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This paper examines irreversible investment decisions when projects take time to complete and are 
subject to two types of cost uncertainty. The first is technical uncertainty, i.e., uncertainty over the 
physical difficulty of completing a project, which is only resolved as the investment proceeds. The 
second is input cost uncertainty, i.e., uncertainty over the prices of construction inputs or over 
government regulations affecting construction costs, which is external to the firm. These two types of 
uncertainty have very different effects on the investment decision. A simple investment rule is derived 
that maximizes firm value, and is used to analyze the decision to start or continue building a nuclear 
power plant during the 1980s. 

1. Introduction 

In most studies of investment under uncertainty, it is the future payoffs from 
the investment that are uncertain. The emphasis on uncertainty over future 
payoffs also applies to the growing literature on irreversible investment. Much 
of that literature [see Dixit (1992) Pindyck (199 l), and Dixit and Pindyck (1993) 
for an overview] studies optimal stopping rules for the timing of sunk costs of 
known magnitude in exchange for capital whose value fluctuates stochastically. 

Sometimes the cost of an investment is more uncertain than the future payoff, 
particularly for large projects that take considerable time to build. An example 
is a nuclear power plant, for which total construction costs are hard to predict 
due to both engineering and regulatory uncertainties. Although the future value 
of a completed nuclear plant is also uncertain (because electricity demand and 
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costs of alternative fuels are uncertain), construction cost uncertainty is much 
greater than revenue uncertainty, and has deterred utilities from building new 
plants. There are many other examples, including large petrochemical com- 
plexes, the development of a new line of aircraft, and urban construction 
projects. Moreover, large size is not a requisite. Many R&D projects involve 
considerable cost uncertainty; the development of a new drug by a pharmaceu- 
tical company is an example. 

In addition to their uncertain costs, all of the investments mentioned above 
are irreversible. Expenditures on nuclear power plants, petrochemical com- 
plexes, and the development of new drugs are firm- or industry-specific, and 
hence are sunk costs that cannot be recovered should the investment turn out, 
ex post, to have been a bad one. In each case, the investment could turn out to be 
bad either because demand for the product is less than anticipated or because 
the cost of the investment turns out to be greater than anticipated. Whatever the 
reason, the firm cannot ‘disinvest’ and recover the money it spent. 

This paper studies the implications of cost uncertainty for irreversible invest- 
ment decisions. With projects that take time to complete, two different kinds of 
uncertainty arise. The first, which I call technical uncertainty, relates to the 
physical difficulty of completing a project: Assuming prices of construction 
inputs are known, how much time, effort, and materials will ultimately be 
required? Technical uncertainty can only be resolved by undertaking the pro- 
ject; actual costs and construction time unfold as the project proceeds.’ These 
costs may be greater or less than anticipated if impediments arise or if the work 
progresses faster than planned, but the total cost of the investment is only 
known for certain when the project is complete. Also, technical uncertainty is 
largely diversifiable. It results only from the inability to predict how difficult 
a project will be, which is likely to be independent of the overall economy. 

The second kind of uncertainty relates to input costs, and is external to what 
the firm does. It arises when the prices of labor, land, and materials needed to 
build a project fluctuate unpredictably, or when unpredictable changes in 
government regulations change the cost of construction. Prices and regulations 
change regardless of whether or not the firm is investing, and are more uncertain 
the farther into the future one looks. Hence input cost uncertainty is particularly 
important for projects that take time to complete or are subject to voluntary or 
involuntary delays. Also, this uncertainty may be partly nondiversifiable; 
changes in construction costs are likely to be correlated with overall economic 
activity. 

‘This is a simplification, in that for some projects cost uncertainty can be reduced by first 
undertaking additional engineering studies. The investment problem is then more complicated 
because one has three choices instead of two: start construction now, undertake an engineering study 
now, and then begin construction only if the study indicates costs are likely to be low, or abandon 
the project completely. 



This paper derives decision rules for irreversible investments subject to both 
types of cost uncertainty. For simplicity, I first assume that the value of the 
completed project is known with certainty, and then show how the model can be 
extended so that this value is also stochastic. The decision rules I derive allow for 
the possibility of abandoning the project midstream, and maximize the value of 
the firm in a competitive capital market. These rules have a simple form: Invest 
as long the expected cost to complete the project is below a critical number. Also, 
the derivation of the decision rule yields the value of the investment opportunity, 
i.e., the value of the right to undertake the project. I explore how this value, and 
the critical expected cost to completion, depend on the type and level of 
uncertainty. 

Both technical and input cost uncertainty increase the value of an investment 
opportunity. The reason is that the payoff function is max[O, V- K], where 
K is the cost and I’ the value of the completed project. The investment 
opportunity is like a put option; the holder can sell an asset worth an uncertain 
amount K for a fixed ‘exercise price’ V. Like any option, its value is increased by 
an increase in the variance of the price of the underlying asset. (In my model, the 
firm actually has a more complicated compound option; it can spend an 
uncertain amount of money in return for an option to continue the partially 
completed project.) 

However, the two types of uncertainty affect the investment decision differ- 
ently. Technical uncertainty makes investing more attractive; a project can have 
an expected cost that makes its conventional NPV negative, but it can still be 
economical to begin investing. The reason is that investing reveals information 
about cost, and therefore has a shadow value beyond its direct contribution to 
the completion of the project; this shadow value lowers the full expected cost of 
the investment.2 Also, since information about cost arrives only when invest- 
ment is taking place, there is no value to waiting. 

As an example, a project requires a first phase investment of $1. Then, with 
probability 0.5 the project will be finished, and with probability 0.5 a second 
phase costing $4 will be required. Completion of the project yields a certain 
payoff of $2.8. Since the expected cost of the project is $3, the conventionally 
measured NPV is negative. But the conventional NPV ignores the value of the 
option to abandon the project should the second phase be required. The correct 
NPV is - 1 + (0.5)(2.8) = $0.4, so the firm should proceed with at least the first 
phase. 

Input cost uncertainty makes it less attractive to invest now. A project with 
a conventional NPV that is positive might still be uneconomical, because costs 
of construction inputs change whether or not investment is taking place, so there 
is a value of waiting for new information before committing resources. Also, this 

*It is analogous to the shadow value of production arising from a learning curve, which lowers the 
full cost of production; see Majd and Pindyck (1989). 
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effect is magnified when fluctuations in construction costs are correlated with 
the economy, or, in the context of the Capital Asset Pricing Model, when the 
‘beta’ of cost is high. The reason is that a higher beta implies that high-cost 
outcomes are more likely to be associated with high stock market returns, so 
that the investment opportunity is a hedge against nondiversifiable risk. Put 
another way, a higher beta raises the discount rate applied to expected future 
costs, which raises the value of the investment opportunity as well as the benefit 
from waiting rather than investing now. 

For example, suppose an investment can be made now or later. The cost now 
is $3, but next period it will either fall to $2 or rise to $4, each with probability 
0.5, and then remain at that level. Investing yields a certain payoff of $3.2. 
Assume the risk-free rate of interest is zero. If we invest now, the project has 
a conventional NPV of $0.2. But this NPV ignores the opportunity cost of 
closing our option to wait for a better outcome (a drop in cost). If we wait, we 
will only invest if the cost falls to $2. The NPV if we wait is (0.5)(3.2 - 2) = $0.6, 
so it is better to wait. Now suppose the beta of cost is high, so that the 
risk-adjusted discount rate is 25% per period. Because the payoff from complet- 
ing the project is certain, this discount rate is only applied to cost. Hence the 
NPV if we wait is now (0.5)(3.2 - 2/1.25) = $0.8. The higher beta raises the 
present values of net payoffs, and thereby increases both the value of the 
investment opportunity and the value of waiting. 

Since technical and input cost uncertainty have different effects on investment, 
it is important to incorporate both in the analysis. In doing so, the model 
developed in the next section offers guidance as to the types of projects (e.g., 
nuclear power plants versus R&D) for which one source of uncertainty or the 
other will exert the primary influence on investment decisions. 

This paper is related to several earlier studies. The value of information 
gathering has been explored by Roberts and Weitzman (1981), who develop 
a model of sequential investment similar to mine in that the project can be 
stopped in midstream, and the process of investing reduces both the expected 
cost of completing the project as well the variance of that cost. They derive an 
optimal stopping rule, and show that it may pay to go ahead with the early 
stages of an investment even though the NPV of the entire project is negative.3 
Grossman and Shapiro (1986) also study investments for which the total effort 
required to reach a payoff is unknown. They model the payoff as a Poisson 
arrival, with a hazard rate specified as a function of the cumulative effort 

3 Weitzman, Newey, and Rabin (1981) use this model to evaluate demonstration plants for 
synthetic fuels, and show that learning about costs could justify these investments. MacKie-Mason 
(1991) extends the Roberts and Weitzman analysis by allowing for investors (who pay the cost of 
a project) and managers (who decide whether to continue or abandon the project) to have conflicting 
interests and asymmetric information. He shows that asymmetric learning about cost leads to 
inefficient overabandonment of projects. Finally, Zeira (1987) develops a model in which a firm 
learns about its payoff function as it accumulates capital. 
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expended. They allow the rate of progress to be a concave function of effort, and 
focus on the rate of investment, rather than on whether one should proceed or 
not. The result in this paper complement the work of these authors, but my 
model is more general in its treatment of cost uncertainty, and yields relatively 
simple decision rules. 

This paper is also related to the basic model of irreversible investment by 
McDonald and Siegel (1986). They consider the payment of a sunk cost I in 
return for a project worth V, where V and I evolve as geometric Brownian 
motions. The optimal investment rule is to wait until V/I reaches a critical value 
that exceeds one, because of the opportunity cost of committing resources. Also, 
Majd and Pindyck (1987) study sequential investment when a firm can invest at 
some maximum rate (so that it takes time to complete a project), the project can 
be abandoned before completion, and the value of project, received upon 
completion, evolves as a geometric Brownian motion. In this paper the firm can 
also invest at a maximum rate, but it is the cost rather than the value of the 
completed project that is uncertain. 

Other related work includes that of Baldwin (1982), who analyzes sequential 
investment decisions when investment opportunities arrive randomly and the 
firm has limited resources. She values the sequence of opportunities and shows 
that a simple NPV rule leads to overinvestment, i.e., there is a value to waiting 
for better opportunities. Likewise, if cost evolves stochastically, it may pay to 
wait for cost to fall. Also, Myers and Majd (1984) determine the value of a firm’s 
option to abandon a project in return for a scrap value, S, when the value of the 
project, V, evolves as a geometric Brownian motion (the firm has a put option to 
sell a project worth v for a price S), and show how this abandonment value 
affects the decision to invest. 

The basic model is developed in the next section. In section 3, numerical 
solutions are used to show how the value of the investment opportunity and the 
optimal investment rule depend on the source and amount of uncertainty, as 
well as on other parameters. Section 4 analyzes the decision to build a nuclear 
power plant; it shows how the model can be used in practice and the importance 
of analyzing technical and input cost uncertainty together. It also illustrates the 
nature and implications of nuclear plant cost uncertainty during the 1980’s. 
Section 5 discusses some extensions of the basic model, and section 6 concludes. 

2. The basic model 

Consider an investment in a project whose actual cost of completion is 
a random variable, i?, and whose expected cost is K = E(R). The project takes 
time to complete; the maximum rate at which the firm can (productively) invest 
is k. Upon completion, the firm receives an asset (e.g., a factory or new drug) 
whose value, V, is known with certainty. 
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If there were no uncertainty over the total cost, valuing the investment 
opportunity and determining the optimal investment rule would be straightfor- 
ward. The project will take time T = K/k to complete, so the opportunity to 
invest is worth: 

F(K) = max[ Ve-rK/k - Jo”* ke-“dt, 0] 

(V + k/r)edrKlk - k/r, 0 , 1 
where r is the (risk-free) rate of interest. The optimal investment rule is to 
proceed with the project as long as F(K) > 0, i.e., as long as K is less than 
a critical value, K*, given by 

K* = (k/r)log(l + rV/k) . 

Ifr=O,F(K)= V-KandK*= V.Butifr>O,F(K)< V-KandK*< V. 
The reason is that the payoff V is received only at time T, and must be 
discounted accordingly, but the cost of the investment is spread out from t = 0 
to T. Also, note that F(K) is a convex function of K, so uncertainty over cost 
should increase F(K). Little can be said at this point, however, about the effect 
of uncertainty on the optimal investment rule. 

2.1. Introducing uncertainty 

I introduce uncertainty over cost by letting the expected cost to completion, 
K(t), follow a controlled diffusion process. Suppose for the moment that K(t) is 
given by 

dK = - Idt + g(I, K)dz , (2) 

where I is the rate of investment, z(t) is a Wiener process that might or might not 
be correlated with the economy and the stock market, and gI 2 0, g,, Q 0, and 
gK 2 0. Eq. (2) says that the expected cost to completion declines with ongoing 
investment, but also changes stochastically. Stochastic changes in K might be 
due to technical uncertainty [in which case g(0, K) = 0 and g, > 01, input cost 
uncertainty [in which case g(0, K) > 01, or both. Eq. (2) is a generalization of 
Roberts and Weitzman (1981), who also model the expected cost to completion 
as a stochastic process that is controlled by the rate of investment. 

I will again assume that there is a maximum rate of investment, k. Let 
F(K) = F(K; V, k) be the value of the investment opportunity. Then F(K) 
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satisfies 

subject to eq. (2) 0 < I(t) < k, and K(F) = 0. Here p is an appropriate risk- 
adjusted discount rate, and the time of completion, ?, is stochastic. 

For eq. (2) to make economic sense, more structure is needed. In particular, 
the following conditions should hold: (i) F(K; P’, k) is homogeneous of degree 
one in K, V, and k; (ii) Fx < 0, i.e., an increase in the expected cost of an 
investment should always reduce its value; (iii) the instantaneous variance of dK 
is bounded for all finite K and approaches zero as K + 0; and (iv) if the firm 
invests at the maximum rate k until the project is complete, E,iikdt = K, so 
that K is indeed the expected cost to completion. We can meet these conditions 
and still allow for reasonably general cost structures by letting 
g(I, K) = jK(I/K )“, with 0 d CY d f. This clearly satisfies conditions (i) and (iii). 
As will become evident later, 0 < a < f rather than 0 < z < 1, which also 
satisfies (i) and (iii), is needed to satisfy (ii). Finally, it is shown in the appendix 
that (iv) is also satisfied. 

I restrict the analysis to c1 = 0 and i, which corresponds naturally to the two 
types of cost uncertainty, and which result in simple corner solutions for optimal 
investment. (As will be discussed in section 5, other values of LX result in interior 
solutions where I is varied in response to changes in the variance of dK.) The 
case of a = 4 corresponds to technical uncertainty; K can change only if the firm 
is investing, and the instantaneous variance of dK/K increases linearly with I/K. 
When the firm is investing, the expected change in K over an interval Ar is 
- IAt, but the realized change can be greater or less than this, and K can even 

increase. As the project proceeds, progress will at times be slower and at times 
faster than expected. The variance of I? falls as K falls, but the actual total cost of 
the project, [:Zdt, is only known when the project is completed. 

The case of CI = 0 corresponds to input cost uncertainty; the instantaneous 
variance of dK/K is constant and independent of I. Now K will fluctuate even 
when there is no investment; ongoing changes in the costs of labor and materials 
will change K irrespective of what the firm does. And since the project takes time 
to build, the actual total cost of the project is again only known when the project 
is complete. 

To allow for both types of uncertainty, these two cases are combined in 
a single equation for the evolution of K: 

dK = - ldt + P(lK)“‘dz + yKdw , (4 

where dz and dw are the increments of uncorrelated Wiener processes. We will 
assume that all risk associated with dz is diversifiable, i.e., dz is uncorrelated 
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with the economy and the stock market. However, dw may be correlated with 
the market. Note that eq. (4) combines uncertainty over the amount of effort 
required to complete a project, uncertainty over the cost of that effort, and 
uncertainty over the time the project will take. 

2.2. The optimal investment rule 

Given that dw in eq. (4) may be correlated with the market, the risk-free rate 
of interest cannot be used for the discount rate p in eq. (3). However, p can be 
eliminated from the problem if dw is spanned by existing assets in the economy, 
i.e., if in principle one could replicate movements in dw with some other asset or 
dynamic portfolio of assets. The investment problem can then be solved using 
contingent claims methods. If spanning does not hold, an optimal investment 
rule could instead be found using dynamic programming, subject to some choice 
of discount rate p. 

Assuming that spanning holds, let x be the price of an asset or dynamic 
portfolio of assets perfectly correlated with w, so that dx follows: 

dx = cl,xdt + a,xdw . (5) 

By the CAPM, the risk-adjusted expected return on x is rx = r + Opxmcrx, where 
8 is the market price of risk4 and pxrn is the instantaneous correlation of x with 

the market portfolio. 
The appendix shows that F(K) must satisfy the following differential equa- 

tion: 

4 fi21KFKK + 3 y2K2F,, - IFK - q5yKFK - I = rF , (6) 

where 4 = (r, - r)/o,. Recall that rx = r + Opxmox. Thus 4 = %p,,. Since 8 is an 
economy-wide parameter, the only project-specific parameter needed to deter- 
mine $I is pxm, which is equal to the coefficient of correlation between fluc- 
tuations in cost and the stock market. 

Note that eq. (6) is the Bellman equation for the stochastic dynamic program- 
ming problem given by eq. (3), but with p replaced by r. Because eq. (6) is linear 
in I, the rate of investment that maximizes F(K) is always equal to either zero or 
the maximum rate k: 

I= k for $P2KFKK-F~-130~ 

0 otherwise. 

4That is, f3 = (r, - r)/a,, where r,,, is the expected return on the market and 0, is the standard 
deviation of that return. If we take the New York Stock Exchange Index as the market, over the 
period 1926-88, rm - r L 0.08 and 0, z 0.2, so 0 z 0.4. 
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Eq. (6) therefore has a free boundary at a point K*, such that I(t) = k when 
K d K* and I(t) = 0 otherwise. The value of K* must be found as part of the 
solution for F(K). To determine F(K) and K*, we solve (6) subiect to the 
following boundary conditions: 

F(0) = I/, 

lim F(K) = 0, 
K’ZC 

(8) 

(9) 

4 P2K*FKK(K*) - F,(K*) - 1 = 0, (10) 

as well as the ‘value matching’ condition that F(K) be continuous at K*. 
Condition (8) says that at completion, the payoff is V’. Condition (9) says that 
when K is very large, the probability is very small that over some finite time it 
will drop enough to begin the project. Condition (10) follows from (7) and is 
equivalent to the ‘smooth pasting’ condition that F,(K) be continuous at K*. 

When I = 0, eq. (6) has the following simple analytical solution: 

F=aKb, (11) 

where h is the negative root of the quadratic equation ) y2b(b - 1) - 
4yb - r = 0, i.e., 

b=‘+q-‘J(1;+2@2+8 2 
2Y 

r. 

Y 
(12) 

The parameter a is determined from the remaining boundary conditions, to- 
gether with K* and the solution for F(K) for K < K*. This must be done 
numerically, which is relatively easy once eq. (6) has been appropriately trans- 
formed.5 A family of solutions for K < K* can be found that satisfy condition 
(8), but a unique solution, together with the value of a, is determined from 
condition (10) and the continuity of F(K) at K*. 

‘When ! = k, eq. (6) has a first-degree singularity at K = 0. To eliminate this, make the substitu- 
tion F(K) =f(_v), where y = log K. Then eq. (6) becomes 

2kf,b9 2k + 2rj’(~) 
L(Y) -L(Y) - /pk + pey = p*kem“ + ;‘2 ’ 

and boundary conditions (8) to (IO) are transformed accordingly. 
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3. Solution characteristics 

The effects of cost uncertainty can be seen by first examining solutions of 
eq. (6) for the case of pure technical uncertainty, i.e., y = 0, and then for the case 
of pure input cost uncertainty, i.e., fi = 0. Afterwards we will return to the 
general case. 

3.1. Technical uncertainty 

When only technical uncertainty is present, eq. (6) reduces to 

+ P21KFKK - IFK - I = rF. (13) 

In this case, K can change only when investment is taking place, so if K > K* 
and the firm is not investing, K will never change and F(K) = 0. 

When r = 0, eq. (13) has an analytical solution: 

F(K)= V-K+/? 
(p)-2’“’ (ii2= 2)11(‘+w, 

(14) 

and the critical value of K, K*, is given by 

K*=(l ++/?“)I’. 

Eq. (14) has a simple interpretation. With r = 0, V - K would be the value of 
the investment opportunity where there is no possibility of abandoning the 
project. The last term is the value of the put option, i.e., the option to abandon 
the project should cost turn out to be much higher than expected. Note that for 
p > 0, K* > V, and K* is increasing in p. The more uncertainty there is, the 
greater the value of the investment opportunity, and the larger is the maximum 
expected cost for which beginning to invest is economical. 

When r > 0, eq. (13) does not have an analytical solution, but can be solved 
numerically for different values of 8. To choose values for /3 that are reasonable, 
we need to relate this parameter to the variance of the project’s total cost. The 
appendix shows that for this case in which y = 0, the variance of the cost to 
completion is given by 

B’ var(K)= 2_ p2 -( 1 K2. (15) 

Hence, if one standard deviation of a project’s cost is 25% of the expected cost, 
/I would be 0.343, and if one standard deviation is 50% of the expected cost, 
/3 would be 0.63. Standard deviations of project cost in the range of 25-50% are 
not unusual, so we will use these values for fl in the calculations that follow. 
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Fig. 1 shows F(K) as a function of K for V = 10, k = 2, r = 0.05, and 
/I = 0,0.343, and 0.63. Observe that F(K) looks like the value of a put option, 
except that F(K) = 0 when K exceeds the ‘exercise’ point K*. Although F(K) is 
larger the higher is b, the effect is greatest for larger values of K. Also, the effect 
of technical uncertainty on the optimal investment rule is moderate; only when 
fi = 0.63 does K* substantially exceed its value for the certainty case. In fact, for 
K* to increase by 50% (from about 9 to about 13.5) a value of fl close to one is 
required, which in turn implies that the standard deviation of total cost must be 
about 100% of the expected cost. 

Finally, fig. 2 shows how F(K) depends on the maximum rate of investment, k. 
(Here, ,8 = 0.63.) As in the certainty case, a larger k implies a larger F(K), because 
the payoff V is expected to be received earlier, and hence is discounted less. Also, 
when the investment opportunity is worth more, the critical value K* is larger. 

3.2. Input cost uncertainty 

With only input cost uncertainty, eq. (6) becomes 

4 y2K2F,, - IFK - $yKF, - I = rF. (16) 

This is again subject to boundary conditions (8) and (9) but condition (10) is 
replaced with F,(K*) = - 1. Now K can change whether or not investment is 
taking place; like a financial put option, F(K) > 0 for any finite K. 

F(K) 

K 

Fig. I. Technical uncertainty 

Figure shows value of investment opportunity, F(K), as function of expected cost to completion, K, 
for fl = 0,0.343, and 0.63, where p describes degree of technical uncertainty. Other parameter values 
are V = IO, k = 2, r = 0.05, and y = 4 = 0. Intersection of f(K) with K axis gives critical expected 

cost fC*. 
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F(K 

Fig. 2. Changes in maximum rate of investment. 

Figure shows value of investment opportunity, F(K), as function of expected cost to completion, K, 
for three values of maximum rate of investment: k = 1,2, and 10. Only technical uncertainty is 

present (/3 = 0.63, y = 4 = 0). Other parameter values are V = 10 and r = 0.05. 

When y > 0, eq. (16) has no solution when r = 0, because then there would be 
no reason to ever invest. One would always be better off waiting until K fell close 
to zero so that the net payoff from investing is larger. It would not matter that 
substantial time might have to pass for this to happen, because net payoffs 
would not be discounted. 

If I = 0, K” is lognormally distributed, and y can be interpreted as the standard 
deviation of percentage changes per period (in this case, a year) in K. Determin- 
ing a value for “J that is reasonable depends on the makeup of cost: section 
4 shows how this can be done for a specific example. Fig. 3 shows numerical 
solutions of eq. (16) for ‘/ = 0,0.2, and 0.4. (In each case, I” = 10, k = 2, r = 0.05, 
and b, = 0.) Observe that even when y is 0.2, there is a substantial effect on the 
value of the investment opportunity (particularly when K is large) and on the 
critical cutoff K*. When y = 0.2, K * is about half of what it is when y = 0, so 
that a correct net present value rule would require the payoff from the invest- 
ment to be about twice as large as the expected cost before the investment is 
undertaken. This result is similar to the kinds of numerical results obtained by 
McDonald and Siege1 (1986) and Majd and Pindyck (1987) for uncertainty over 
the payoff to an investment, and shows that the effects of input cost uncertainty 
can also be quantitatively important. 

Fig. 4 shows the dependence of F(K) and K* on $I, i.e., on the extent to which 
fluctuations in K are correlated with the economy and the stock market. Recall 
that C$ = Op,, = Op,,. A reasonable value for 0, the market price of risk, is 0.4 
(see footnote 4), so we would expect 4 to be less than this, perhaps on the order 
of 0.1 to 0.3. Fig. 4 shows F(K) for C#J = 0,0.3, and for illustrative purposes, 0.6. 
As is clear from this figure, a value of C$ on the order of 0.1 will have only 
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F(K) 

4- 

2- 

I I 

K;=.q K;=.z 

Fig. 3. Input cost uncertainty. 

Figure shows value of investment opportunity, F(K), as function of expected cost to completion, K, 
and critical expected cost, K*, for y = 0, 0.02, and 0.4, where 7 is annual standard deviation of 
percentage changes in cost due to input cost fluctuations. Other parameter values are V = 10, k = 2, 

r = 0.05, /I = 0, and C#J = 0. 

Fig. 4. Input cost uncertainty with systematic risk 

Figure shows value of investment opportunity, F(K), as function of expected cost to completion, K, 
and critical expected cost, K*, for C$ = 0.0.3, and 0.6. Only input cost uncertainty is present (y = 0.2, 

p = 0). Other parameter values are V = IO, k = 2, and r = 0.05. 

a negligible effect on F(K) and K *. For a value of 0.3, however, the effect is large, 
and reduces K* by around 25% compared to q5 = 0. Thus, input cost uncer- 
tainty with a large systematic componet can have a substantial impact on the 
decision to invest. 



4.3. The general case 

The value of the investment opportunity and the critical expected cost K* can 
be found for any combination of p, y, and C$ by numerically solving eq. (6) and its 
associated boundary conditions. Since increases in fi and y (or 4) have opposite 
effects on K*, it is useful to determine the net effect for combinations of these 
parameters. 

Table 1 shows K* as a function of both a and y, for 4 = 0, V = 10, k = 2, and 
r = 0.05. Note that K* decreases with ?/ and increases with /I, but is much more 
sensitive to changes in y. Whatever the value of /3, a y of 0.5 reduces K* to about 
a fifth of its value when y = 0. Also, this drop in K* would be even larger if there 
were a systematic component to the input cost uncertainty. Thus for many 
investments, and particularly for large industrial projects for which input costs 
fluctuate, increasing uncertainty is likely to depress investment. The opposite 
will be the case only for investments like R&D programs, for which technical 
uncertainty is far more important and p could easily exceed 1. 

Table 2 shows F(K; p, y) as a function of fi and ‘4 for K = 8.92, which is the 
value of K* when p = ?/ = 0. This is the ‘premium’ in the value of the investment 
opportunity that results from the two sources of cost uncertainty. Note that this 
premium is increasing in both fl and y, but is again more sensitive to y. Also, if 
5’ is large (say, 0.5), this premium changes very little when /I is increased. 

The use of this mode1 for investment decisions requires estimates of p and y, 
and secondarily, an estimate of $I or pK,,,. This requires estimating confidence 
intervals around projected cost for each source of uncertainty. To break cost 

Table 1 

Critical cost to completion, K*, as a function of b and 7.” 

Degree of Degree of input cost uncertainty, 7 
technical 
uncertainty, b 0 0.1 0.2 0.3 0.4 0.5 

0 8.9257 6.6113 4.9463 3.7524 2.8857 2.2559 
0.1 8.9844 6.6504 4.9756 3.7720 2.90 16 2.268 1 
0.2 9.1309 6.7578 5.0537 3.8330 2.9468 2.3032 
0.3 9.3750 6.9385 5.1855 3.9307 3.0225 2.3608 
0.4 9.7 168 7.1875 5.3711 4.0674 3.1274 2.4438 
0.5 10.156 7.5098 5.6104 4.2480 3.2617 2.5488 
0.6 10.693 7.9053 5.8984 4.4629 3.4277 2.6758 
0.7 11.328 8.3691 6.2402 4.7168 3.6230 2.8271 
0.8 12.05 1 8.8965 6.6309 5.0146 3.8477 3.0005 
0.9 12.861 9.5020 7.0801 5.3467 4.1016 3.1982 
1.0 13.770 10.166 7.5732 5.7178 4.3848 3.4180 

“Critical cost K* is found by solving eq. (6) with its associated boundary conditions for F(K). The 
parameters /I and y measure the degrees of technical and input cost uncertainty, respectively. Other 
parameter values are V = 10, k = 2, r = 0.05, and r#~ = 0. 
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Table 2 

Value of investment opportunity, F(K), as a function of /I and y.a 

Degree of Degree of input cost uncertainty, y 
technical 
uncertainty, /3 0 0.1 0.2 0.3 0.4 0.5 

0 0 1.0877 
0.1 0.1384 1.0915 
0.2 0.2026 1.0983 
0.3 0.2428 1.1149 
0.4 0.3924 1.1434 
0.5 0.5 199 1.1918 
0.6 0.7499 1.2650 
0.7 0.9067 1.3652 
0.8 1.1664 1.4942 
0.9 1.3606 1.6848 
1 .o 1.6034 1.8724 

2.1553 
2.1596 
2.1642 
2.1753 
2.1956 
2.2277 
2.2697 
2.3280 
2.3998 
2.4939 
2.5996 

3.1588 4.0535 4.8345 
3.1599 4.0565 4.8371 
3.1670 4.0606 4.8409 
3.1747 4.0692 4.8456 
3.1878 4.0810 4.8595 
3.2146 4.0974 4.8746 
3.2440 4.1240 4.8920 
3.2837 4.1572 4.9 184 
3.3401 4.1978 4.9487 
3.4024 4.2460 4.9884 
3.4764 4.3021 5.0323 

“Evaluated at K equal to the critical cost K* corresponding to fi = ;I = 0 

uncertainty into technical and input cost components, note that the first is 
independent of time, whereas the variance of cost due to the second component 
grows linearly with the time horizon. Thus, a value for y is found by estimating 
the standard deviation of cost T years into the future, assuming no investment 
takes place prior to that time. This estimate, c?,, could come from experience 
with construction costs, or from an accounting model of cost combined with 

variance estimates for individual inputs. Then, 9 = 8,/J? Likewise, using 
eq. (15) and an initial estimate of expected cost, K(O), a value for jI can be based 
on an estimate of the time-independent standard deviation of I?. The next 
section illustrates this in the context of a specific example ~ the decision to build 
a nuclear power plant. 

4. Example - The construction of nuclear power plants 

This section examines the decision to start or continue building a nuclear 
power plant in the context of market conditions in late 1982 or 1983. This was 
about three years after Three Mile Island and a time of considerable uncertainty 
over nuclear plant construction costs, which had begun rising sharply. Many 
utilities faced difficult decisions about whether to go ahead with planned or 
ongoing construction, and some utilities canceled plants that were well on their 
way towards completion.’ Examining this investment problem will show how 

6For example, Virginia Electric Power canceled its Northanna III and IV units, which were 10% 
completed, Public Service of Indiana canceled Marble Hill (35% completed), Washington Public 
Power Supply Systems canceled four of its five plants (5% to 50% completed), and Cleveland 
Electric Illuminating canceled its Zimmer plant, which was more than 90% completed. 
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the model can be used and provide insight into the evolution of nuclear power in 
the U.S. 

To apply the model, we need estimates of the expectation and variance of the 
cost of building a kilowatt of nuclear generating capacity, a decomposition of 
that variance into technical and factor cost components, the maximum rate of 
investment, and the value of the unit of capacity. The last two numbers are 
relatively straightforward. Per1 (1987, 1988) has shown that given the prices of 
alternative fuels during the early- and mid-1980s the value of a unit of capacity 
was about $2,000, with fluctuations in real terms within only a + 10% range. 
(Unless otherwise noted, all numbers are in 1985 constant dollars.) The actual 
construction time for nuclear plants varied through time and across plants 
during the late 1970s and 1980s from six to as long as sixteen years, but tended 
to move proportionally with realized costs, and increased over the years as (real) 
costs increased. During the early 1980s however, estimates of expected construc- 
tion time were clustered around ten years, so a good estimate of the maximum 
rate of investment is 10% of expected cost. 

To estimate the expectation, variance, and variance decomposition of cost, 
I use survey data on individual nuclear plant costs published by the Tennessee 
Valley Authority (TVA) and a cross-section regression analysis by Per1 (1987, 
1988) that explains differences in these costs across plants. The TVA obtained 
quarterly estimates of expected cost for nuclear plants planned or under con- 
struction in the U.S. These numbers, published in the TVA’s ‘Costs per Kilowatt 
Report for U.S. Nuclear Plants’, provide data on the expected cost of a kilowatt 
of generating capacity on a plant-by-plant basis. The variance of cost and its 
decomposition can be estimated from the time-series and cross-sectional vari- 
ation of these numbers, using the fact that the variance of cost due to technical 
uncertainty is independent of time, but the variance due to input cost fluctu- 
ations grows with the time horizon. 

In any year, expected costs per kilowatt will vary across the 50 to 60 plants in 
the TVA survey, but part of this variation can be explained by differences in the 
type of plant, the experience of the contractor, region of the country, etc. 
Consider the cross-section regression: 

COSTi, = ~0 + UlXli, + uZX~~, +. + ci, (17) 

where COSTit is expected cost for plant i in year t, and the Xi,‘s are a set of 
explanatory variables. This regression filters out the predictable part of the 
cross-sectional variation. Then, for plant i in year t, an estimator of the variance 
of cost due to technical uncertainty is the variance of the cross-sectional forecast 
error for COST,, from the regression equation (17) given the values of Xiit, Xzil, 
etc. that apply to plant i. 

A lower bound on this variance is the (squared) standard error of the 
regression, which would be the variance of the forecast error if, for plant i, Xkit 
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for each k were equal to its cross-sectional mean. In general, the Xkit’s for any 
plant will differ from the means, so the variance of the forecast error will exceed 
the squared standard error of the regression. (The reason is that the true 
coefficients al, a2, etc. are unknown, and only estimated.) An upper bound on 
the variance of the forecast error is the cross-sectional sample variance of 
COSTi,. Hence, I consider values of p in eq. (6) that correspond to forecast error 
variances ranging from the squared standard error of the regression to the 
sample variance. 

Per1 ran such regressions in logarithmic form for 197771985, using the TVA 
data on COST for the last quarter of each year, with a set of up to ten 
explanatory variables that included: the log of the real wage, the log of the net 
design electric rating (reflecting the scale of the plant), the log of the experience 
of the architect/engineer (measured in number of plants designed), and dummy 
variables for the region of the country, the type of rock foundation, whether the 
plant was the first or subsequent built by the utility, whether it was a boiling 
water reactor, whether the utility served as its own construction manager, and 
whether the plant had a complex cooling tower. (Only variables that were 
statistically significant were retained, so regressions for some years included 
only a subset of the above.) I infer values of B from his results, using the 1982 
data and regression. Converting to levels, the mean expected cost for that year 
was $1,435 per kilowatt, with a standard error of regression of 17%. This is 
a lower bound on the standard deviation of the cross-sectional forecast error, 
and using eq. (15) implies B = 0.24.’ The upper bound is the sample standard 
deviation, which for 1982 was 46% of expected cost and corresponds to fi = 0.59. 

Next, I estimate the variance due to input cost uncertainty by fitting the 
annual time series for mean expected cost to a geometric random walk. The drift 
and standard deviation of percentage changes in mean expected cost are 0.12 
and 0.06, respectively, for 197771985, and 0.11 and 0.07 for 197771982. Since 
I consider decisions at the end of 1982, I use the latter numbers. However, an 
estimate of the drift based on six years of data (197771982) is very imprecise, and 
an expected real rate of increase of mean cost of 5% per year would have been 
reasonable at the time. This rate of increase would yield an estimated standard 
deviation of 0.20, so 0.07 to 0.20 is used as a reasonable range for y in eq. (6). 
Also, most input cost uncertainty was due to continual and unpredictable 
regulatory change, rather than factor price fluctuations. Since regulatory change 
is largely uncorrelated with the economy, I set $J = 0. 

Table 3 shows solutions for /3 = 0,0.24, and 0.59 and y = 0,0.07, and 0.20. In 
each case, V = $2,000 per kilowatt, k = $144 per year (10% of the $1,435 mean 

‘Note that this accounts for construction experience and movement down the learning curve. For 
a discussion of the impact of experience on nuclear plant operating costs, see McCabe (1991). 
McCabe also examines technology adoption with uncertain operating cost, and argues that utilities 
buy a mix of technologies in order to reduce the variance of operating cost. 
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Table 3 

Critical cost of kilowatt of capacity at end of 1982.” 

Degree of Degree of input cost uncertainty, ; 
technical 
uncertainty, p 0 0.07 0.20 

0 K* = 1550 K* = 1251 K* = 867 
F(K) = 121 F(K) = 194 F(K) = 465 

0.24 K* = 1609 K* = 1260 K* = 871 
F(R) = 131 F(K) = 201 F(K) = 469 

0.59 K* = 1881 K* = 1293 K* = 887 
F(K) = 215 F(K) = 228 F(K) = 487 

“Based on V = $2,000 per kilowatt, r = 0.045, k = $144 per year, and 4 = 0. Mean expected cost 
was K = $1,435 per kilowatt. 

expected cost in 1982) 4 = 0, and r = 0.045. (The average yield on three-year 
and ten-year Treasury bonds in 1982 was 13%. Using the 1979-1982 average 
rate of inflation of 7% in the PPI and 10% in the CPI as estimates of expected 
inflation puts the real risk-free rate, r, at about 3-6%.) The table shows the 
critical expected cost to completion, K *, and the value of the utility’s investment 
option (per kilowatt) for an actual expected cost equal to the mean of $1,435. 

Observe that absent input cost uncertainty (y = 0), K* ranges from $1,609 to 
$1,881, so that these investments would have been largely economical. (Tech- 
nical uncertainty increases K * by 4421% compared to its value of $1,550 when 
b = y = 0.) But input cost uncertainty lowers K* considerably, making the 
average plant uneconomical. Even for y = 0.07, in most cases it would have been 
preferable to wait to see how regulations (and the expected costs they implied) 
evolved. And for y = 0.20, it would have been economical to stop construction 
on plants that were 40% complete. This would seem to justify the decisions that 
some utilities made at the time to cancel planned or ongoing construction. Also, 
the TVA surveys were available to all U.S. utilities, so presumably they could 
have performed the same analysis. 

The results are not very sensitive to the maximum rate of investment, k. 

Taking /I = 0.24 and y = 0.07, if k = 288 (so expected construction time is five 
years instead of ten), K * rises to $1,397. If k = 96 (so construction is expected to 
take fifteen years), K * falls to $1,154. Thus for a reasonable range of expected 
construction times, K* varies by f 10%. 

These results show that for nuclear plants, the investment decision is most 
affected by input cost uncertainty, even though there is substantial technical 
uncertainty. The results also show the importance of incorporating both types of 
uncertainty in the analysis, rather than treating them separately. Note from the 
table that the dependence of K * on p is much less when y is 0.07 or 0.20 than it is 
when B is 0. If one first calculated the change in K* due to, say, a p of 0.59 
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(holding y = 0) and then the percentage change due to a y of 0.07, the result 
would be a K* of about $1,518 rather than the correct value of $1,293. 

5. Extensions of the model 

This section show how the model can be extended to account for uncertainty 
over the future value of the completed project and to allow for more general 
processes for K(t ). 

5.1. Uncertainty over the vulue qf the completed project 

Suppose the evolution of K is again given by eq. (4), 
stochastically: 

but V also evolves 

d V = c(, Vdt + or, Vdz, , (18) 

where dz, is assumed to be uncorrelated with dz or dw. Future values of V are 
thus log-normally distributed, and since the project takes time to complete, the 
payoff is always uncertain. For simplicity, we will assume that all risk is 
diversifiable. Then we can use dynamic programming, discounting with the 
risk-free rate of interest. 

The value of the investment opportunity is again given by eq. (3), but with 
V now stochastic and hence replaced by V(f). The Bellman equation is 

rF = m,a,x { - I(t) - IFK + i fi21KFK, + ~~2K2FKK + x,VF, 

+ + CT; V2FVV}. (19) 

This equation is linear in I, and eq. (7) again applies. The optimal rule is to 
invest whenever K < K*(V). Eq. (19) is an elliptic partial differential equation 
with a free boundary along the line K*(V). The solution must satisfy the 
following boundary conditions: (i) F(0, V) = V, (ii) lim”,,F(K, V) = 0, 
(iii) lim,, ~ F(K, V) = 0, (iv) ) B2K*FKK(K*, V) - FK(K*, V) - 1 = 0, and 
F(K, V) and F,(K, V) continuous at K*(V). Condition (ii) reflects the fact 
that zero is an absorbing barrier for V; the other conditions are interpreted as 
before. 

When K > K*(V), so that I = 0, eq. (19) has the following analytical 
solution: 

F(K, V) = m(K/V)" , (20) 
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(21) 

When K < K*(V), we can use the continuity of F(K, V) and F,(K, V) at K * to 
eliminate m: 

F(K*, V) = (K*/w)F,(K*, V). (22) 

Eq. (19) together with conditions (i) and (22) can be solved numerically using 
a finite difference method. The boundary, K*(V), is found simultaneously with 

F(K, V). 

5.2. Generalizing the proces.s,fbr K(t) 

We imposed restrictions on K (t ) that resulted in a simple investment rule and 
let us clearly differentiate between two types of cost uncertainty. We let K(t) 
follow: 

dK = - Idt + fiK(I/K)“dz / (23) 

with u = 0 or f. Now suppose 0 < x -C f. We will again assume that dz is 
diversifiable and that V is fixed and certain. Then the Bellman equation is 

r~ = max { - I(C) - IF, + $ Ij2123K2(‘~*)~~~}~ 
I(1 ) 

(24) 

Maximizing with respect to I gives the optimal investment rule in terms of F(K): 

Z*(K) = 
#K 2(1 -a)FKK l/(1 -2%) 

1 + F, I 
(25) 

Substituting I *(K) into eq. (24) yields the following nonlinear differential equa- 
tion for F(K): 

,.F = 1 + FK _ (aB2K2-2aF,,)‘i(l~23)(1 + FK)-2a/(l-2@). (26) 

To find F(K), eq. (26) must be solved (numerically) subject to conditions (8) 
and (9). 

Eq. (26) has solutions for which - 1 < FK < 0 and FKK > 0. (At K = 0, FK 
must be greater than - 1 as long as construction takes finite time and the 
discount rate is positive. Likewise, FKK must remain finite as K -+ 0.) Note from 
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eq. (25) that I + 0 as K + 0, so for small K, I falls as the net payoff V - K rises. 
This is the opposite of Grossman and Shapiro’s (1986) finding that I rises as the 
net payoff rises when there are decreasing returns to effort. In my model there 
are constant returns to effort; I falls because the variance of K’ falls as K falls, so 
that the shadow value of learning falls. 

6. Conclusions 

The model developed in this paper, as well as such predecessors as Roberts 
and Weitzman (1981) and Grossman and Shapiro (1986) belongs to a broad 
class of optimal search problems analyzed by Weitzman (1979). In what he 
characterized as a ‘Pandora’s box’ problem, one must decide how many invest- 
ment opportunities with uncertain outcomes should be undertaken, and in what 
order. In this paper, each dollar spent towards completion of a project is a single 
investment opportunity, and the uncertain outcome is the amount of progress 
that results. The model developed here is more general in that expected out- 
comes can evolve stochastically even when no investment is taking place (input 
cost uncertainty), but is more restrictive in that the order in which dollars are 
spent is predetermined. 

One advantage of this model is that it leads to a simple investment rule that is 
relatively easy to apply in practice. Also, the restrictions that have been imposed 
on the process for the expected cost to completion, K(t), allow us to clearly 
differentiate between two types of cost uncertainty. As we have seen in the 
previous section, some of the restrictive assumptions in the model can be relaxed 
(e.g., that V is nonstochastic), but at the cost of added computational complex- 
ity. Other restrictions can be relaxed as well. For example, we can relax the 
restriction that technical uncertainty is the same for each phase of the project 
(i.e., the uncertainty over the first third of a project’s anticipated cost is the same 
as for the last third) by making fi in eq. (13) a function of K. As long as P(K) is 
a smooth monotonic function, it is reasonably straightforward to obtain numer- 
ical solutions for F(K). 

The sources and amounts of cost uncertainty will vary greatly across different 
projects. However, based on the ranges of parameter values that would apply to 
the bulk of large capital investments, factor cost uncertainty is likely to be more 
important than technical uncertainty in terms of its effect on the investment rule 
and the value of the investment opportunity. We saw that this is clearly the case 
for investments in nuclear power plants. The opposite may be the case for some 
R&D projects. And although we found that the critical cost to completion, K*, 
is not very sensitive to the degree of technical uncertainty, fi, this finding was 
based on the assumption, discussed above, that the uncertainty is the same 
across all phases of the project. Increases in the critical cost may be much larger 
if a project’s uncertainty is largely resolved during its early phases. 



Appendix 

A.I. Mean and variance of I? 

Here I show that if K(t) follows a controlled diffusion of the form 

dK = - kdt + flK(k/K)“dz, 64.1) 

then K(t) is indeed the expected cost to completion. Let 

M(K) = E,[ jikdr,K(r)l> (A.2) 

where ? is the first passage time for K = 0. We will show that M(K) = K. 
We make use of the fact that the functional M(K) must satisfy the 

Kolmogorov backward equation correspondingto (A.1): 

fp2k2”K2m2ZMKK - kMK + k = 0, 64.3) 

subject to the boundary conditions (i) M(0) = 0 and (ii) M( x ) = co. [See 
Karlin and Taylor (1981, ch. 15).] Clearly M(K) = K is a solution of (A.3) and 
the associated boundary conditions. Now consider a more general solution of 
the form M(K) = K + h(K), where h(K) is an arbitrary function of K. By direct 
integration, 

(A.4) 

But since lim K_mhK(K) = C, the constant C must equal zero to satisfy bound- 

ary condition (ii). Hence M(K) = K. 
For the case of a = i (technical uncertainty), we can also find the variance of 

the cost to completion, i.e., 

var(K)=E,[fkdriK]2-h-i(i). (A.5) 

Let G(K) = E, [ j? kdtl K]‘. Then G(K) must satisfy the following Kolmogorov 
equation: 

f f12kKGKK - kGK+2kK=0, (‘4.6) 

subject to the boundary conditions G(0) = 0 and G( x) = cc. [See Karlin and 
Taylor (1981, p. 203).] The solution to (A.6) is G(K) = 2K2/(2 - fi’), so the 



variance is 

P’ 
var(K) = ~ ( ) z-/j2 K2. (A.71 

A.2. Derivation qf ey. (6) 

Given a replicating asset or portfolio whose price x follows eq. (5), we can 
value the firm’s investment opportunity as a contingent claim. First, denote 
6 = rX - CI,. Now, consider the following portfolio: hold the investment oppor- 
tunity, worth F(K), and sell short n units of the asset with price x. The value of 
this portfolio is then @ = F(K) - nx, and the instantaneous change in this value 
is d@ = dF - ndx. Since the expected rate of growth of x is ~1, < I,., the short 
position will require a payment stream over time at the rate n(~, - X,)X = n8x. 
Also, insofar as investment is taking place, holding the investment opportunity 
implies a payment stream 1(t). Thus over an interval dt, the total return on the 
portfolio is dF - ndx - nsxdt - l(t)dt. 

Next, using Ito’s Lemma, write dF as 

dF = FKdK + i F,,(dK)’ 

= - IF,dt + j?(lK)“‘F,dz + yKF,dw + f B’IKF,,dt 

Substituting (5) for dx, the total return on the portfolio over an interval dt is 
therefore: 

- lF,dt + fi(lK)“‘F,dz + yKF,dw + + B21KF&t + $ y2K2Fmdt 

- nr,xdt - na,xdw - nfixdt - Idt. 

By setting n = ;rKF,/a,x, we can eliminate the terms in dw, and thereby remove 
nondiversifiable risk from the portfolio. With n chosen this way, the only risk the 
portfolio carries is diversifiable, and hence the expected rate of return on the 
portfolio must be the risk-free rate, r. Using this value of n and equating the 
expected portfolio return to r(F - nx)dt yields eq. (6) for F(K). 
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