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We examine the technology and capacity choice problem of a multi-output firm facing stochastic 
demands in a continuous-time framework. The firm can install output-specific capital, or, at 
greater cost, flexible capital that can be used to produce different outputs. Investment is 
irreversible. The firm must choose a technology and decide how much capital to install, knowing 
it can add more later as demand evolves. We formulate the capacity choice problem as a singular 
stochastic control problem, show that the value of the firm equals the value of its installed 
capital plus the value of its options to add capacity in the future, and derive an optimal 
investment rule that maximizes the firm’s market value. We also address the analogous problem 
for a multi-input firm that faces stochastically evolving factor costs, and can install input-specific 
or flexible capital. 

1. Introduction 

Consider a firm that produces two products, with (possibly interdependent) 
demands that vary stochastically over time. It can produce these products in 
one of two ways: by installing and utilizing output-specific capital, or by 
installing - at greater cost - flexible capital that can be used to produce 
either product. Investments in all three types of capital are irreversible (the 
expenditures are sunk costs), but the firm can add more capital later should 
demand rise. The firm must decide how much of each type of capital to 
install in order to maximize its market value. 
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assistance and to Charles Fine and Robert Freund for helpful discussions. 
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Problems like this arise with new manufacturing technologies. Automobile 
companies, for example, produce four- and six-cylinder engines. Demands for 
the engines are interdependent, and respond to unpredictable changes in 
gasoline prices, GNP, interest rates, and tastes. In the past, a firm such as 
GM could invest in capacity specific to four-cylinder engines and/or capacity 
specific to six-cylinder engines. New technologies allow the same production 
line to turn out either engine. Given the uncertainty over future demands, 
the more flexible capacity has an obvious advantage. But it is also more 
costly. The firm must decide whether the additional cost is justified, and how 
much capacity to install. Or, consider a firm that produces one product, using 
either of two alternative factor inputs whose costs vary stochastically over 
time. The firm can irreversibly invest in input-specific capital, or in a more 
costly flexible capital that allows the use of either input. Again, the firm must 
decide which type of capital to use, and how much capacity to install. An 
example is an electric utility planning new generating capacity. It can build a 
coal- or oil-burning plant, or a plant designed at the outset to burn either 
fuel. Which type of plant should be built, and how large should it be? 

We develop a framework that addresses these problems, and yields an 
investment rule that maximizes the firm’s market value. As in Bertola (1989) 
and Pindyck (19881, we focus on irreversible and incremental investment 
decisions; the firm decides how much capacity to install, given that it can add 
more later, and given that investment expenditures are sunk costs.’ 

The value of flexibility in plant design was first examined by Fuss and 
McFadden (1978). More recently, Fine and Freund (1990) studied invest- 
ments in output-flexible capacity, using a quadratic programming model in 
which investment occurs in the first period, before demands are known, and 
production in a second period. Their two-period framework provides insight 
into the value of flexibility and choice of technology. However, it does not 
account for the irreversibility of investment, it requires product demands to 
be independent, and the investment rule it yields does not necessarily 
maximize the firm’s market value.2 In another recent study, Triantis and 
Hodder (1990) have shown how one can use contingent claims methods to 
value a facility that can produce multiple outputs. However, they take the 
capacity of the facility as fixed, and ignore the investment and technology 

‘Most of the literature on irreversible investment examines the decision to build a discrete 
project of some tixed size. See, for example, Baldwin (1982), Brennan and Schwartz (198.5), Dixit 
(1989), McDonald and Siegel (1986), Majd and Pindyck (1987), Ma&Lie-Mason (19901, and for 
an overview, Pindyck (1991). 

*In a paper related to this one, Kulatilaka (1987) shows how dynamic programming can in 
principle be used to compare technologies and value of flexibility. As a numerical example, he 
values a plant that can switch between two inputs (e.g., coal and oil) at some cost, and shows how 
the value of the plant depends on this switching cost. 
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choice decisions. Also, their approach requires that the output mix be 
adjusted only at discrete and pre-specified times. 

We also value flexible production capacity, allowing the firm to vary its 
output mix continuously. We then focus on the firm’s decision to irreversibly 
invest, its choice of technology (flexible or output-specific), and the compo- 
nents of its market value. Pindyck (1988) has shown heuristically how a firm’s 
value can be broken down into the value of its capacity in place and the value 
of its growth options. Here, we demonstrate this rigorously by showing how 
the value of the firm solves a singular stochastic control problem. We apply 
this to the multi-output case, and characterize the free boundary that 
determines the optimal investment rule. In general, solving for the optimal 
investment rule when output-specific capital is used can be extremely compli- 
cated, but we show that the problem is greatly simplified if the firm’s 
instantaneous profit function is additively separable with respect to the 
various capital stocks. 

Specifically we consider a firm that must decide how much capacity to 
install to produce one output, the demand for which fluctuates stochastically. 
Capacity choice is optimal when the present value of the expected cash flow 
from a marginal unit of capacity equals the total cost of the unit. This total 
cost includes the purchase and installation cost plus the opportunity cost of 
investing now rather than waiting for new information. An analysis of 
capacity choice therefore involves two steps. First, the value of an extra unit 
of capacity must be determined, taking into account that if demand falls the 
firm need not utilize the unit. Second, the value of the option to invest in this 
unit must be determined, together with the decision rule for exercising the 
option. This decision rule is the solution to the optimal capacity problem. It 
maximizes the net value of the firm: the value of installed capacity net of its 
cost plus the value of the firm’s options to install more capacity. 

Now suppose the firm produces two products with interdependent de- 
mands that fluctuate stochastically. If it uses product-specific capital, it must 
decide how much of each type to purchase. This requires the valuation of a 
marginal unit of each type of capital (which may depend on how much of the 
other type is installed), the valuation of the options to invest in marginal 
units of each type, and the rule for exercising the options. That rule again 
maximizes the firm’s net value: the total value of installed capacity of both 
types net of costs plus the value of the firm’s options to add capacity. Or, the 
firm could install flexible capacity, again choosing an amount to maximize its 
net value. The optimal choice of technology then boils down to an ex ante 
comparison of net value under each alternative. 

This characterization of the investment problem is explained in more detail 
in the next section. There, we show how the firm’s value-maximizing choice 
of technology and capacity can be found for general demand functions. A 
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numerical example is presented in section 3. Section 4 discusses the analo- 
gous problem of investing in input-flexible capacity. Section 5 concludes and 
mentions some of the limitations of our approach. 

2. Optimal investment and technology choice 

In this section we show that the value of a firm is equal to the value of its 
installed capacity plus the value of its options to add capacity in the future. 
Installed capacity likewise represents a set of options; each unit of capacity 
gives the firm options to produce at every point over the lifetime of the unit, 
and can be valued accordingly.3 Hence, valuing a firm and finding its optimal 
investment policy can be reduced to a problem of option valuation. This is 
spelled out below, first for a firm that produces a single output, and then for 
a firm that produces multiple outputs and must choose between output- 
specific and flexible capitals. 

2.1. The single-output firm 

Consider a firm facing a demand curve P = NQ; f?), a cost function C(Q) 
[C(O) = 01, and a demand shift parameter 0 that follows a geometric Brown- 
ian motion, 

dB=(F--)Bdt+aedz, 

where z is a standard Brownian motion, and p, 6, and (T are constants. 
Assume that there exists a traded asset or a portfolio of traded assets the 
return of which is perfectly correlated with 8, and that this asset or portfolio 
pays dividends at a rate of 6 (6 may be negative for a portfolio of assets). 
Thus, markets are dynamically complete in the sense that contingent claims 
written on 8 can be priced by taking the expectation of the discounted cash 
flows under the risk-neutral probability measure. Assume that the riskless 
rate, r, is constant. 

The firm can install capital one unit at a time, at a sunk cost k per unit. If 
K is the amount of capital in place, then the value of the firm is equal to 

/ 

m 

- e -“k dX,lB, = e , 
0 I 

(1) 

3This point is discussed in McDonald and Siegel (1985). 
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Fig. 1. Free boundary for single-output case. 

where E* denotes the expectation under the risk-neutral probability mea- 
sure, and n-(K; 6) = max,, ~ e ~ K D<Q; t9)Q - C(Q) is the instantaneous profit 
that the firm earns when the installed capacity level is K and the demand 
shift parameter is 0. The process for the capital stock, {X,1, is constrained to 
be an adapted and increasing process, which means that investment is 
irreversible. We assume that rr(K; 0) is concave in K and that the maximum 
in (1) exists and is uniquely attained. Therefore, the value of the firm with K 
units of capital in place becomes a solution to a singular stochastic control 
problem, which can be solved using standard dynamic programming tech- 
niques.4 Subject to certain regularity conditions, the value of the firm must 
satisfy the Bellman equation [cf. Harrison (198511, 

3~~e~w,,+(r-S)ew,-rw+~(K;e) =o, (zc,e) ES, 

W,=k, (K,e) 

where S is a subset 
Since the of a 

marginal cost, S can be 
regarded 

region for an immediate addition of capital. 
solve, it has to 

be solved differently for the two regions. curve formed 
which it is just 

optimal to invest. This free boundary found as part of the solution. 
assume 

that D<Q; 0) is strictly increasing in 8 such that W, is also strictly increasing 
in 0, then the free boundary smooth K = K*(O), 
where shown in fig. 1. However, 

shape of the free boundary 

called singular could exhibit both 
sudden jumps which the control variable 
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If the initial (K, 0) lies outside of S, then the capital stock will be increased 
immediately up to K*(O). If the initial (K,B) lies inside S, then it is not 
optimal to add any more capital for the time being. The optimal process for 
the capital stock, IX,), can then be characterized as the maximal adapted 
increasing process that enforces (X,, 0,) E S for all t 2 0. 

Since the above PDE is difficult to solve directly, we propose an alternative 
way of finding the value function. Decompose the value of firm: W(K; 0) = 
VW; 0) + F(K; e), where 

V(K;e) =E* jme-“rr(K;e,)dtle,=e 1 (3) 
0 

is the value of the capital in place, and FM; 0) = WW; 0) - I/(K; 0) is the 
value of the firm’s growth options, i.e., the present value of any additional 
profits, less the cost, from adding more capital later.5 The optimal capacity 
decision stated above can now be interpreted as the first-order condition for 
a value-maximizing firm. That is, if the firm’s initial capacity stock is zero, 
then the firm’s optimal capital stock, K*, maximizes the firm’s net value, 
V(K; 0) + F(K; 0) - kK. This implies that 

aV(K*;e) =k_ aF(K*;8) 

aK aK * 

Hence, the firm always invests until the value of a marginal unit of capital, 
aV(K; 8)/aK, equals its total cost, the purchase and installation cost k, plus 
the opportunity cost -aF( K; B)/aK. 

To evaluate V and F, we define AUK; 0) = aV(K; 8)/aK and AF(K; f3) = 
-aF( K; 8)/aK. Differentiating (3) with respect to K, 

AV(K;8) =E* lme-“A~(K;B,)dtleo=e 1 , (5) 
0 

where AP(K; 0) = ar(K; 8)/aK. For given K, the value of the capital in 
place V(K; f3) and the value of a marginal unit of capital AV(K; 0) can be 
evaluated by direct integration in (3) and (5). The marginal value of the 
growth options, AF(K; 01, can be treated as a contingent claim on 8, and 

‘Note that F(K; 0) exceeds the present value of the expected flow of net profits from 
anticipated future investments, because the firm is not committed to any investment path. 
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hence satisfies 

~u*e*AF,, + (r - S)fIAF, - rAF = 0, 8 I 8*, 

AF(K;B) =AV’(K;@) -k, e2e*, 
(6) 

cYAF(K;B*) aAv( K; e*) 
ae = ae ’ 

at some critical e*, which corresponds to the point (K, 0*> on the free 
boundary where K* = K*(8* 1. As we vary K, we obtain e*(K) for each K 
that satisfies (4). Eq. (6) is an ordinary differential equation with a free 
boundary condition, and is therefore much easier to solve than the partial 
differential eq. (2). 

Once we find the marginal values of a marginal unit of capital and the 
growth options, the market value of the firm with K units of capital in place 
can be obtained as the sum of these marginal values: 

W(K;8) =/oKdV(X;e)dx+~~AF(x;e)dx, (7) 

where we have used the fact that I/(0; 0) = F( + to; 0) = 0. 

2.2. The multi-output firm 

For ease of exposition, and without loss of generality, we consider a firm 
producing only two outputs, with demand curves Pi = Di(Ql, Q2; e) and cost 
functions Ci<Qi> [Ci(0) = 01, where i = 1,2 and 8 = (or, 0,) is a vector of shift 
parameters that follow a two-dimensional geometric Brownian motion, 

de, = (/.~r - 6,)8, dt + oreI dzr, 

de, = (jL* - s,)e, dt + u,e, dz2, 

where zr and z2 are standard Brownian motions with E[dz, X dz,] =pdt, 
and pi, &, oi, and p are constants. We assume that there exist two traded 
assets or two portfolios of traded assets with returns that are perfectly 
correlated with 8, and 8,, and that these two assets or portfolios pay 
dividends at rates 6, and S,, respectively. Thus, markets are dynamically 
complete in the sense that contingent claims written on 8r and 0, can be 
priced by taking the expectation of the discounted cash flows under the 
risk-neutral probability measure. 
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2.2.1. Flexible capacity 

Suppose the firm uses only flexible capital, which costs k, per unit and can 
be used to produce both outputs. The valuation problem in this case is 
similar to that of a single-output case. If the current capital stock is Kf, then 
the value of the firm is given by 

/ 

m 

- e 
0 

-“k, dXflB, = 8 , 1 (8) 

where 0 = Co,, 8,) and rf(Kf; 0) = maxel+p,.Kfi(Zi2,~l(Ql, Q2; e)Q1 + 
&(Qp Qz; 0) - C,(Ql) - G(Qd is the instantaneous profit that the firm 
earns when the flexible capacity level is Kf, and the stochastic process for the 
capital stock, (X,}, is constrained to be an adapted and increasing process. 
The value of the firm with Kf units of capital in place must satisfy the 
Bellman equation 

where S, is the no-investment region in %t in which Wf < k,, and SF is the 
complement of Sr in 8,. 3 As before, this equation has a free boundary, 
corresponding to the intersection of the closure of S, and SF. The free 
boundary in this case is a surface in three-dimensional space. 

Let K = Kf*(8,,8,) be the free boundary. If the initial (Kf,8,,8,) lies 
outside of S, then capacity will be increased immediately up to Kf*<e,, 0,). If 
the initial (Kf, f?,, 0,) lies inside S, then it is not optimal to add capacity for 
the time being. The optimal process for the capital stock can again be 
characterized as the maximal adapted increasing process that enforces 
CXf, eIt, e,,) E S for all c 2 0. 

To determine the market value of the firm, we decompose it as before: 
W(Kf; f?) = V(Kf; 0) + F( Kf; e), where 

v(Kf; e) = E* 
I 
jme+rf( Kf; e,) dtie,, = 8 

0 I 
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Fig. 2. Critical region - flexible capital. 

and 

F(Kf$) = W(Kf;e) - “(Kfgq. 

Also, define the value of an incremental unit of flexible capacity, Af V, and 
the value of the growth options to invest in the future, AfF, accordingly. The 
optimal capacity decision can then be stated as follows: 

av(Kf*;e) =k _ aF(K;;e) 

aKf 
f aw, ) 

(10) 

i.e., the firm chooses a Kf* that maximizes W - k, KT, and invests until the 
value of a marginal unit of capital equals its full cost. 

While for given Kf, V and Af V can be evaluated by direct integration, the 
marginal value of the growth options can be determined by the partial 
differential equation 

&%:AfF,,,, + p~1cr201ezAfFo,02 + &%‘;AfFo202 + (I - S,)t’,AfF,, 

+ (r - S,)t3,AfFo2 - rAF = 0, (11) 

for 8 E 0, and 

AfF(Kf;O) = Af”(Kf;e) -k, (11’) 

for 8 E Oc, where 0 = ((Or, 8,): (Kf, 8,, 0,) E Sf} and 0’ is the complement 
of 0 (see fig. 2). The exact region for 0 must be solved along with the 
solution to the partial differential equation with the additional condition that 
AF must be continuously differentiable on the free boundary as well. 
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value of firm can obtained as sum of 
marginal values capitals and growth options: 

w(Kf;el,e2) =ju%fV(x;8,,e,)dx 

+ 
/ 

=A~F(x;Q9,)dx. 
K f 

(12) 

2.2.2. Nonjlexible capacity 

Suppose instead that each of the firm’s two outputs is produced with a 
specific type of capital, and that capital of type i can be installed at a sunk 
cost of kj per unit for i = 1,2 with ki < k, and k, + k, > k,. If the firm has 
Ki units of capital of type i in place, then its value is 

- /me-‘t(k, dX: + k, dX:)lO, = 0 , 1 0 
(13) 

where X,’ and X,” are adapted and increasing processes for the two types 
of capital stocks, and TW,, K,; 0) = maxO s p, 5 ,&(Ql, Q2; e)Q1 + 

WQl, Qz; NQz - C,(Qt) - G(Qd. Th e value function W satisfies the 
Bellman equation 

&MY9,e, +p0,~,44w,,0z + &3C~201 + (r - 4)4w,, 

+(r-S2)e2WB*-rW+?T(K,,K2;e) =o, (K,,K,,e,9e,) ES, 

WK, = k,, (K,,K,,e,>e,) E&T 

WK, = k,, 

WK,=kp WKI=k2, 

(14) 

where S is the no-investment region in 8: in which WK, < k, and WK, < k,, 
S, (S,) is the investment region for type 1 (type 2) capital in which WK, = k,, 
WK, < k, (WKz = k,, WF, < k,), and S, is the investment region for both 
types of capital in whrch W,, = k, and WK, = k,. In general, the free 
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Fig. 3. Critical region - output-specific capital. 

boundary for this problem can be very complicated. Fig. 3 shows an example 
of a free boundary for fixed K, and K,. 

If K,, 13,, of then the firm should both 
two types of up (K,*, Kz) 

aW(Kf,K;;e) k 

aK, = ‘, 
aW(K:,K;;f’) k 

aK, = 2, (15) 

or equivalently, (K:, K;, 8,, 0,) E S,. This amounts to maximizing its net 
value W - k,K, - k2K,. Later, shifts in demand may result in the firm 
holding excess amounts of some types of capital, although it is still investing 
in other types. The following condition must hold whenever the firm is 
adding one of the capital stocks, say K,, 

aw(K,,K,*;e) k 

aK, = 27 

or equivalently, (K,, Kz, 01, 0,) E S,. The optimal processes for the capital 
stocks, X’ and X2, can then be characterized as the maximal adapted and 
increasing processes that enforce <Xi, X:, Bit, 13~~) E S for all I 2 0. 

To solve for the value of the firm, we once again decompose it into two 
parts: WCK,, K,; fl> = VCK,, K,; 0) + F(K,, K,; 01, where 

v(K,,K,;e) =E* lpe-“~(K,,K,;e,)drle,=e . 
0 1 

Note that V is the value of the capital K, and K, in place, and F is the 
value of the firm’s options to add more capital. 
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Let A’V(K,, K,;0) = al/(K,, K,;B)/aK, be the marginal value of the 
capital in place due to a marginal increase of capacity i, and let 
A’F(K,, K,; 0) = -aF(K,, K,; 8)/aKi be the marginal value of the growth 
options due to a marginal increase of capacity i. For given K, and K,, V and 
Ail/ can be evaluated by direct integration, while (A’F, A2F) can be deter- 
mined as solutions to the partial differential equations 

+ (r - S2)B2A’Fo2 - rAIF = 0, (16) 

for edq u$)c, and 

$q%;A2F01,, + pcq~2f1182A2Fe,e, + $&‘;A2F02,;+ (r - 6,)8,A2F,, 

+ (r - 62)82A2Fe, - rA2F = 0, (17) 

for 8 E(@~U@~)C, 

A’F(8) =A’V(8) -k,, eE01u03, (18) 
A2F(0) =A2V(8) -k,, eEe2m3. (19) 

(See fig. 3.) Eqs. (18) and (19) must be solved simultaneously with the 
additional conditions that 

aA’F aA2F 
-=- 
aK, aK, ’ 

and that A’F and A2F is continuously differentiable. The regions O,, O,, 
and 0, are determined as a part of the solution. In general, solving (18) and 
(19) simultaneously can be very difficult. However, if the instantaneous profit 
from the two production processes can be decomposed in such a way that 
dK,, K,; 0) = T&K,; 0) + T,(K,; 01, then the value of the capital in -place, 
V, can also be decomposed into V(K,, K,; 0) = V’(K,; 0) + V2(K2; 0). It is 
then easy to see that the value of the growth options can also be decom- 
posed: F(K,, K,; 0) = F’(K,; 0) + F2(K2; 0). Since A’V= AiVi and A’F = 
A’F’, we can interpret A’V’ to be the marginal value of the installed capacity 
of type i, and A’F’ to be the marginal value of the firm’s growth options to 
invest in capacity i in the future. In this special case, A’F’ satisfies (18) and 
A2F2 satisfies (191, and they can be solved independently. 
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Finally, since V(O,O; 0) = 0 and F’(m; 0) = F’(m; 0) = 0, we conclude that 
the market value of the firm with Ki units of capital i in place is given by 

+lmA1F1(X;B)dX+jmA2F2(Y;B)dy. 
KI K2 

(20) 

2.3. Optimal choice of technology 

Now suppose that given the current demand states t?, the firm must decide 
which technology - flexible or output-specific - to adopt, and how much 
capacity to install.‘j This can be solved as follows. First, calculate the 
functions A’VCK,, K,; 0) and A’FCK,, K,; 01, i = 1,2, and the functions 
AfV(K,; 0) and AfF(Kf; 0). Second, use (11’) to obtain the optimal amount 
of flexible capacity Kf*, and (18) and (19) to obtain the optimal amounts of 
output-specific capitals K,* and Kz. Finally, use (12) and (20) to determine 
the firm’s market value (or the net present value) for each technology as 
follows: 

NPVf = Wf( Ki-* ; e) - kfKf* ) 

NPV”f = W( K$, K;;e) - k,K: - K,K;. 

We illustrate how this can be done by an example in the next section. 

3. An example 

Our model can be simplified considerably, while retaining its basic eco- 
nomic structure, by reducing the number of stochastic state variables to one. 
We will assume for simplicity that the firm produces two outputs with zero 
operating costs, but that the demand functions are given by 

P, = -log 0 - Y~IQ~ + 712Q2, 

P2 = log 0 + ~21Q, - ~22Q2, 

with de = (p - S>f3 dt + atI dz, where CL, 8, and u are constants. Therefore, 
the stochastic component of demand is normally distributed. We will assume 

6For simplicity, we only allow the firm to invest in a single technology. In general a firm might 
install a mixture of output-specific and flexible capital. It should be clear that we can still handle 
this problem by using the singular stochastic control approach, but the solution can become very 
messy. 
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that the two outputs are substitutes, so that y = -yr2 + yzI < 0. <Q, and Q2 
might be the demands for large and small automobile engines, and 8 an 
index of gasoline prices.) For clarity, we also make the demands symmetric: 
-yrr = yz2 = b. (Then y drops out of the solution.) 

3.1. Flexible capital 

We first find the optimal investment rule and market value for a firm using 
flexible capital. Note that the profit generated by an incremental unit of 
capital, given K, already in place, is 

log8 I -2bKf, 

-2bKf < log 0 I 2bK,, 

log 13 > 2bK,. 

(21) 

Direct integration shows that’ 

I 
loge 

/&JL% - - -- 
r2 r 

loge s 

-2bK,s log I 2bKf, = BePI + cepz, 

loge + (r-6-Cr2/2) 2bKf 
De@2 + - -- 

r r2 r ’ 
log 8 2 2bKf, 

(22) 

‘The value of this incremental unit of capital, AfV(K,; 0), must satisfy 

fa20*AfV& + (r - S)t3ArVB - rAfV+ Arf(8) = 0, 

subject to the boundary conditions 

limAfV(8)+(log~)/r+2bKf/r+(r-S-02/2)/r2=0, 
B-10 

lim 
0+ +m 

A/V(0) - (log 0)/r + 2bKf/r - (r - 6 - a2/2)/r2 = 0, 

The first boundary condition says that for 0 close to zero, the firm can expect to use this unit of 
capital to produce good 1 and only good 1 for the indefinite future, and AfV(t3) is the 
corresponding present value of the expected stream of marginal profit. Similarly, the second one 
says that for 0 very large, the firm can expect to use the capital to produce good 2 and only good 
2 for the indefinite future. 
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where A = 5&e 2bKf81 + e_2bKfPl), B = ,~r e-2bKfp1, C = t2 e2bKfp2, and D = 

12(e- 2bKf@z + e2bKh), with 

p = -(r-6-a2/4 1 

1 
CT2 

+- (r-S-rr2/2)2+2rU2 
l/2 

u2 [ 1 >l, 

p -(r-~-a,/4 
1 

1’2 = -- - - 2 
CT2 

a2 [(r s @Z/2)2 + 2r&] < 0, 

5, = 
1 -_p2( r - s - a2/2)/r 

r(&-P2) ’ 

52 = 

1 - p,(r - S - a2/2)/r 

r(P, -P2> ’ 

To interpret (221, note that the incremental unit of capital is utilized only if 
log 0 I - 2bKf or log 0 2 2bKf. The first line of (22) says that if log 13 I 
-2bK, so the unit is utilized, its value is the present value of the stream of 
incremental profits from utilizing the unit indefinitely (the last three terms on 
the right-hand side), plus the value of the option to stop utilizing the unit 
should i rise (the first term). Similarly for the third line of (22), when 
log 0 2 2bKf. The second line applies when the unit is not being utilized. Its 
value is then the sum of the values of the options to utilize the unit should 
log 0 fall below - 2bKf (the first term) or rise above 2bK, (the second term). 

Fig. 4 shows AfV as a function of log 19 for b = 1, Kf= 0.75, r = 0.04, and 
u = 0,0.2,0.4.’ We let S = r - u2/2, which makes Af V(e) symmetric around 
log 0 = 0. When u = 0, A, B, C, and D in (22) become zero, so Af V = 
- log e/r - 2 bKf/r if log 8 5 - 2 bK,, Af V = log e/r - 2bKf/r if log 8 2 
2bK,, and Af I/ = 0 otherwise. For our choice of parameter values, AfV> 0 
only if log 0 exceeds 1.5 in magnitude. But if u > 0, AfV> 0 for all values of 
log 8, because of the possibility that 0 will rise or fall in the future. 

‘The standard deviations of annual changes in the prices of commodities such as oil, gas, 
copper, and aluminum are 20 to 50 percent. For manufactured goods the numbers are lower 
(based on producer price indices for 1948-87, they are 11 percent for cereal and bakery goods, 3 
percent for electrical machinery, and 5 percent for photographic equipment). But variation in 
the sales of a product for one company will be much larger than variation in price for the entire 
industry. 
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log (8) 

Fig. 4. Value of an incremental unit of flexible capacity (K, = 0.75, D = 0,0.2,0.4). 

Given AfV(Kf; 01, we can find AfF(Kf;8), the marginal value of the 
firm’s option to invest in this incremental unit of capital. AfF must satisfy 

~a2f12AfFo, + (r - S)l3AfF, - rAfF = 0, eE [_8*,8*], (23) 

AfF(0) =AfC’(e) -k,, e28*, eaj*, 

AfF&*) =AfV@*), 

AfF,(@*) =AfV,(tj*). 

Here @* and 8* are the lower and upper critical points, i.e., the firm should 
add capital if 0 falls below e* or rises above 8*. 

The solution to (23) is 

AfF( 0) = alePI + a2epz. (24) 

The critical values e* and 8*, as well as a, and u2, are found by substituting 
(24) for Af V and (24) for AfF into the conditions at the critical boundaries 
and solving numerically. A solution is shown in fig. 5, for k, = 12, u = 0.2, 
and Kf, r, and S as before. Note that if @* < 8 < 8*, the total cost of 
investing in the incremental unit of capital, AfF(e) + k,, exceeds the value of 
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Fig. 5. Optimal investment rule - flexible capacity (Kf = 0.75, kf = 12, (T = 0.2). 

the unit, AfV(fl>, and so the firm should not invest. Also, recall that a,, u2, 
8*, and 8* are functions of Kf. 

As K, increases, e* falls and 8* rises. Thus, if 8 is currently less than e* 
or greater than 8*, the firm will add capacity until 8 just equals one of these 
critical values. Given this optimal capacity KF, the net present value of the 
firm can then be found as in section 2.3. 

3.2. Output-specific capital 

The optimal investment rule for output-specific capital is found in the 
same way. Direct computation shows that the profits from incremental units 
of each type of capital, given K, and K, in place, can be decomposed as 
&K; f3> = rl( K,; 0) + T~( K,; 01, which results in 

A’rr, = 
-logO-2bK,, loge< -2bK,, 

0, log8z -2bK,, 

A2T2 = 
0, log8 < 2bK,, 

log 8 - 2bK,, log 0 2 2bK,. 

(25) 

(26) 
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The value of an incremental unit of capital of type i becomes 

A’V/‘(e) = I 
log e 

/f,@% - - - 
(r - 6 - a2/2) 2bKf 

-- 
r r* r ’ 

log 0 5 -2bK,, 

B,ePy loge 2 -2bK,, 

log 8 I 2bK,, 

log8 + (r-6-u*/2) 2bKf 
-- r* 7 

log 8 2 2brK2, 

(27 

(28) 

where A, = e2 e*bKIPI, B, = ,L, e*bKlPz, A, = ,t2 e-*bKdG, B, = ,L, e-*bKA, 

and pi, p2, tl, and t2 are defined as above. 
The interpretation of (27) and (28) is similar to that of (22). In (271, the 

incremental unit is utilized only if log 0 < - 2bK,. Then, its value is the 
present value of the stream of profits from utilizing it indefinitely, plus 
the value of the option to stop utilizing it should 8 rise. The second line of 
(27) is the value of the option to utilize the unit should log 8 fall below 
-2bK,. 

Fig. 6 shows A’V’ and A*V* plotted against log 8 for K, = K, = 0.75, and 
again, b = 1, r = 0.04, u = 0,0.2,0.4, and 6 = r - a*/2. As with the case of 
flexible capital, if u = 0 and - 1.5 < log 0 < 1.5, an extra unit of capital would 
never be used, and has no value. For u > 0, an extra unit of capital of either 
type might be used in the future, and has positive value for all values of log 0. 
Note that A’V’ and A*V* have the form of a call option, and increase with 
u. Indeed each is the value of an infinite number of (European) call options 
to produce at every point in the future. Given A’V’ and A*V*, A’F’ and 
A*F* are found by solving: 

iu*e*A’FB’, + (r - S)BA’F,’ - rA’F’ = 0, 8 2 f*, (29) 

A’F’(e) = A’V’/“(f*) -k,, eg*, 

A’F,‘@*) = A%-;@*), 

lim A’F’(B) = 0, 
0-m 
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Fig. 6. Value of an incremental unit of output-specific capacity (K, = K, = 0.75, (T = 0,0.2,0.4). 

and 

$T%*A*F~?, + (r - iS)eA*F,’ - rA2F2 = 0, 13 s 8*, (30) 

A2F2(8) =A*V(t’) -k,, 02B*, 

A*F,j( i?*) = A*b*( i*) , 

lim A*F*( 13) = 0. 
0-O 

The solutions to (29) and (30) are 

A’F’(8) = mlflpz, 

A’F*( 0) = m2@. 

Note that e* and I?* are again the critical values of 8; the firm adds capital of 
type 1 if f3 falls below fi*, and adds capital of type 2 if 0 rises above 8*. After 
substituting in (27) and (28), the boundary conditions can be used to solve for 
tJ*, 8*, m,, and m2. 

A solution is shown in fig. 7 for costs of capital k, = k, = 10 and (+ = 0.2. 
The critical values of log 8 are f 2.35. For log 8 inside this range, the value of 
a unit of either type of capital is less than the total cost of investing in the 
unit, so the firm does not invest. Again, e*, a*, m,, and m2 are all functions 
of K, and K,; as K1(K2) increases, m, and 8* fall Cm, falls and I?* rises). 
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Fig. 7. Optimal investment rule - nonflexible capacity (K, = K, = 0.75, k, = k, = 10, v = 0.2). 

Thus given the current value of 0, the boundary conditions can be used to 
find the firm’s optimal initial capital stocks K,* and K,*. Then, given K: and 
Kf, the net present value of the firm can be calculated. 

3.3. The choice of technology 

The ex ante choice of technology requires comparing the net value of the 
firm using flexible versus output-specific capital. This comparison will depend 
on the parameters u, 8, and r, the capital costs k,, k,, and k,, as well as the 
current state of demand, i.e., the value of 8. 

Table 1 shows the net value of the firm and its components for various 
values of u and 8, for flexible and nonflexible capital. Note that if u = 0, the 
firm observes f3 and installs as much capital as it will ever need, and the value 
of its options to grow (Ff in the flexible case, F’ + F2 in the nonflexible) is 
zero. The total value of the firm is then the same for either technology, so the 
firm will use the cheaper nonflexible capital. (In the nonflexible case, K,* = 0 
for all combinations of (T and 8 shown, but F’, the value of the option to 
install capital of type 1, is positive for (+ > 0.) For both technologies, as u 
increases, the amount of capital that the firm initially installs falls; although 
the value of each incremental unit of capital rises with u, the value of the 
option to invest in the unit (an opportunity cost) rises even more. For large 
d, much of the firm’s value comes from its options to grow; for u = 0.4 and 



H. He and R.S. Pindyck, Investments in flexible production capacity 595 

Table la 

Value of the firm: Flexible capacity.a 

Total Net 
C7 log 8 Kr* V(Kf*; 0) F(K,*; 0) value value 

0 1.5 0.50 12.5 0.0 12.5 6.5 
2.5 1.00 37.5 0.0 37.5 25.5 
3.5 1.50 75.0 0.0 75.0 57.0 

0.1 1.5 0.35 10.5 1.5 12.0 7.8 
2.5 0.84 36.0 1.5 37.5 27.4 
3.5 1.34 74.6 1.5 76.1 60.0 

0.2 1.5 0.27 9.2 5.1 14.3 11.1 
2.5 0.74 34.6 5.4 40.0 31.1 
3.5 1.25 73.3 5.4 78.7 63.7 

0.4 1.5 0.22 10.1 18.8 28.9 26.3 
2.5 0.60 33.7 19.9 53.6 46.4 
3.5 1.08 72.5 20.0 92.5 79.5 

‘kf = 12, k, = k, = 10, r = 0.04, and 6 = r - (r*/2. AH of the solutions are symmetric around 
log e = 0. 

Table lb 

Value of the firm: Nonflexible capacity.a 

Total Net 
C7 log8 K; V2(K;;8) F2(K,*; 0) F’(Kf;e) value value 

0 1.5 0.55 13.1 0.0 
2.5 1.05 38.1 0.0 
3.5 1.55 75.6 0.0 

0.1 1.5 0.40 11.3 1.5 
2.5 0.90 37.0 1.5 
3.5 1.40 75.6 1.5 

0.2 1.5 0.29 9.4 5.5 
2.5 0.79 35.0 5.5 
3.5 1.29 73.5 5.4 

0.4 1.5 0.15 5.3 19.5 
2.5 0.65 31.0 19.3 
3.5 1.65 69.6 19.3 

0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

0.2 
0.0 
0.0 

2.9 
1.4 
0.7 

13.1 7.6 
38.1 27.6 
75.6 60.1 

12.8 8.8 
38.5 29.5 
77.1 63.1 

15.1 12.2 
40.5 32.6 
78.9 66.0 

27.8 26.2 
51.7 45.2 
89.6 73.1 

‘In all cases shown, K: = 0, so V ‘( Kf ; 0) = 0. 

log 8 = 1.5, these options account for more than half of total value, with 
either technology. 

In the example in table 1, flexible capital makes the net value of the firm 
higher only when CT is 0.4. (It is misleading to compare total values. With 
equal amounts of installed capacity, a firm using the flexible technology will 
always have a higher total value. But flexible capital is more expensive, and, 
as table 1 shows, the amounts of installed capacity differ in the two cases.) 
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Fig. 8. Ratio of net values vs. ratio of capital costs (log 9 = 2.5). 

Fig. 8 shows how the choice of technology depends on relative capital costs 
for (T = 0,0.2,0.4 and log 8 = 2.5. (There, k, and k, are fixed at 10, and the 
optimal amount of flexible capacity and corresponding net value of the firm 
are calculated as k, is varied between 10 and 15.) When c = 0.2, the ratio of 
net values exceeds 1 only when kf/k, is less than about 1.07. 

These results illustrate how a value-maximizing choice of technology and 
capacity can be calculated, and how they depend on various parameters. One 
should not infer that the net benefit of flexible capital is low; our example is 
based on a specific production technology and specific demand functions, and 
our solutions apply to a limited range of parameter values. 

4. Investments in input-flexible capacity 

The analogous investment problem that arises with input-flexible capacity 
can be treated in the same way. To see this, consider a firm facing the 
following nonstochastic demand curve for its single output: P = a - bQ. 
Suppose the firm must use, in addition to capital, one of two variable inputs 
whose costs, cr and c2, vary stochastically: 

dq = aici dt + aici dq, i = 1,2, 

with E(dz, dz,) =p dt. The firm can (irreversibly) purchase and install 
input-flexible capacity at a cost k, per unit, or input-specific capacity at a 
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(lower) cost k, or k,. Each unit of capacity allows the firm to produce one 
unit of output using one unit of the corresponding input. 

This technology and capacity choice problem can be solved using the 
approach of section 2. The profit generated by an incremental unit of flexible 
capacity at time f is given by 

For an incremental unit of input-specific capacity of type 1, the profit is 

max[O,c,-c,,a-2b(K,+K,)-cl]}. 

(Similarly for A2r.) A’V, i = 1,2, and f again can be calculated by integra- 
tion, A’F can be determined by a set of partial differential equations with 
certain boundary conditions. The solutions of these equations give the 
optimal capacity levels, and the approach of section 2.3 can be used to find 
the market value of the firm for each technology. 

In general, a solution requires numerical methods. However, the problem 
is much simpler if only one input cost is stochastic, and the other is constant. 
(This would apply, say, to an electric utility choosing among a coal-fired 
plant, an oil-fired plant, or a plant that can burn either fuel - coal prices 
fluctuate little compared to oil prices.) An analytical solution can then be 
found similar to the one presented in section 3. 

5. Conclusions 

We have shown how the value-maximizing choice of technology and 
capacity can be found in a way that is consistent with the irreversibility of 
investment, the fact that capacity in place need not always be utilized, and 
the existence of a competitive capital market. First, the value of an incremen- 
tal unit of capacity of each type is determined. Second, the value of the firm’s 
option to invest in this unit is determined, together with the optimal exercise 
rule. The latter yields the firm’s optimal initial capacity, and the correspond- 
ing net value of the firm can be calculated. The choice of technology can then 
be made by comparing ex ante net values. 

Our example suggests that irreversibility and uncertainty can have a 
substantial effect on the capacity the firm initially installs; note from table 1 
that K* falls rapidly as (T is increased, for both technologies. This is 
consistent with recent studies of irreversible investment, but some restrictive 
assumptions may have exaggerated this effect. For example, by assuming the 
firm can incrementally invest, we ignored the lumpiness of investment. We 
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also ignored depreciation (if capital becomes obsolete rapidly, the opportu- 
nity cost of investing will be small). And, as mentioned earlier, our numerical 
results apply to a simplified model and a limited range of parameter values. 
This also limits the generality of our finding that flexible capital is preferred 
only if its cost premium is low. 

In addition, we made the simplifying assumption that the firm can invest in 
only a single technology, whereas in general it may be optimal to install a 
mixture of output-specific and flexible capital. (The problem can be solved 
for the more general case, but the algebra is much messier.) 

Other caveats deserve mention. We ignored scale economies, which could 
make cost increase with the number of products the firm produces, creating 
an incentive to produce only one output (and use nonflexible capital). Except 
for capital costs (and constant average variable costs), only demands affect 
the output mix in our model. [For a model that shows implications of scale 
economies, see de Groote (19871.1 And we ignore strategic aspects of flexibil- 
ity. As Vives (1986) and others have shown, flexibility can have a negative 
value in a small numbers environment because with it the firm is less able to 
commit itself to a particular output level or product mix.’ 
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