Fig. 1) the present value of the gains

12 Setting � = 0 is a reasonable approximation for GHGs—the actual decay rate has been estimated to be
0.5 percent or less.
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Fig. 1. Critical threshold, 
 ∗(M).

from policy adoption relative to the cost of adoption, K . Note that from Eqs. (38) and
(39), this ratio is given by

PV=K = [2�2E2
0
=(r − �)3 + 2�E0
M=(r − �)2]=K: (48)

Under a traditional NPV rule, adoption would occur when this ratio exceeds one.
Observe from Fig. 2, however, that for small values of M policy adoption is optimal
only when this ratio is considerably greater than one, and for our base case values of
�1 and �2 this ratio exceeds two for all values of M in the range considered.

Observe from Figs. 1 and 2 that 
 ∗(M) and the ratio PV=K Iatten out once K
exceeds 4 or 5. The reason is that when M is large, continued emissions makes little
diLerence for uncertainty over future values of M , because they contribute little in
percentage terms to the expectations of those future values. (Recall from Eq. (29) that
M follows a controlled arithmetic Brownian motion). Thus for large M , the volatility
of M , i.e., �2, makes a negligible contribution to the value of waiting. This can be
seen from the bottom curve in Fig. 2, for which �1 =0. For large M the ratio PV=K is
only slightly ¿ 1. When �1¿ 0, the ratio exceeds one, but only because of uncertainty
over the future value of 
 and hence the future social cost of added emissions.

This illustrates an important diLerence between the eLects of economic versus eco-
logical uncertainty. If stochastic Iuctuations in the pollutant stock are arithmetic in
nature, they would create uncertainty over the future social cost of continued emis-
sions only because the social bene?t function B(
;M) is quadratic in M . Stochastic



1694 R.S. Pindyck / Journal of Economic Dynamics & Control 26 (2002) 1677–1697

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Current Pollutant Stock, M

P
V

/K

  

  
  
    

 

 

  
         

   

σ1=.4, σ2 = 2,000,000

σ1=.2, σ2=1,000,000

σ1=.2, σ2=1,000,000

Fig. 2. Traditional present value comparison. (Shows present value of bene?ts from immediate adoption
relative to cost, K , at critical threshold 
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Iuctuations in the economic cost variable 
, however, shift the entire social bene?t
function for every level of M . Of course, one might argue that the process for M
should be modelled as a controlled geometric Brownian motion, so that the last term
in Eq. (29) is �2M dz2. I have seen little empirical support for this, however, and
one would expect that unpredictable increases or decreases in M are due largely to
under- or overpredictions of emissions levels from various sources, and thus should
not depend on the overall level of the pollutant stock. 13

Fig. 3 shows the critical threshold 
 ∗(M) as a function of �1 for a value of M
equal to 50 million tons, and for the drift parameter � set at zero and at 0.01. As with
models of irreversible investment, increases in uncertainty over the future “payoLs”
from reduced emissions increase the value of waiting, and raise the critical threshold

 ∗(M). Increasing the drift parameter, �, from 0 to 0.01 reduces the threshold at each
value of M ; a higher value of � implies higher expected future payoLs from reducing
emissions now.

Fig. 4 shows 
 ∗(M) as a function of �2, the volatility of M , again for a value of M
equal to 50 million tons, and for � equal to 0 and 0.01. The threshold 
 ∗(M) increases
with �2, but only slowly. As discussed above, with M=50 million, continued emissions
increase M by a small amount in percentage terms over a 20- or 30-yr period, so that
stochastic Iuctuations in M can have only a small eLect on the value of waiting (and

13 As mentioned earlier, in the case of global warming most of the uncertainty is over the future temperature,
which in turn depends on M . However, there is little reason to expect stochastic changes in temperature to
depend on the current temperature level.
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that eLect is due to the convexity of B(
;M)). Thus changes in �2 can have only a
small eLect on the threshold that triggers policy adoption. (But note that changes in
�2 will have a larger eLect on the threshold if M is small.) A change in �, however,
will again have a large eLect on the threshold because it changes the expected future
payoLs from emissions reductions.

4. Conclusions

Environmental policies, which impose sunk costs on society, are often adopted in
the face of considerable uncertainties over the Iow of net bene?ts that they will gen-
erate. On the other hand, the adoption of those policies also yields “sunk bene?ts”
in the form of averted irreversible environmental damage. These opposing incentives
for early versus late adoption were illustrated in the context of a simple two-period
model in an emissions-reducing policy that could be adopted either now or at some
?xed time in the future. This timing problem was explored again through the use
of a continuous-time model in which adoption could occur at any time, and there is
uncertainty over the future economic bene?ts of policy adoption, and over the future
evolution of the pollutant stock.

In both cases, I focused largely on a one-time adoption of an emission-reducing
policy. One might argue that policies could instead be adopted or changed on an
“incremental” basis; for example, a carbon tax could be imposed and then adjusted
every few years in response to the arrival of new information regarding global warming
and its costs. In reality, however, policy adoption involves large sunk costs of a political
nature—it is diMcult to adopt a new policy in the ?rst place, or to change one that is
already in place.

In addition, I assumed that policy-induced costs were completely sunk, and that pol-
icy adoption is irreversible in that the policy could not be partially or totally reversed
in the future. (In Section 2.2, however, I examined the implications of allowing for a
single policy reversal.) It seems to me that this kind of irreversibility is often an inher-
ent aspect of environmental policy, both for policies that are in place (e.g., the Clean
Air Act), and for policies under debate (e.g., GHG emission reductions). Nonetheless,
the assumption of complete irreversibility may be extreme. Richer models are needed
to explore the implications of relaxing this assumption.

Finally, one could argue that my speci?cation of the stochastic process for the stock
of pollutant, M; is restrictive. This process could easily be generalized, but it would
then be necessary to obtain numerical solutions of the diLerential equations for the
value functions. That would be a logical extension of this work, because one could
then also allow for a nonzero decay rate, �.
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