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Abstract

The standard framework in which economists evaluate environmental policies is cost–
benefit analysis, so policy debates usually focus on the expected flows of costs and benefits,
or on the choice of discount rate. But this can be misleading when there is uncertainty over
future outcomes, when there are irreversibilities, and when policy adoption can be delayed.
This paper shows how two kinds of uncertainty — over the future costs and benefits of
reduced environmental degradation, and over the evolution of an ecosystem — interact with
two kinds of irreversibilities — sunk costs associated with an environmental regulation, and
sunk benefits of avoided environmental degradation — to affect optimal policy timing and
design. q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The standard framework in which economists evaluate environmental policies
is cost–benefit analysis. Consider, for example, a carbon tax to reduce global
warming. By distorting relative prices, this policy would impose an expected flow
of costs on society in excess of the government tax revenues it generates.
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Presumably, it also yields an expected flow of benefits. Households and firms
would burn less fuel, less CO would accumulate in the atmosphere, global mean2

temperatures would not rise as much, and the damage caused by higher tempera-
tures would be correspondingly smaller. The standard framework would recom-
mend this policy if the present value of the expected flow of benefits exceeds the
present value of the expected flow of costs. Any debate among economists would
likely be over the expected costs and benefits, or over the choice of discount rate.

This standard framework ignores three important characteristics of most envi-
ronmental problems and the policies designed to respond to them. First, there is
almost always uncertainty over the future costs and benefits of adopting a
particular policy. With global warming, for example, we do not know how much
average temperatures will rise with or without reduced CO emissions, nor do we2

know the economic impact of higher temperatures. Second, there are usually
important irreversibilities associated with environmental policy. These irreversibil-
ities can arise with respect to environmental damage itself, but also with respect to
the costs of adopting policies to reduce the damage. Third, policy adoption is
rarely a now-or-never proposition. In most cases, it is feasible to delay action and
wait for new information, or at least begin with policies that are limited in their
scope and impact.

Environmental policy involves two kinds of irreversibilities, and they work in
opposite directions. First, policies aimed at reducing ecological damage impose
sunk costs on society. These sunk costs can take the form of discrete investments;
for example, coal-burning utilities might be forced to install scrubbers, or firms
might have to scrap existing machines and invest in more fuel-efficient ones. Or
they can take the form of flows of expenditures, e.g., a price premium paid by a
utility for low-sulfur coal. In either case, such sunk costs create an opportunity
cost of adopting a policy now, rather than waiting for more information about
ecological impacts and their economic consequences. This opportunity cost biases
traditional cost–benefit analysis in favor of policy adoption.

Second, environmental damage can be partially or totally irreversible. For
Ž .example, increases in greenhouse gas GHG concentrations are long lasting; even

if radical policies were adopted to drastically reduce GHG emissions, these
concentrations would take many years to fall. Also, the damage to ecosystems

Žfrom higher global temperatures or from acidified lakes and streams, or the
.clear-cutting of forests can be permanent. This means that adopting a policy now

rather than waiting has a sunk benefit, i.e., a negative opportunity cost, which
biases traditional cost–benefit analysis against policy adoption. Hence, it may be
desirable to adopt a policy now, even though the traditional analysis declares it
uneconomical.1

1 Ž . Ž .This point was made some two decades ago by Arrow and Fisher 1974 , Henry 1974 , and
Ž . Ž .Krutilla and Fisher 1975 , and has been elaborated upon by Fisher and Hanemann 1990 , among

others.
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At issue is whether these irreversibilities are important, and if so, what their
overall effect is. The answer is likely to depend on the nature and extent of
uncertainty. In general, two types of uncertainty are relevant. The first is economic
uncertainty, i.e., uncertainty over the future costs and benefits of environmental
damage and its reduction. In the case of global warming, even if we knew how
large a temperature increase to expect from any particular increase in GHG
concentrations, we would not know the resulting cost to society — we cannot
predict how a temperature increase would affect agricultural output, land use, etc.2

The second type is ecological uncertainty, i.e., uncertainty over the evolution of
the relevant ecosystems. For example, even if we knew that we could meet a
specified policy target for GHG emissions over the next 40 years, we could not
predict the resulting levels of atmospheric GHG concentrations at different points
in time, nor could we predict the average global equilibrium temperature increase
and how that increase would vary regionally.3

Recent studies have begun to examine the implications of irreversibility and
uncertainty for environmental policy, at times drawing upon the theory of irre-

4 Ž .versible investment decisions. Kolstad 1992 developed a three-period model to
study the implications of cost–benefit uncertainty for the adoption of an emis-
sions-reducing policy that can involve sunk costs. In his model, the accumulated
stock of pollutant is permanent. Emissions can be reduced in the first or second
periods, and between these periods there is a reduction in uncertainty over the net
benefits from a lower stock of pollutant. He shows that if there is no sunk cost of
policy adoption, the faster is the rate of learning, the lower is first-period

Ž .emissions. This is a version of the result of Arrow and Fisher 1974 and Henry
Ž .1974 ; because the stock of pollutant is permanent, society should pollute less
now if there is uncertainty over the future damage from the pollutant. But Kolstad

2 Likewise, there is considerable uncertainty over the costs of acid rain; even if we could predict the
increase in acidity in lakes and rivers from NOX emissions, the impact on fish and other organisms is
uncertain, and hence so is the social cost. For most environmental problems there is uncertainty over
the future social cost of the environmental degradation, and thus over the social benefit of any policy
response.

3 Even given assumptions about economic growth in different parts of the world, predicting GHG
Ž .emissions in the absence or presence of policy intervention is difficult, and subject to considerable

uncertainty. For a forecasting model of CO emissions with an explicit treatment of forecast2
Ž .uncertainty see Schmalensee et al., 1998 . For general discussions of the uncertainties inherent in the

Ž . Ž .analysis of global warming, see Cline 1992 and Solow 1991 . Similar uncertainties exist with respect
to acid rain. For example, we are unable to accurately predict how particular levels of NOX emissions
will affect the future acidity of lakes and rivers, or the viability of the fish populations that live in them.

4 Ž .For an introduction to and overview of the literature on irreversible investment, see Dixit 1992
Ž . Ž .and Pindyck 1991 . For a more detailed treatment, see Dixit and Pindyck 1994 and Abel et al.

Ž .1996 .
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goes on to show that if the cost of policy adoption is at least partly sunk, the effect
of uncertainty on the initial level of emissions is ambiguous.5

Ž .Hendricks 1992 developed a continuous-time model of global warming
similar to the one in this paper. As I do, he studied the timing of policies to

Ž .irreversibly reduce emissions, allowing for a partially irreversible accumulation
of the pollutant. The particular form of uncertainty he considers is over a
parameter linking the global mean temperature increase to the atmospheric GHG
concentration, and he allows for learning by assuming that the uncertainty over
this parameter falls over some fixed period of time. He focuses on how the speed
of learning affects the timing of policy adoption.6

Ž . Ž .Finally, related studies by Chao 1995 and Narain and Fisher 1998 deserve
mention. Chao examines randomly arriving catastrophic damage from GHG
emissions, where the probability of arrival is increasing the emissions rate. Narain
and Fisher also develop a model with both ecological and economic irreversibili-
ties. The uncertainty is with respect to the Poisson arrival of a ‘‘catastrophe’’ that
drives utility permanently to zero, with a mean arrival rate that is an increasing
function of the stock of pollutant. Hence, the probability of a ‘‘catastrophe’’ over
any period can be reduced by investing in pollution reduction. This kind of
uncertainty has a very limited effect — it simply increases the effective discount
rate.

In this paper, I assume that information arrives continually, but there always
remains uncertainty over the future evolution of key environmental variables, and
over the future costs and benefits of policy adoption. I focus on how irreversibili-
ties and uncertainty interact in affecting the timing and design of policy. The next
section begins by laying out the basic analytical framework, and shows how policy
design and timing can be treated as an optimal stopping problem. I consider
policies, which entail a flow of sunk costs, to reduce emissions of a pollutant

5 Ž .Kolstad 1996 also obtains this general result in the context of a two-period model. In related
Ž .work, Hammitt et al. 1992 use a two-period model to study implications of uncertainty for adoption

of policies to reduce GHG emissions, and show that under some conditions it may be desirable to wait
Ž . Ž .for additional information. Kolstad 1994 and Kelly and Kolstad 1999 also examined GHG emission

policy in the context of a growth model with uncertainty and learning about the value of an unknown
parameter. Kolstad finds that temporary emission reduction policies dominate permanent ones, and
Kelly and Kolstad characterize the rate of learning in a Bayesian context and show its implications for
policy.

6 Although he did not do so, Hendricks could also use his model to study the implications of the
degree of irreversibility of environmental damage, by varying the parameter that describes the rate of

Ž .natural GHG removal from the atmosphere. Conrad 1992 also developed a continuous-time model of
emission control, in which the social cost of pollution is a quadratic function of the stock of pollutant,
with a coefficient that fluctuates as a geometric Brownian motion. The linear–quadratic structure

Ž . Ž .implies that emissions will be zero a maximum rate if this coefficient exceeds is below a critical
value. He shows that this critical value is a declining function of volatility. However, the only
irreversibility is with respect to the stock of pollutant, so the results are along the line of those in Henry
and Arrow and Fisher.
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which accumulates. In Section 3, I consider a model with economic uncertainty,
i.e., there is uncertainty over the future social cost of any given stock of pollutant.
I first consider the case in which policy adoption implies reducing emissions to
zero, and then the case in which the size of the reduction can be chosen optimally
at the time of adoption. In addition, I examine the policy timing problem for both
linear and convex economic benefit functions. In Section 4, I allow for gradual
emission reductions, again in the presence of economic uncertainty. Section 5
examines the implications of ecological uncertainty by allowing the evolution of
the stock of pollutant to be stochastic. Section 6 concludes.

2. Analytical framework

In order to get at the basic issues and obtain results that are reasonably easy to
interpret, I introduce a model that captures the basic stock externality associated
with many environmental problems in as simple a way as possible, while still
allowing for key sources of uncertainty. Let M be a state variable that summa-t

rizes one or more stocks of environmental pollutants. For example, M might be
the average concentration of CO in the atmosphere, the acidity level of a lake,2

forest, or the concentrations of a mix of pollutants that make up urban smog. Let
E be a flow variable that controls M , e.g., the rate of CO or SO emissions. It t 2 2

will assume that absent some policy intervention, E follows an exogenoust

trajectory. The evolution of M is endogenous, and is given by:t

d Ms bE t ydM t d tqdf t , 1Ž . Ž . Ž . Ž .

Ž .where df t is the increment of a stochastic process, and d is the natural rate at
which the stock of pollutant dissipates over time. Ignoring the stochastic term this

Ž .is a simplified version of a basic diffusion model used by Nordhaus 1991 to
Ž . 7compare costs and benefits of policies to reduce greenhouse gas GHG emissions.

I will assume that the flow of social cost associated with the stock variable Mt
Ž .is specified by a function B M ,u , where u shifts over time, perhaps stochasti-t t t

cally, to reflect changes in tastes and technologies. For example, if M is the GHG
concentration, shifts in u might reflect the development of new agricultural
techniques that reduce the social cost of a higher M, or alternatively, demographic

7 Ž .Nordhaus’ model supplements Eq. 1 with an adjustment process for temperature:
w xdTrd ts a mM t yT tŽ . Ž .

where T is the increase in mean temperature from GHGs, M is atmospheric GHG concentration from
Ž .industrial activity, and a is a delay parameter. Associated with a higher T is a global economic cost

resulting from, among other things, land loss and reduced agricultural output. I am simplifying things
by dropping the variable T and associating an economic cost directly with M.
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Ž .changes that raise the cost. One would generally expect B M ,u to be convex int t
Ž .M at least when M is sufficiently large , but for simplicity, I will initiallyt t

assume that B is linear in M. Uncertainty over the future costs and benefits of
policy adoption can be introduced by letting u follow a stochastic process.

The implications of uncertainty and irreversibility are easiest to see by focusing
on policies that are introduced at a specific point in time, and that have a
long-term impact on the evolution of E , although I will also consider policies thatt

are introduced gradually. Consider a policy introduced at time T that changes the
evolution of E to some new trajectory E) for tGT. It would impose a flow oft t

Žcosts on society, some portion of which will be sunk. I denote the present value at
.time T of the expected flow of sunk costs associated with this policy by

Ž ) .K E ,v , where v is a vector of policy characteristics. For example, v mightt

describe an absolute reduction in E , or a reduction in the expected rate of growtht

of E .8t

I will be considering policies that involve a once-and-for-all reduction in E tot

some new and permanent level E , with 0FE FE . I will also begin by1 1 0

assuming that the social cost of adopting this policy is completely sunk, and its
present value at the time of adoption is a convex function of the size of the

Ž . 9emission reduction, which I denote by K E . The policy objective is to1

maximize:

` ˜yr t yrTWsEE B M ,u e d tyEE K E e , 2Ž . Ž . Ž .H0 t t 0 1
0

˜Ž . Ž .subject to Eq. 1 . Here, T is the in general, unknown time that the policy is
adopted, E yE is the amount that emissions are reduced, EE denotes the0 1 0

expectation at time ts0, and r is the discount rate. Thus, we have an optimal
stopping problem — we must determine when it is optimal to commit to spending

Ž .K to reduce E , given the possibly stochastic dependence of M on E , andt t t

given the stochastic evolution of u .t
This general model with two forms of uncertainty is difficult to solve, so I

proceed by considering special cases. In particular, I first allow for only economic
uncertainty, and then later I introduce ecological uncertainty.

8 For example, we might have an emission level E that, absent a policy intervention, will growt

stochastically according to:
d E s a E d tqs E d z .t E t E t E

ŽThen, a policy might involve a one-time reduction in E thereby reducing the expected value of E fort t
.all tGT , or it might involve a reduction in a , the expected rate of growth of E .E t

9 ŽNote that the policy might entail a flow of sunk costs over time e.g., expenditures for insulation
.on all new homes . All that matters is that adopting the policy implies a commitment to this flow of

costs, so that we can replace the flow with its present value at the time of adoption.
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3. Economic uncertainty

In this section and the next, I allow the social benefit function to shift
stochastically over time. I will begin by assuming that policy adoption implies
reducing E from its initial level E to zero. I also assume for now that the cost of0

Ž .emissions reduction as a linear function of the size of the reduction, and B M ,ut t

is a linear function of M , i.e.:t

B M ,u syu M . 3Ž . Ž .t t t t

Hence, if it is optimal to reduce E at all, it is indeed optimal to reduce it to zero.
Later I will make the cost of reducing emissions a convex function of the size of
the reduction, and let the size of the reduction be a policy choice variable.

Ž .Since there is no ecological uncertainty, Eq. 1 is simply:

d Mrd tsbE t ydM t .Ž . Ž .

I introduce economic uncertainty by letting u follow a geometric Brownian
motion:

dusaud tqsud z . 4Ž .

This means the current flow of social cost from a level of pollutant M is known,t

but the future flow of social cost is always uncertain, and the amount of
uncertainty grows with the time horizon. Thus, we learn about the social cost of
pollution as time passes, but the flow of social cost in the future will always be
unknown. Of course one might argue that for some environmental problems, most

Žor all of the uncertainty over social costs will eventually be resolved. In effect,
Ž . .this means that s in Eq. 4 will fall over time. For problems such as global

warming, acid rain, and species extinction, there is little evidence of such a
Žresolution of uncertainty as opposed to a continuing evolution of our assessment

.of social costs .
Suppose the cost of reducing E from E to zero is given by KskE . We want0 0

Ž .a policy adoption rule that maximizes the net present value function of Eq. 2
Ž . Ž .subject to Eq. 4 for the evolution of u , and Eq. 1 for the evolution of M. This

problem can be solved using dynamic programming by defining a net present
NŽ .value function for each of two regions. Let W u , M denote the value function

Ž . A Ž .for the ‘‘no-adopt’’ region in which E sE , and let W u , M denote the valuet 0
Ž .function for the ‘‘adopt’’ region in which E s0 .t

Ž . NŽ .Since B M ,u syu M , we know W u , M must satisfy the Bellmant t t t

equation:

1N N N 2 2 NrW syu Mq bE ydM W qau W q s u W . 5Ž . Ž .0 M u uu2



( )R.S. PindyckrResource and Energy Economics 22 2000 233–259240

Ž N N .Partial derivatives are denoted by subscripts, e.g., W sEW rEM . Likewise,M
A Ž . 10W u , M must satisfy the Bellman equation:

1A A A 2 2 ArW syu MydMW qau W q s u W . 6Ž .M u uu2

NŽ . A Ž .These two differential equations must be solved for W u , M and W u , M
subject to the following set of boundary conditions:

W N 0, M s0, 7Ž . Ž .
W N u ) , M sW A u ) , M yK , 8Ž . Ž . Ž .
W N u ) , M sW A u ) , M . 9Ž . Ž . Ž .u u

Here, u ) is the critical value of u at or above which the policy should be
Ž .adopted. Condition 7 reflects the fact that if u is ever zero, it will remain at zero
Ž .thereafter. Condition 8 is the value matching condition; it simply says that when

usu ) and society exercises its option to adopt the policy, it incurs a sunk cost
A Ž ) . Ž .KskE and hence receives the net payoff W u , M yK. Condition 9 is the0

‘‘smooth pasting condition;’’ if adoption at u ) is indeed optimal, the derivative of
the value function must be continuous at u ).

These differential equations and associated boundary conditions have the
solution:

u M bE u0N gW u , M sAu y y , 10Ž . Ž .
rqdya rya rqdyaŽ . Ž .

and:

u M
AW u , M sy , 11Ž . Ž .

rqdya

where A is a positive constant to be determined, and, from boundary condition
Ž . 2 Ž .7 , g is the positive root of the quadratic equation 1r2s g gy1 qagyrs0,
i.e.:

21 a a 1 2 r
gs y q y q )1. 12Ž .(2 2 2ž /2 2s s s

Ž . NNote from Eq. 10 that W has three components. The first term on the
Ž .right-hand side of Eq. 10 is the value of the option to adopt the policy at some

time in the future. The second term is the present value of the flow of social cost
Žresulting from the current stock of pollutant, M. The current stock, M, decays at

10 Ž . Ž .Eqs. 5 and 6 can be written in more compact form as:
rW syu Mq 1rd t EE dW .Ž . Ž .t

Thus the social return on W N or W A has two parts, the flow of social cost yu M, and the expected
Ž .rate of increase in W or ‘‘capital gain’’ .
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the rate d , while u has an expected rate of growth a , so the present value is
Ž . .yu Mr rqdya . The third term is the present value of the flow of social cost

Žthat results if emissions continued at E forever. The present value of the flow of0
Ž .cost from emissions E now is bE ur rqdya , but the present value of the0 0

Žflow of cost from emissions E now and in all future periods is bE ur rqdy0 0
.Ž . .a rya . This last component of social cost is reduced by the value of the

option to reduce emissions, i.e., the first term. Once the policy is adopted, Es0
and the value function W A applies. Then the only social cost is from the current
stock of pollutant.

There are still two unknowns, the constant A and critical value u ) at which
the policy should be adopted, and they are determined from boundary conditions
Ž . Ž .8 and 9 :

ggy1
gy1 bE0

As , 13Ž .ž /K rya rqdya gŽ . Ž .
g K rya rqdyaŽ . Ž .

)u s . 14Ž .ž /gy1 bE0

Ž . Ž .Eqs. 13 and 14 apply for any sunk cost of policy adoption, K. If we make
use of our assumption that KskE , these equations become:0

ggy1
gy1 b

As E , 15Ž .0ž /k rya rqdya gŽ . Ž .
so that the value of the option to adopt the policy is linear in E , and:0

g
)u s k rya rqdya rb . 16Ž . Ž . Ž .ž /gy1

In the absence of any uncertainty or irreversibilities, it would be optimal to adopt
the policy when u reached a level such that:

bu
sk . 17Ž .

rya rqdyaŽ . Ž .
Ž .The left-hand side of Eq. 17 is just the present value of the flow of social cost

Žfrom one extra unit of emissions now and throughout the future adjusted for the
.absorption rate b , and the right-hand side is the cost of permanently reducing

Ž .emissions by one unit. Hence, Eq. 17 is a standard cost–benefit calculation. We
can rewrite the equation in terms of a critical value u ) that triggers policy
adoption:

u ) sk rya rqdya rb .Ž . Ž .
When there is uncertainty, this critical level u ) is simply increased by the factor

Ž .gr gy1 .
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Note that an increase in s implies a decrease in g and hence an increase in
u ). The more uncertainty there is over the future social cost of the pollutant, the
greater is the incentive to wait rather than adopt the policy now, and hence the
greater must be the current cost in order to trigger adoption. An increase in the
discount rate r increases the value of the option to adopt the policy and thus also
increases u ). The cost, K , is paid in the future when the policy is adopted; hence
an increase in r implies a greater reduction in the present value of that cost, so
that the option to adopt is worth more but it should be exercised later. An increase
in d , the rate of ‘‘depreciation’’ of the stock of pollutant, also increases u ) ; a
higher value of d implies that the environmental damage from emissions is more
reversible, so that the sunk benefit of adopting the policy now rather than waiting
is lower. Finally, u ) is a monotonically decreasing function of a . The reason is
that a higher value of a implies a higher future flow of social cost from whatever
the level of M at the time of policy adoption, making it optimal to adopt earlier so
that M is smaller.11

Also, observe that an increase in the initial rate of emissions E leaves u )

0
Žunchanged but increases the value of society’s option to adopt the emission-re-
. )ducing policy . The reason is that KskE , so that u is independent of E , and0 0

A increases linearly with E . Finally, u ) is also independent of M. Because0
Ž . Ž N A .B M,u is linear in M so that the value functions W and W are linear in M ,

any given level of M implies the same reduction in social welfare if the policy ist
NŽ .adopted at time t as it does if the policy is not adopted. Hence, W u , M y

A Ž . )W u , M is independent of M, and so is u .
We can frame this timing problem in terms of a comparison of the opportunity

costs of current adoption with the corresponding opportunity ‘‘benefits’’ by
calculating W ) yW , where W ) is the value function when the adoption0

decision is made optimally, and W is the value function when the policy is0

adopted immediately. Suppose u-u ) , so that it is not yet optimal to adopt the
policy, and W ) sW N. Since W sW A yK , W ) yW sW N yW A qK , or:0 0

bE u0
) gW yW sKqAu y . 18Ž .0 rya rqdyaŽ . Ž .

Ž .The first term on the right-hand side of Eq. 18 is the direct cost of current
adoption. The second term is value of the option to adopt, and since adoption
implies ‘‘killing’’ this option, it is an opportunity cost of current adoption. The
last term is the present value of the additional flow of social cost from continued
emissions, and thus is an opportunity ‘‘benefit’’ of current adoption. Since u-u )

and W ) yW )0, the direct cost and opportunity cost outweigh this opportunity0

benefit, and adoption should be delayed.

11 Unlike with a financial option, there are no restrictions on the range of a . It would appear from
Ž . ) )Eq. 16 that u ™0 as a™ r, but g™1, so lim u must be found using l’Hopital’s Rule. It isa™ r

easy to show that u ) is a continuous function of a at a s r.
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Note that as the model is currently structured, it would never be optimal to
Žreduce emissions by anything less than 100% assuming it would optimal to

.reduce emissions at all . The reason is that with KskE , the value of the option0

to adopt the policy, Au g, is linear in E , so that W N and W A are linear in M and0

E . Shortly we will make K a nonlinear function of the reduction in emissions,0

and examine policies that involve a one-time partial reduction in emissions, as
well as gradual incremental reductions.

3.1. A numerical example

A numerical example will help to explore the characteristics of the solution.
ŽSuppose that as0 so that the social cost per unit of M is expected to remain

.constant , rs0.04, ds0.02, ss0.20, bs1, E s300,000 tonsryear, u s0 0

US$20 per ton, and ks6667 so that KskE sUS$2 billion. Then, from Eqs.0
Ž . Ž . Ž . )12 , 13 , and 14 , gs2.0, As1,953,125, and u sUS$32 per ton. Hence, at
the current value of u s20, the policy should not be adopted. However, the value0

of the option to adopt it in the future, Au g, is US$0.78 billion. The policy should
be adopted when u reaches US$32 per ton; at that point Au g sUS$2.0 billion,

Ž . Ž .and boundary conditions 8 and 9 are satisfied. Fig. 1 shows this solution
Ž A .graphically for the case in which Ms0 so that W s0 for all values of u . Note

that u ) is found at the point of tangency of W N with the line W A yK , and since
A ŽMs0, W yK is a horizontal line at yK. If M were greater than zero, we

A Ž . NŽ .would have W syu Mr rqdya , so we would rotate both the W u curve
A .and the line W yK downwards.

Fig. 1. Solution for Ms0.
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Fig. 2. u ) as a function of s , d s0.01, 0.02.

Fig. 2 shows u ) as a function of s for ds0.01 and 0.02. Note that u ) rises
sharply with s . This is partly due to the fact that we have framed the policy
problem as an all-or-nothing proposition, but it nonetheless suggests that assessing
uncertainty over the future costs and benefits of emission reduction may be
particularly critical to the policy adoption decision.

As mentioned in the Introduction, environmental policy debates often focus on
the discount rate. However, for many environmental problems, the range of
plausible discount rates is much smaller than the range of plausible degrees of
uncertainty. It is therefore useful to examine the sensitivity of u ) to both r and
s . This can be done by calculating the semi-elasticities dlogu )rd r and
dlogu )rd s , which are given by:

dlogu ) 2 rqdy2aŽ .
s

d r rya rqdyaŽ . Ž .
1

y ,
21

2 2 2g gy1 s ars y q2 rrsŽ . (ž /2

and:

y1r221
2 2 2 22 rq2a rs ya ars y q2 rrs y2aŽ .

) ž /ž /dlogu 2
s .3ds g gy1 sŽ .
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Table 1
Semi-elasticities of u )

) ) )r s u dlogu rd r dlogu rds

0.04 0.2 32.0 33.33 3.33
0.04 0.4 59.71 27.23 2.89
0.04 0.6 101.47 23.48 2.43
0.04 0.8 158.38 21.25 2.04
0.02 0.2 13.96 52.64 4.47
0.06 0.2 56.56 24.54 2.77
0.08 0.2 87.48 19.47 2.43

Table 1 shows these semi-elasticities, along with u ) , for different values of r
Žand s . In all cases, as0, ds0.02, KsUS$2 billion, and E s300,0000
.tonsryear. Note that a 0.01 change in r results in approximately the same

percentage change in u ) as does a 0.1 change in s . But this does not mean that
the discount rate is a more important determinant of environmental policy. First,
plausible values of the real discount rate are confined to a small range — for
analyses of global climate change, for example, between 0.02 and 0.05. But

Žplausible values for s or the standard deviation of other stochastic state vari-
.ables can fall within a much larger range. Second, most traditional cost–benefit

analyses of environmental policy are done by implicitly assuming that ss0.
Hence, even if the correct value of s is only 0.2 or 0.3, just accounting for
uncertainty can matter a lot.

3.2. ConÕex costs and partial reduction in emissions

We now consider policies that only partially reduce emissions. We will assume
that the sunk cost of the policy is a quadratic function of the amount that
emissions are reduced:

2Ksk E yE qk E yE , 19Ž . Ž . Ž .1 0 1 2 0 1

where E yE is the amount of the reduction, and k , k )0. Thus, the cost of a0 1 1 2
Ž . Ž . Ž .1-unit permanent reduction in E is k E syd Krd E sk q2k E yE .1 1 2 0 1

Ž ) .We must again find a rule in the form of a critical value u for the optimal
timing of policy adoption, but now we must also determine the optimal size of the
reduction, i.e., the optimal value of E .1

NŽ . A Ž .As before, let W u , M and W u , M be the value functions for the
NŽ .‘‘no-adopt’’ and ‘‘adopt’’ regions, respectively. W u , M must again satisfy the

Ž . Ž .Bellman Eq. 5 . However, Eq. 6 is no longer the correct Bellman equation for
A Ž .W u , M . After adoption of the policy, d Mrd tsbE ydM, so we must include1
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an additional term, bE W A, where E is the emissions level after policy adoption.1 M 1
A Ž .Hence, W u , M now satisfies:

1A A A 2 2 ArW syu Mq bE ydM W qau W q s u W . 20Ž . Ž .1 M u uu2

A Ž .The solution for W u , M is therefore:

u M bE u1AW u , M sy y , 21Ž . Ž .
rqdya rya rqdyaŽ . Ž .

NŽ . Ž .while the solution for W u , M is again given by Eq. 10 , i.e.:

u M bE u0N gW u , M sAu y y .Ž .
rqdya rya rqdyaŽ . Ž .

Since E is chosen optimally, it depends on u at the time of adoption, i.e., on1
) Ž ) Ž ) .. Ž . Ž . Ž .u . Hence, KsK E u in boundary condition 8 . Using Eqs. 19 and 21 ,

we choose E) to maximize the net payoff from policy adoption:

u M bE u1Amax W u , M ;E yK E sy yŽ . Ž .
rqdya rya rqdyaE Ž . Ž .

2yk E yE yk E yE , 22Ž . Ž . Ž .1 0 2 0

so that:

k bu1
)E sE q y . 23Ž .0 2k 2k rya rqdyaŽ . Ž .2 2

) Ž . Ž .We now substitute this expression for E into boundary conditions 8 and 9 ,
and then use these conditions to find u ) and the constant A. Making the

Ž .Ž . )substitutions and denoting r' rya rqdya , we find that u must satisfy
the quadratic equation:

gy2 b 2u 2 y2 r gy1 b k uqgr 2 k 2 s0. 24Ž . Ž . Ž .1 1

Ž .We know that g , which is given by Eq. 12 , exceeds 1. However, let us
A Ž . NŽ . Ž ) Ž ..assume for the moment that g)2. Because W u yW u yK E u is

) Ž .convex in u , u is the largest root of the quadratic Eq. 24 , i.e.:

r gy1 k g gy2Ž . Ž .1
)u s 1q 1y . 25Ž .) 2b gy2Ž . gy1Ž .

Then, A is given by:

b 2 b k k 2
1 1

As y q . 26Ž .ggy2 gy1 )2 ) ) 4k uŽ .4k r u 2k r uŽ . Ž . 22 2
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) ) Ž ) . Ž .Given u , we can find E u from Eq. 23 . It is easy to confirm that as s

Ž . ) )increases so that g decreases , u will increase and E will fall. However, we
must account for the fact that E) must lie between 0 and E .0

) Ž .Let u denote the value of u for which E s0. From Eq. 23 , we see thatmax

u srk rbq2 rk E rb. Hence, E) G0 implies that u ) Fu srk rbqmax 1 2 0 max 1

2 rk E rb , or equivalently, that gG2qk rk E . Thus, our assumption that2 0 1 2 0

g)2, which implies that s 2 -ry2a , will always hold. If s is sufficiently
Ž . Ž .large so that g-2qk rk E , Eqs. 25 and 26 will no longer apply. Instead,1 2 0

E) is constrained to be zero and so is no longer a choice variable. In that case the
Ž . Ž . Žsolution to the optimal timing problem is again given by Eqs. 13 and 14 with

2 . )Ksk E qk E . Also, we must have E FE , but this will always be the case;1 0 2 0 0
Ž . Ž . ) Ž ) . 12observe from Eqs. 23 and 25 that E u -E for any g)2.0

Once again, a numerical example will be helpful. Suppose that E s300,0000
Žtonsryear, k s5000 and k s0.0055 so that the cost of reducing E to zero1 2

.would be about US$2 billion , ss0.045, and as in the earlier example, as0,
rs0.04, ds0.02, and bs1. In this case, a policy is never adopted for

Ž .u-u s12 even if s is reduced to zero , and u s20. For ss0.045,min max
) ) ) Ž .gs6.8, so that u s17, i.e., u -u so that E )0. From Eq. 23 , we seemax

that E) s110,606 tonsryear.
The amount that emissions are reduced depends on the degree of uncertainty

over the future benefits from a reduction, and on other parameters. Fig. 3 shows
) ) Žthe dependence of both E and u on s for this numerical example. In the

figure, u ) is multiplied by 104 so that it can be plotted with E) on the same
.scale. When ss0, the standard NPV rule applies; the policy should be adopted

if uG12. If u is just slightly greater than 12, the policy is adopted but emissions
Žare reduced only very slightly. The reason is that in this numerical example,

.as0, so that if ss0, u cannot rise in the future. As s is increased, the critical
value u ) also increases, and E) falls. Note that for s)0.063, E) s0, so that

) Ž . Ž 2 .u is given by Eq. 14 with k E qk E substituted for K rather than Eq.1 0 2 0
Ž .25 .

We can likewise determine the dependence of u ) and E) on other parameters
Ž . Ž . Ž .from Eqs. 14 , 23 , and 25 . For example, a higher initial level of emissions, E ,0

does not affect the critical value u ) , but does imply a commensurately higher
) Ž .ending level E so that the size of the reduction is unchanged . Also, an increase

in k increases u ) , but an increase in k has no effect on u ) , although it1 2

increases E).

12 Ž . )It might appear from Eq. 23 that if b is very small, E will exceed E . But as b becomes0

smaller, u ) becomes larger, so that E) - E always.0
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Fig. 3. Partial emission reduction — dependence of E) and u ) on s .

3.3. ConÕex benefit function

Ž .We have assumed that the benefit function B M,u is linear in M, which
makes the optimal policy rules independent of M. This was convenient, but for
most environmental problems, the damage from a pollutant is like to rise more
than proportionally with the stock of the pollutant. Then the optimal policy rule
will depend on the stock. To explore this, we again make the cost of an emission
reduction linear in the size of the reduction, and assume emissions must be

Žreduced to zero once a policy is adopted, so that KskE . Of course if the size of0
.the emission reduction could be chosen, E s0 might not be optimal. Now,1

Ž .however, we let the benefit function B M,u be quadratic in M:

B M ,u syu M 2 . 27Ž . Ž .t t

NŽ . A Ž .The value functions W u , M and W u , M for the ‘‘no-adopt’’ and ‘‘adopt’’
Ž . Ž .regions will again satisfy the Bellman Eqs. 5 and 6 , but with the term yu M

2 Ž . Ž .replaced by yu M in each equation. Boundary conditions 7 to 9 also apply.
These equations have the following solution:

u M 2 2b 2E2u0N gW u , M sAu y yŽ .
rq2dya rya rq2dya rqdyaŽ . Ž . Ž .

2bE u M0
y , 28Ž .

rq2dya rqdyaŽ . Ž .
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and:

u M 2
AW u , M sy , 29Ž . Ž .

rq2dya

Ž .where A is a positive constant to be determined, and g is again given by Eq. 12 .
Ž .Note that the right-hand side of Eq. 29 and the second term on the right-hand

Ž .side of Eq. 28 is the present value of the flow of social cost from the present
Ž .stock of pollutant, M. The third and fourth terms on the right-hand side of Eq. 28

are the present value of the flow of social cost from future emissions at the rate
Ž .E . The first term on the right-hand side of Eq. 28 is the value of the option to0

reduce emissions to zero.
Ž . Ž . )Using boundary conditions 8 and 9 , the constant A and critical value u

are:

g
gy1 2gy1 2b E q2b rya MŽ .0

AsE , 30Ž .0 ž /k rya rq2dya rqdya gŽ . Ž . Ž .

and:

rya rq2dya rqdya kgŽ . Ž . Ž .
)u s . 31Ž .

2b gy1 bE q rya MŽ . Ž .0

The critical value u ) now depends on M; a higher value of M implies a
higher marginal social cost from additional emissions, and therefore a lower value

Žof u at which it is optimal to begin reducing emissions. For the same reason, a
.higher M increases the value of the option to reduce emissions. The rising

marginal social cost of emissions likewise implies that the higher is the current
emission level, E , the lower is u ). As before, a higher cost of emission0

reduction, k, and a higher decay rate, d , lead to a higher value of u ).
Most important, uncertainty affects the optimal adoption rule the same way it

Ž . )does when B u , M is linear in M. The parameter s affects u through the
Ž . Ž .multiplier gy1 rg , and g is given by the same Eq. 12 as before. Hence,

making the benefit function convex in M affects the optimal policy adoption rule,
but it does not affect the way that rule depends on uncertainty over the future
social costs of pollution. The critical value u ) for the certainty case is multiplied
by the same factor as before.

4. Gradual emission reductions

In the preceding section we assumed that there would be only one opportunity
to adopt an emissions-reducing policy. This is not terribly unrealistic; given the
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political difficulties of reaching a consensus and introducing a major new environ-
mental policy, it is unlikely that regulations could be revised frequently. On the

Žother hand, assuming that such regulations could never be revised once a new
.policy is in place is extreme. Rather than making arbitrary assumptions about the

Žallowed frequency of policy change or making assumptions about ‘‘menu costs’’
.of policy change so that the frequency is endogenous , I will assume the opposite

extreme — that the level of emissions can be reduced gradually and continuously.
Comparing the optimal policy in this case with that from the preceding section
provides insight into how the frequency with which regulations can be introduced
or changed affects the optimal timing and design of policy.

In this section, I will again assume that the cost of any incremental emission
reductions is completely sunk, which is equivalent to assuming that emissions can

Žonly be reduced. This assumption can easily be relaxed by making the cost of
.emission reductions only partly sunk. Policy makers must observe both u and the

stock variable M, and decide when and by how much to mandate emissions
reductions in response to changes in these variables.

For this problem to be of interest, either the benefit function or the cost
Ž .function must be convex. I will assume that the benefit function B u , M is linear

in u and M, and that the cost of the policy is a quadratic function of the amount
Ž .that emissions are reduced, as in Eq. 19 . Thus, the cost of a 1-unit reduction in E

Ž .is D Ksk q2k E yE . Letting m sk q2k E and m s2k , the cost of1 2 0 1 1 1 2 0 2 2

an incremental reduction is:

D Ksm ym E. 32Ž .1 2

Since B syu M , the payoff flow from a small reduction in the stock oft t t

pollutant, D M , is just D B syu D M . If emissions are reduced incrementally byt t t t

an amount D E at time ts0, the corresponding change in M is:t

bD E
yd tw xD M sy 1ye , 33Ž .t

d

so the social benefit from an incremental reduction in emissions at time t is:

`
yr Žtyt .

DW sEE D B e dtsbu D Err , 34Ž .Ht t t t
t

Ž .Ž .where r' rya rqdya . Given the current u , we must determine how fart

to reduce emissions initially, and how to make further reductions in response to
changes in u .

This is analogous to the incremental investment and capacity choice problem in
Ž . Ž .Pindyck 1988 . Suppose E sE currently, and let W E;u , M be the valuet

function given this E, and given u and M. Let D F be the value of society’s
Ž .option to permanently reduce E by one unit. Note that the cost of exercising that
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Ž . Ž . Ž .option is D F E;u , M qD K E , and the payoff is DW u . Then DF must satisfy
the Bellman equation:

1 2 2rD Fs bEydM D F qauD F q s u D F , 35Ž . Ž .M u uu2

subject to the boundary conditions:

D F E ;0, M s0, 36Ž . Ž .
D F E ;u ) , M sDW u ) yD K E , 37Ž . Ž . Ž . Ž .
D F E ;u ) , M sDW u ) . 38Ž . Ž . Ž .u u

Since DW and D K are independent of M, D F will be independent of M, and
the solution has the usual form:

D Fsau g , 39Ž .
Ž .with g)1 again given by Eq. 12 . Emissions should be reduced whenever u

) Ž . )exceeds the critical value u E , with du rd E-0. The constant a and the
) Ž . Ž . Ž .critical value u E are found from boundary conditions 37 and 38 :

gr m ym EŽ .1 2
)u E s , 40Ž . Ž .

gy1 bŽ .
g gy1

b gy1
as . 41Ž .ž / ž /gr m ym E1 2

Ž . Ž .To interpret Eq. 40 , note that r m ym E rb is the amortized sunk cost of1 2

an incremental reduction in emissions, normalized by the absorption rate b. Since
Ž .B u , M is linear, in the absence of uncertainty it would be optimal to reduce

emissions to the point where this amortized sunk cost is just equal to u , the social
cost per period of an incremental unit of the stock of pollutant, M. With
uncertainty, the threshold exceeds this amortized sunk cost by the multiple

Ž . ) Ž .gr gy1 . Also, note that as E is reduced, u rises and a falls . Depending on
the initial value of u , it may be optimal to initially reduce emissions by some large
amount, and then later reduce emissions gradually when u increases and hits the
boundary u ). For any value of E, u ) is increased if s increases, and is

) Ž .decreased if the decay rate d increases. Finally, given u E , we can determine
the optimal emissions level E).

4.1. Monte Carlo simulation

In this model, uncertainty affects the initial level of mandated emissions
reductions, and it also affects the maximum allowed emissions level over time. I
used a numerical example and ran a Monte Carlo simulation to examine the
magnitude of these effects and its dependence on s . In this example, the initial
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emissions level is E s300,000 tonsryear, the cost function parameters are0
Žk s5000 and k s0.0055 so that the cost of reducing E from 300,0001 2

.tonsryear to zero would be about US$2 billion , and rs0.04, ds0.02, and
bs1. I set as0.01, so that even absent uncertainty, emissions will gradually be
reduced as u increases. I varied s from 0 to 0.15, in increments of 0.005. For
each value of s , I ran 10,000 simulations of the evolution of u and the
corresponding optimal emissions level E).

Fig. 4 shows the results of this Monte Carlo simulation for the mean optimal
emissions level initially, and after 20 years. Note that when there is no uncertainty
Ž .i.e., ss0 , emissions are initially reduced from 300,000 to about 70,000
tonsryear, and then reduced gradually to zero as u and the corresponding social
cost of pollution rises. As s is increased, the initial allowed emissions level
increases, reflecting the value of waiting. Emissions are still reduced over time
Ž . )although reductions occur stochastically when s)0 , but the mean value of E
after 20 years also increases with s .

Fig. 5 shows the mean and median times until the optimal emissions level has
been reduced to zero. Both the mean and median times should increase monotoni-

) Ž .cally with s , because increases in s increase the threshold u E for every
value of E. In the figure, the mean time decreases for s)0.13, but this is an

Žartifact of the Monte Carlo simulation. In each run, the model was simulated for
1000 years, and for large values of s , there will be runs for which it takes longer
than this for E) to reach zero. In addition, the number of runs at this tail of the

.distribution is very small. Note that because the distribution of the time until zero

Fig. 4. Mean optimal emissions level at ts0 and 20 years.
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Fig. 5. Mean and median times until emissions are reduced to zero.

emissions is asymmetric, the mean time will exceed the median time for all s)0.
The difference between the mean time and median time illustrates an important

Žaspect of the effects of uncertainty. There is a value of waiting i.e., reducing
.emissions less than would be the case otherwise because of the possibility that u

will not increase as much as expected. For s)0, there are indeed realizations in
which it takes a very long time for u to grow to the point where eliminating
emissions is justified.

5. Ecological uncertainty

So far, the only form of uncertainty that we have considered has been over the
parameter u that shifts the benefit function B. In this section, I will assume that u

remains fixed, but that there is uncertainty over the evolution of M. Specifically, I
Ž .write Eq. 1 as:

d Ms bEydM d tqs d z . 42Ž . Ž .
Thus, even if the trajectory for E were known, future values of M would bet

Ž . 13uncertain and normally distributed .

13 It might seem more natural to assume that future values of M are lognormally distributed, i.e., to
describe the evolution of M by:
d Ms bEydM d tqs Md z ,Ž .

Ž .so that M could never become negative. I use Eq. 42 instead because it simplifies the numerical
solution of the model. The basic results would still apply if M were lognormally distributed.
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For uncertainty of this kind to have any effect on policy timing or design, the
Ž .benefit function B u , M must be convex in M. The reason is that if this function

were linear in M, stochastic fluctuations in M would have no effect on the
expected marginal social return from reductions in E, and thus could not affect the

Ž .optimal policy. This would be true even if the cost of emission reduction, K E ,
were a nonlinear function of the size of the reduction.

We will therefore assume that the benefit function is quadratic in M, i.e.,
Ž . 2 Ž .B M,u syu M . For simplicity, we will also assume that the sunk cost of ant

emission reduction is linear in the size of the reduction, and that emissions must be
reduced to zero once a policy is adopted. Thus, the cost of policy adoption is
KskE .0

We can now proceed as before, writing the Bellman equations for the value
functions W N and W A in the ‘‘no-adopt’’ and ‘‘adopt’’ regions:

1N 2 N 2 NrW syu M q bE ydM W q s W , 43Ž . Ž .0 M M M2

1A 2 A 2 ArW syu M ydMW q s W . 44Ž .M M M2

The value functions must also satisfy the boundary conditions:

W A 0 s0, 45Ž . Ž .M

W N M ) sW A M ) yK , 46Ž . Ž . Ž .

W N M ) sW A M ) , 47Ž . Ž . Ž .M M

where M ) is the critical value of M that triggers policy adoption. Note that
Ž . A Ž .condition 45 applies to the slope of W M at Ms0, and not the level.

Ž .Because M follows an arithmetic rather than geometric Brownian motion,
Ms0 is not an absorbing barrier, so we do not have a simple boundary condition

A Ž . Ž . 2 Afor the value of W 0 . However, since B M,u syu M , and W applies when
Es0, W A must reach its maximum at Ms0.

Ž . Ž . Ž .There is now only one state variable M , so that Eqs. 43 and 44 are
Ž .ordinary differential equations. The solution of Eq. 44 and boundary condition

Ž . A45 for W is:

u M 2 s 2u
AW M sy y . 48Ž . Ž .

rq2d r rq2dŽ .

This is just the present value of the flow of social cost from the current stock of
Ž .the pollutant, M, accounting for stochastic fluctuations in M even when Ms0 .

Note that an increase in s implies an increase in the magnitude of W A. This is an
implication of Jensen’s inequality; W A is a convex function of M.

Ž . NWithout restrictions on the parameter values, Eq. 43 for W does not have an
analytical solution. We will see shortly how this equation can be solved numeri-
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NŽ . )cally for W M and, simultaneously, for the critical value M . First we will
NŽ .consider the special case of ds0, for which W M does have an analytical

solution.

( )5.1. EnÕironmental damage completely irreÕersible ds0

A Ž . Ž .When ds0, the solution for W M in Eq. 48 reduces to:

W A M syu rM 2 qs 2 rr 2 . 49Ž . Ž . Ž .
Ž . N f1 M f 2 MAs for Eq. 43 , the homogeneous solution has the form W sB e qB e ,1 2

and the particular solution is a quadratic in M. By direct substitution, the solution
for W N is:

u rM 2 qs 2 2bE u bE qrMŽ . Ž .0 0N f MW M sBe y y , 50Ž . Ž .2 3r r

where:

bE0 2 2 2(fsy 1y 1q2 rs rb E )0, 51Ž .02s

and B is a constant that must be determined. The first term on the right-hand side
Ž .of Eq. 50 is the value of the option to adopt the policy. The second term is the

present value of the flow of social cost from the current stock of the pollutant, M,
allowing for stochastic fluctuations in M in the future. The third term is the
present value of the flow of social cost that would result if emissions continued at

Žthe rate E forever, again accounting for stochastic fluctuations in M which now0
.also has a deterministic component of growth .

The constant B and the critical value M ) can be found from the solution for
A Ž . Ž .W M along with the value-matching and smooth-pasting conditions 46 and

Ž .47 :

2bE u
)0 yf MBs e )0, 52Ž .2r f

and:

bE s 2 r 2K0
)M sy y q . 53Ž .

2 2 2r 2bE u(bE 1y 1q2 rs rb E 0ž /0 0

This solution has properties that we would expect. Note in particular that
EM )rEK)0, EM )rEr)0, EM )rEu-0, and EM )rEs)0. Thus, stochastic
fluctuations in M create an incentive to delay policy adoption. As a numerical
example, and for comparison to results shown below for the more general case of
d)0, we will set rs0.04, Ks4, E s0.3, bs1, and us0.002. Then, if0

Ž .ss0, the policy should be adopted immediately for any positive value of M.
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Fig. 6. Solution method for stochastic M.

However, if ss1, the policy should only be adopted when MGM ) s6.74, and
when ss4, the policy should be adopted when MGM ) s16.21.

5.2. General case

NŽ . )For the more general case of d)0, W M and the critical value M must be
A Ž .found numerically. This is done by utilizing the solution for W M given by Eq.

Ž . Ž . Ž .48 , along with the boundary conditions 46 and 47 . To obtain a numerical
Ž . )solution, we begin with a candidate number e.g., a best guess for M ; call this

) Ž NŽ ) . NŽ ) .M . We then use Eqs. 46–48 to get W M and W M , and we solve Eq.0 0 M 0
Ž . NŽ .43 backwards to determine a corresponding candidate solution for W M for
all M between 0 and M ). To be the actual solution, the candidate solution must0

satisfy one regularity condition for all values of M between 0 and M ) , and a0

second condition at Ms0. First, since an increase in M always implies a
reduction in the flow of current and future social benefits, we must have W N -0M

for all values of M between 0 and M ). Second, because of the convexity of
Ž . N 14 )B M,u , we must have W -0 at Ms0. Thus, the candidate number for MM M

Ž .is repeatedly adjusted up or down in smaller and smaller steps until both of these
conditions are satisfied.

14 If d s0, we will have W N F0 for all values of M between 0 and M ). However, if d )0, thisM M

condition must apply only at Ms0, since dM is increasing in M.
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Table 2
) Ž .Solutions for M r s0.04, b s1, K s4, E s0.3, u s0.0020

s d s0 d s0.02

0.3 5.48 11.08
0.5 5.73 11.59
0.8 6.28 12.45
1.0 6.74 13.05
2.0 9.59 16.47
4.0 16.21 25.75

5.3. Numerical example

This solution method is easiest to see in the context of a numerical example.
We will measure the stock of pollutant, M, in millions of tons, the emission rate in
millions of tons per year, and the value functions W A and W N and adoption cost
K in billions of dollars. Since the benefit function is Bsyu M 2, we measure u

Ž .2in billion dollarsr million tons . We set Ks4, E s0.3, us0.002, ss1,0

as0, and, as before, rs0.04, ds0.02, and bs1.
As Fig. 6 shows the solution for M ) in this example is 13.05. The figure

NŽ . )shows candidate solutions for W M corresponding to different values of M ,
A Ž . )along with W M yK. Note that for candidate values of M below 13.05,

NŽ . )W M )0 for small values of M, and for candidate values of M above 13.05,M
N Ž .W M )0 for small M. The solution procedure searches over candidate valuesM M

of M ) , using an increasingly narrow range.
Table 2 shows the critical value M ) for values of s ranging from 0.3 to 4.0,

and for d equal to 0 and 0.02. The table shows that M ) increases with s , but it
) Ž .also shows how M increases with d . A higher d implies a lower or negative

rate of drift for M — emissions are more reversible, so the present value of the
flow of social cost for any current value of M is lower, and a higher M is needed
to justify the sunk cost of policy adoption.

6. Conclusions

I have focused largely on a one-time policy adoption to reduce emissions of a
pollutant. If the policy imposes sunk costs on society, and if it can be delayed,
there is an opportunity cost of adopting the policy now rather than waiting for
more information. This is analogous to the incentive to wait that arises with
irreversible investment decisions. In the case of environmental policy, however,
this opportunity cost must be balanced against the opportunity ‘‘benefit’’ of early
action — a reduced stock of pollutant that might decay only slowly, imposing
irreversible or nearly irreversible costs on society.
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In the simple models presented in this paper, an increase in uncertainty,
whether over future costs and benefits of reduced emissions, or over the evolution
of the stock of pollutant, leads to a higher threshold for policy adoption. This is
because policy adoption involves a sunk cost associated with a discrete reduction
in the entire trajectory of future emissions, whereas inaction over any small time
interval only involves continued emissions over that interval. This is true even for
gradual emission reductions — a small reduction is a reduction in the entire
trajectory. Hence, in my framework greater uncertainty always leads to greater
delay, although the effect is smaller the smaller is the decay rate, d .

The validity of this result depends on the extent to which environmental policy
is indeed irreversible, in the sense of involving commitments to future flows of
sunk costs. It seems to me that this kind of irreversibility is often an inherent

Žaspect of environmental policy, both for policies that are in place e.g., the Clean
. Ž .Air Act , and for policies under debate e.g., GHG emission reductions . Nonethe-

Žless, the assumption of complete irreversibility made in this paper i.e., all costs of
.policy adoption are sunk may be extreme. Richer models are needed to explore

the implications of relaxing this assumption somewhat.
In the models presented here, economic and ecological uncertainty were treated

separately. Ideally, we would like to allow both u and M to evolve stochastically
A Ž .at the same time. This can be done, but then the value functions W u , M and

NŽ .W u , M will satisfy more complicated partial differential equations that must be
solved numerically. Solution methods for such models are discussed in Pindyck
Ž .1998 , but are beyond the scope of this paper.
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