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■ Abstract Single-molecule spectroscopy (SMS) is a powerful experimental tech-
nique used to investigate a wide range of physical, chemical, and biophysical phenom-
ena. The merit of SMS is that it does not require ensemble averaging, which is found in
standard spectroscopic techniques. Thus SMS yields insight into complex fluctuation
phenomena that cannot be observed using standard ensemble techniques. We investi-
gate theoretical aspects of SMS, emphasizing (a) dynamical fluctuations (e.g., spectral
diffusion, photon-counting statistics, antibunching, quantum jumps, triplet blinking,
and nonergodic blinking) and (b) single-molecule fluctuations in disordered systems,
specifically distribution of line shapes of single molecules in low-temperature glasses.
Special emphasis is given to single-molecule systems that reveal surprising connections
to Lévy statistics (i.e., blinking of quantum dots and single molecules in glasses). We
compare theory with experiment and mention open problems. Our work demonstrates
that the theory of SMS is a complementary field of research for describing optical
spectroscopy in the condensed phase.

1. INTRODUCTION

Optical probing of single molecules (1–3), ions (4), nitrogen-vacancy centers (5),
or quantum dots (QD) (6), in condensed phase or biological environments (7–9),
is becoming routine practice in many laboratories. This new approach provides
significant new insights into the interaction of light with matter, behavior of single
particles, and their interaction with their nanoenvironments. For example, this
method has shed light on mechanisms of single-protein folding (10–13).

Several excellent reviews have considered experimental aspects of SMS (3,
7–9, 14–16). In this review we discuss theoretical aspects of SMS. One of our
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aims is to emphasize the importance of fluctuations in SMS. Specifically, we
analyze different physical and chemical mechanisms that are responsible for the
fluctuation of the number of photon counts from single-molecule (SM) sources.
We also recently surveyed the current status of the theory of SMS (17).

Why should we care about fluctuations in SMS? The merit of this new tech-
nique is that the problem of ensemble averaging, found in standard spectroscopic
techniques, is totally removed. Hence, in many cases, SMS reveals fluctuation phe-
nomena that are totally obscured by conventional measurement techniques (e.g.,
fluctuations in photon counts, photon antibunching, bunching, blinking, quantum
jumps, spectral jumps, etc.). Analysis of these fluctuations reveals important in-
formation on dynamical processes occurring in the condensed phase as well as
important information on the distribution of nanoenvironments. Many theoretical
studies have yielded methods to analyze stochastic fluctuations of light intensity
from single-molecule (SM) sources (e.g., see References 18–27). After an introduc-
tion to some of the concepts, methods, and mathematical tools used in the theory of
SMS (see Sections 2 and 3), we review five types of fluctuation phenomena in SMS.

In Section 4, we briefly review the rate equation approach to SMS. This approach
is important for the analysis of certain chemical behaviors of the molecules, for
example, blinking behavior caused by the triplet state. This blinking exhibits the
so-called quantum jump, where the molecule jumps into a nonemissive state (a dark
state). Similar behavior occurs for single atomic systems (28). The mathematical
theory of this behavior is simple to follow and is based on rate concepts.

In Section 5, we discuss a generalized Wiener-Khintchine approach (29, 30),
which gives a mathematical framework for the calculation of single-molecule
(SM) line-shape fluctuations. More precisely the method (29, 30) yields Mandel’s
Q parameter describing the variance of number of emitted photons in terms of
a three time dipole correlation function. The generalized Wiener-Khintchine ap-
proach (29, 30) is based on two main approximations: (a) linear response theory,
implying that external driving fields are weak and (b) the semiclassical approach
to photon-counting statistics. The calculation of the absorption line shape for a
molecular electronic transition coupled to its environment is a classical problem
in theoretical physical chemistry. When the excitation of the laser field is not
strong, the calculation can be based on the Wiener-Khintchine theorem, i.e., the
Fourier transform of the dipole relaxation function yields the line of the molecule.
Although this fundamental approach is very useful in the context of SMS, it ne-
glects the time-dependent fluctuations of the line (e.g., intensity fluctuations and
fluctuations in a number of photon counts). These stochastic time dependencies are
not found when the spectra of a large number of molecules are measured because
they are averaged out in the ensemble measurement procedure. Thus, a fundamen-
tal problem in SMS is the analysis of time-dependent line-shape fluctuations. And
the Generalized Wiener-Khintchine approach yields a method for the calculation
of these fluctuations.

In Section 6, we briefly introduce the quantum-jump approach and empha-
size the role of quantum mechanical fluctuations in SMS, namely sub-Poissonian

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
4.

55
:4

57
-5

07
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(M
IT

) 
on

 1
0/

28
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



17 Apr 2004 16:54 AR AR212-PC55-16.tex AR212-PC55-16.sgm LaTeX2e(2002/01/18)P1: FHD

SINGLE-MOLECULE SPECTROSCOPY 459

photon statistics and antibunching. We briefly review the problem of single photons
on demand using SM sources as an application of this approach. SM interacting
with external fields are open dissipative quantum systems, which in many cases
strongly interact with their nanoenvironments. A powerful theoretical approach
called the quantum-jump approach was introduced in the quantum optics commu-
nity to describe single experimental realizations of simple quantum systems (i.e.,
two-level atoms) (28, 33, 34). An important ingredient of this theory is the concept
of quantum jump. For our purposes, the quantum jump corresponds to the detec-
tion of a single photon emitted from an SM source. Such a jump corresponds to a
sudden increase in the knowledge we have of the system, namely, the collapse of
the wave function to the ground state following an emission of a single photon. The
questions here are whether, when, and how to adopt the quantum-jump approach
in the context of SMS. A step in this direction is the work of Makarov & Metiu
(35, 36) and the experiments and simulations of Orrit and co-workers (37).

Very recently, Zheng & Brown (31, 32) developed a generating function frame-
work to calculate photon statistics for an SM undergoing a spectral diffusion
process. The approach in Reference 31, captures the quantum behavior of the in-
teraction of light with matter within the framework of optical Bloch equations
(e.g., antibunching) and is also valid for strong external fields. We briefly discuss
this interesting work in Section 7.

In many cases, SMS reveals unexpected behavior that to date lacks theoretical
explanations. One such example is the power-law statistical behavior of “dark”
and “bright” times (i.e., blinking) of single quantum-dot systems (38–41). These
systems are nonstationary and nonergodic, and they exhibit statistical aging (42,
43). These behaviors are related to the observation that the mean, dark, and bright
periods diverge. As such, standard theories based on rate concepts, which work
well for standard ensemble-averaged measurements, must be replaced when con-
fronted with new fractal data obtained using SMS. In Section 8, we discuss a
Lévy walk approach to the photon-counting statistics from such quantum dots. We
showed that the Mandel’sQ parameter, describing fluctuation of photon counts,
increases with measurement time even with long measurement times (42). This
behavior is very different from that revealed by previous approaches, developed
in the quantum optics community [e.g., (28, 87) and references therein], where
Mandel’s Q parameter approaches a constant in the limit of long measurement
time.

In Section 9, we investigate SMS in low-temperature glasses as a prototype
problem for SMS in a disordered medium. In a disordered condensed phase [e.g.,
low-temperature glasses, bacterial antena system LH2 (45, 46), and defected crys-
tal], each SM interacts with a unique nanoenvironment. Hence, the spectra of
an individual SM have unique features [see e.g., (44, 47, 48)]. Therefore, in a
disordered host, one must consider many SM whose features are investigated
individually. This leads to a distribution of parameters, for example, a distribu-
tion of lifetimes (49) or a distribution of moments or cumulants of the spec-
tral lines (50, 51). These distribution functions contain more information than is
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obtained from the average alone, which is measured using ensemble techniques
(e.g., averaged lifetime, averaged line shape, etc.). This leads to an important the-
oretical consequence: Predictions must be made on the level of distribution of
observables, not just on the mean. A characteristic example is the Geva-Skinner
model (44) for SM line shapes in low-temperature glasses. Both theory (44, 50)
and experiment (48, 52) show that the line shape of an SM in a low-temperature
glass typically has a complicated, multipeaked, random shape.

2. FROM ENSEMBLE-AVERAGED LINE SHAPES
TO SINGLE-MOLECULE LINES

Here consider an SM immersed in a condensed-phase environment that we call
the host (e.g., an amorphous glass, a molecular matrix, a cell, etc.). We introduce
a simple picture for absorption spectroscopy in the condensed phase, which helps
us to understand the new types of problems found in SMS. We emphasize some
of the main differences between standard ensemble-averaged line-shape theories
and SM behavior.

In SMS, one is interested in a particular electronic transition, whose states are
denoted by|g〉 (ground state) and|e〉 (excited state). We neglect, for the time being,
the triplet state, soon to be reintroduced. SM typically interacts strongly with their
host. For simplicity, we assume that all molecular-host potentials (a) are pair-wise
additive and (b) depend only on the distance between molecules. Although these
assumptions are not always realistic, they are used here for the sake of clarity. The
SM/host-molecule pair potential, when the SM is in the ground (excited) state is
denoted byvi

g(r ) [vi
e(r )], wherei is an index for theith host molecule. The pair

potential betweenith andjth host molecules isvi j
h (ri j ). The Hamiltonian for the

system with the molecule in the ground state is

Hg = P2

2M
+

∑
i

p2
i

2mi
+

∑
i

vi
g (ri ) +

∑
i < j

v
i j
h (ri j ). (1)

The Hamiltonian when the SM is in the electronically excited state is

He = Hg +h̄ω [R(t)] , (2)

where

h̄ω [R(t)] ≡ h̄ω0 +
∑

i

[
vi

e(ri ) − vi
g(ri )

]
. (3)

[R(t)] denotes the collection of all time-dependent SM/host-molecule distances,
andω0 is the bare gas-phase transition frequency.

For a disordered system, the Hamiltonian Equation 1 is a random function. For
example, consider a crystal host with quenched static defects that are randomly
distributed in the sample with a low density. Each SM (which may also be con-
sidered a defect) will interact with a random set of host defects. For an ordered
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single-component host system, the Hamiltonian Equation 1 is simplified. Then
vi

g (r ) = vk
g (r ) for all k 6= i .

Consider an SM in the ground state. The absorption frequency of the molecule
(i.e.,ω0 + ω [R(t)]) evolves in time according to the ground-state Hamiltonian.
Such an evolution typically yields a complicated trajectory of the absorption fre-
quency, called spectral diffusion.

In most cases, the dynamics of the underlying Hamiltonian is too complicated
to track (or the Hamiltonian is not known). Then a useful approach is based on
the Kubo-Anderson (53–55) stochastic theory, which replaces the absorption fre-
quencyω[R(t)] with a time-dependent stochastic processω(t).

Consider now the classical absorption line-shape problem for such a molecule
in a continuous wave (cw) weak-laser field. The line is given by the Fourier trans-
form of the dipole correlation function, namely the Wiener-Khintchine
formula:

〈I (ωL )〉 ∝
∞∫

−∞
dt exp[−i (ωL − ω0) t − 0t/2]

〈
exp

i

t∫
0

ω
[
R(t ′)

]
dt ′


〉

, (4)

where〈· · ·〉 indicates (a) an equilibrium phase-space average over initial conditions
weighted by the Boltzmann factor for the ground-state Hamiltonian or (b) an
average over the stochastic processesω(t).0 is the inverse lifetime of the electronic
transition.

In a disordered condensed phase, one has to add the averages over the random
Hamiltonian to the average over the trajectories in Equation 4. Such randomness
leads to the problem of inhomogeneous line broadening as reviewed by Stoneham
(56). In effect, each individual chromophore has a random Hamiltonian caused
by random defects in the sample. Hence, the absorption line shape observed in
ensemble measurements is formally

line = 〈I (ωL )〉, (5)

where· · · is an average over the random Hamiltonian.
The merit of SMS is that it gets rid of these two averages. Under certain condi-

tions, discussed in Sections 3.1 and 5, SMS detects stochastic realizations of the
spectral trajectoriesω[R(t)]. The problem of inhomogeneous line broadening is
removed. Hence, new problems are encountered: (a) What are the time-dependent
fluctuations of the line of an SM? (b) In a disordered medium, what is the distribu-
tion of the line shape? The former is considered in Sections 3 through 8, and the
latter is discussed in Section 9.

3. METHODS AND CONCEPTS

In Figure 1 we show a schematic representation of an electronic energy-level
structure of an isolated SM. In a typical experiment, a cw laser (frequencyωL )
excites the molecule; then, after the absorption of an exciting photon, the excited
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Figure 1 The three-state model of a static SM. The molecule in its ground state is
excited to a vibrational level of the excited singlet state, and after a very fast vibrational
relaxation, the molecule is found in the ground vibrational of the first electronic-excited
state (S). Then, either the molecule emits a photon (dotted line pointing downward)
or the system relaxes to the (typically) long-lived triplet state (T). The fluorescent
photons are Stokes-shifted with respect to the laser photons, owing to the vibrational
levels. Hence, in experiment, one may distinguish between incoming laser photons and
fluorescent photons.

molecule quickly decays (generating phonons) to the first electronic-excited state,
from which a fluorescence photon is emitted. This cycle restarts once the system
relaxes to the electronic ground state (see further discussion in Reference 3). In
most (but not all) experiments involving SM, the fluorescence is simply collected
and little concern is given to the finer details of the fluorescence frequency and
spatial distributions.

SM spectra are extremely sensitive to the local nanoenvironment in which
the SM is situated so that the spectra of the SM will fluctuate in time owing to
changes in local environments. SMS takes advantage of this sensitivity by using
SM as local probes. When the experiments are interpreted with proper theoretical
modeling, they yield insight into the dynamics of the environment and the SM-bath
interaction.

Mechanisms responsible for time-dependent fluctuations of SMS include triplet-
state dynamics (57–59), blinking due to charging effects (38, 39), rotational
dynamics (60, 61), and conformational changes in macromolecules (8, 20,
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62–65). In some cases, relaxation rates describing SM dynamics, fluctuate in time.
For example, the radiative lifetimes of quantum dots (66), or the triplet lifetime
of SM in a polymer host (59), are time-dependent. Brown (67) considered a gen-
eral approach to the theoretical study of SM kinetics with time-dependent rate
constants. Here, we illustrate some characteristic time-dependent fluctuations of
SMS, using spectral diffusion as an example.

3.1. Spectral Diffusion and Spectral Trails

We consider an SM undergoing a spectral diffusion process. Spectral diffusion is
found in many SM systems (7, 9, 52, 62, 63, 68–74) and has been the subject of
considerable theoretical work (21, 29, 30, 50, 77–83). Perturbers such as two-level
systems (TLS) or excitations in the environment lead to time-dependent random
changes in the absorption frequency of the SM so that the SM is coming in and
out of resonance with the fixed exciting laser field.

Although spectral diffusion processes were investigated in the context of ensem-
ble-averaged linear and nonlinear spectroscopy (55, 75, 76), the first observation
of a stochastic realization of spectral diffusion was made by Moerner and cowork-
ers (68, 69) using SMS of pentacene in p-terphenyl at 1.5 K (see Reference 84
for molecular modeling of this system). Reilly & Skinner (77, 78) suggested a
stochastic model on the basis of defect dynamics in the crystal that explains the
microscopic origin of the spectral diffusion in this system.

In some cases, spectral diffusion is photoinduced (e.g., Reference 85). Recently,
Bordat & Brown (86) performed an empirical calculation of p-terphenyl crystal
doped with terrylene to gain insight into the photoinduced frequency jumps of
single terrylene molecules.

Using a generic stochastic approach, Kubo & Anderson (53–55) investigated
spectral diffusion processes occurring in condensed-phase environments. This ap-
proach is a useful tool for describing different types of line-shape phenomena. We
used such an approach to describe an SM undergoing a spectral diffusion process.
Following previous results (30), we assume that the absorption frequency of the
molecule isω = ω0 + νh(t) andh(t) describes a two-state dichotomic process
[i.e., h(t) = +1 or h(t) = −1]. We assume the transition from state+1 to −1
and vice versa is described by a simple Poisson process defined by the rateR.
In Sections 5 and 7 we use this simple two-state process to demonstrate char-
acteristic behaviors of SM line-shape fluctuations. The physical meaning of rate
R and the frequency shiftν are discussed in Section 9 in the context of SMS in
low-temperature glasses.

We first consider a slow-modulation caseR ¿ 0 ¿ ν, where0 is the inverse
radiative lifetime of the molecule. Such a case corresponds to a large frequency
shift and is sometimes called the inhomogeneous limit (although in the SM context,
this terminology may be slightly misleading). Using the semiclassical theory of
photon-counting statistics, we use the simple two-state process to generate spectral
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trails (for further details see Reference 30). A spectral trail is a stochastic two-
or three-dimensional plot of the spectra of an SM (9, 52). In Figure 2 we show
an example of such a trail, which is generated by dividing the time axis into bins
of lengthT. During each bin interval one must determine the number of photon
counts [which in our model (30) depends on the Rabi frequencyÄ; the stochastic
realization ofh(t), 0, and the laser detuningωL − ω0].

The spectral trail in Figure 2 illustrates the huge potential of SMS. Clearly, anal-
ysis of such a trail yields information on spectral-jump magnitudes, and statistics
of spectral times. Such direct information cannot be obtained using ensemble-
averaged techniques. We used several important conditions to obtain the spectral
trail in Figure 2. FirstR ¿ ν; otherwise, we reach the limit of fast modulation
exhibiting motional narrowing behavior (Figure 3). Second,0 ¿ ν; otherwise the
width of the spectral lines in Figure 2 will be larger than the spectral shift. Finally,
1/R > T ; if not, then we do not sample the fluctuation of the line.T must also be
large enough so one may detect a sufficient number of photons in each bin. These
restrictions typically limit the analysis of line-shape fluctuations, using spectral
trails, to slow processes where average time between spectral jumps is on the order
of milliseconds or seconds.

In Figure 3, we show the spectral trail of an SM undergoing a fast spectral
diffusion processν ¿ R. Unlike the slow modulation case, the spectral trail does
not follow the absorption frequency of the molecule. An interesting question is
whether careful analysis of photon statistics, emitted from such an SM source, can
be used to teach us something about the underlying spectral diffusion process. The
relation between photon-counting statistics and spectral diffusion is discussed in
Section 5.

The spectral diffusion process considered here is an example of a time-dependent
fluctuation in SMS. An important theoretical goal in this emerging field is under-
standing how to relate time-dependent fluctuations, such as intensity fluctuations,
or fluctuations in the number of photon counts to the underlying processes occur-
ring in the SM condensed-phase system. We emphasize the fluctuations because
they constitute the basic new ingredient of SMS (i.e., in ensemble techniques
these fluctuations are not observed because they are averaged out). Physically,
the time-dependent fluctuations are controlled by three sources: the environment
(e.g., spectral diffusion), intrinsic dynamical processes occurring in the molecule
(e.g., triplet-state blinking), and quantum fluctuation of the SM laser-field sys-
tem (e.g., antibunching, etc.). The following sections investigate time-dependent
fluctuations in SMS.

3.2. Mathematical Tools and Definitions

The fluorescent photons emitted by a driven SM source are characterized by a
mathematical formalism developed in the quantum optics community (87). Be-
cause this formalism has not been widely used by chemists, we take some time
to introduce basic definitions. In what follows we assume a perfect detecting
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device; thus, we do not distinguish between photoemission events and photoelec-
tron counts. Finite detection efficiency corrections to our results can be found in
more specialized literature [(30, 87–89) and references therein]. These corrections
are of practical importance; however, for the sake of clarity and space, we do not
consider them here.

Photon emission is characterized in terms of a second-order correlation func-
tion: g(2)(t, t + τ ). This is the joint probabilityP2(t, t + τ ) for photon counts in
the interval [(t, t + dt) and (t + τ, t + τ + dt)], normalized by the probability for
two independent counts:

g(2)(t, t + τ ) = P2(t, t + τ )

P1(t)P1(t + τ )
, (6)

whereP1(t)dt and P1(t + τ )dt are the probabilities for single-photon counts in
the interval (t, t + dt) and (t + τ, t + τ + dt), respectively. Stationary emission
processes are usually considered so that

g(2)(t, t + τ ) = g(2)(τ ), (7)

which ist independent.
The fluorescent photons emitted by a coherently driven SM exhibit the non-

classical effect of antibunching, namely

lim
τ→0

g(2)(τ ) = 0. (8)

Physically, the emission of one photon from a single emitter makes the detection
of a second photon, after a short delay, improbable (90). In the long time limit,
one expects that

lim
τ→∞ g(2) (τ ) = 1 (9)

because for long delay times the emission of two photons (not necessarily consec-
utive photons) is uncorrelated. Surprisingly, single quantum-dot spectroscopy has
revealed a new type of strongly nonstationary behavior where Equation 9 does not
hold. This is the topic of Section 8.

For an ensemble of SM one usually encounters a different behavior forg(2)(τ ).
In many casesg(2)(τ ) ≥ 1. In this case we say that the light source is bunched.
When statistics of emitted photons is Poissonian,g(2)(τ ) = 1.

In some experiments fluorescent photons are collected in time bins. A time-
dependent intensityI (t) (i.e., photon counts per bin time) is obtained when the bin
timescale is shorter than the timescale of the underlying physical/chemical pro-
cesses responsible for the intensity fluctuations. In this case an intensity-intensity
correlation function

gI
(2)(τ ) = 〈I (t + τ )I (t)〉

〈I 〉2
(10)
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is used to analyze dynamical processes in SMS. For example, Orrit and co-
workers (70, 71) used this method to detect the dynamical process of an SM in a
low-temperature glass; the timescale for the dynamical process was measured in
microseconds.

Another useful quantity to characterize fluctuations is Mandel’sQ parameter
(87):

Q = 〈n2〉 − 〈n〉2

〈n〉 − 1, (11)

wheren is the random number of photon counts. When the statistics of photon
counts is Poissonian,Q = 0. The caseQ < 0 corresponds to sub-Poissonian
statistics, whereasQ > 0 corresponds to super-Poissonian statistics. For station-
ary processes there is a simple relation betweeng(2)(τ ) and Mandel’sQ parameter
(e.g., Reference 28):

Q(T) = 2〈I 〉
T

T∫
0

dt1

t1∫
0

dt2g(2)(t2) − 〈I 〉T, (12)

whereT is the measurement time. Usingg(2)(τ ) or Q one may detect antibunching
behavior (5, 91, 92, 94); the typical timescale is measured in nanoseconds. As far as
we know, SMS has not been used to detect faster dynamics below the nanosecond
limit.

4. RATE-EQUATION APPROACH: TRIPLET BLINKING

Fluorescence of molecules is often modeled using rate equations. This approach
is the simplest and most widely used. Here we briefly discuss this approach in the
context of SMS. Following Molski et al. (89), we consider a three-level molecule
as a working example. A similar approach was used in References 92 and 93 in
the analysis of the nonclassical photon statistics in SM fluorescence at room tem-
perature (92). The rate-equation approach neglects spectral diffusion, coherence,
and non-Markovian effects; these are discussed in the following sections.

Consider a three-level molecule, fixed in space, interacting with a cw laser field.
We use a standard scheme and notation to describe the photon emission process
of a chromophore, neglecting, for the time being, any explicit interaction with the
environment. We label the states of the molecule withi = G, T, S for the ground,
triplet, and singlet states, respectively (95). The level diagram of the molecule is
given in Figure 4. In this diagram, vibrational relaxation is neglected (see Figure 1).
This is a reasonable assumption when the vibrational relaxation is extremely fast,
compared with other timescales in the problem.

As investigated in detail by Barbara and co-workers (58), a three-level SM
exhibits a blinking effect, sometimes called triplet blinking. Blinking is found in
many SM systems. This means that long time intervals in which many photons are
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Figure 4 The three-state model for an SM. Five rate constants describe this problem,
K f , the fluorescence rate;Knr , the nonradiative rate;Kexc, the excitation rate,Kisc,
the intersystem crossing; andKGT, the decay rate from the triplet state.

emitted from the SM (bright state) are separated by long time intervals in which
no photon is emitted (dark state). Because the molecule is not emitting photons
when it is trapped in the triplet state, an observation of a single emitting molecule
naturally leads to a blinking phenomenon. This behavior is easily detected when
the timescale for the relaxation from triplet state is long (e.g., millisecond).

One goal of SM experiments is to extract information on the dynamical pro-
cesses occurring on the level of an SM such as the rate constants appearing in
Figure 4. Careful analysis of the photon statistics emitted from an SM should yield
this type of information. In experiments the measurement timeT is bounded be-
cause SM photobleaches (96). In some cases this limits the collection of a sufficient
number of counts to build up enough statistics (see, however, counter examples in
References 97–99, where photostable SM were used).

In what follows we calculate some statistical properties of photons emitted
from a single three-level system. We neglect the effect of photobleaching. We also
assume an ideal detector and no background noise (see Reference 89 on these
issues).

First, let us consider an ensemble of molecules. The populationsPi (t) are
described by the following rate equations (see Figure 4):

d

dt
PG(t) = −KexcPG(t) + (K f + Knr )PS(t) + KGT PT (t),

d

dt
PS(t) = KexcPG(t) − (K f + Knr + Kisc)PS(t),

d

dt
PT (t) = KiscPS(t) − KGT PT (t). (13)
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The solution of these equations using the Laplace transform technique is straight-
forward. The system of equations conserves normalization:PG(t) + PS(t) +
PT (t) = 1.

Whereas, for ensemble-averaged spectroscopy, the probabilitiesPG(t), PS(t),
andPT (t) are directly related to physical observables (i.e., the populations), new
probability functions are needed to describe SM experiments. Letf (τ ) be the
probability-density function of times between consecutive emission events. Cohen-
Tannoudji & Dalibard (100) call this function the delay function, but it is also called
the waiting-time function. Because the molecule after an emission event is found in
its ground state,f (τ ) can be used to characterize the emission process. Oncef (τ ) is
calculated, one may obtain other interesting characteristics of the emission process,
for example,g(2)(τ ), Q (see further details in Section 6.2). Mathematically, the
importance of f (τ ) stems from the fact that the emission process is a renewal
process (101, 102). Once a photon is emitted, the system returns to its ground
state, and the process is renewed.

Molski et al. (91) showed how to calculatef (τ ) for the three-level molecule un-
der investigation. To calculatef (τ ), a modified three-state model is introduced. An
absorbing boundary condition,A, in Figure 5 is included in the modified scheme.
This boundary “captures” the photon once it is emitted. Because there is no es-
cape route from stateA, the probability of a first-emission event is given by the
occupation of this state. Hence, the following equations are used:

d

dt
P̃G(t) = −KexcP̃G(t) + Knr P̃S(t) + KGT P̃T (t),

d

dt
P̃S(t) = KexcP̃G(t) − (K f + Knr + Kisc)P̃S(t),

d

dt
P̃T (t) = KiscP̃S(t) − KGT P̃T (t). (14)

Figure 5 The three-state model for an SM with an absorbing boundary
condition denoted withA.
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Note the difference between this set of equations and Equation 13. Owing to
the absorbing boundarỹPG(t) + P̃S(t) + P̃T (t) < 1 for t > 0, the waiting time
function is f (τ ) = K f P̃S(τ ) and P̃S(t) is determined by the set of Equation 14
with initial conditionsP̃G(0) = 1, P̃S(0) = 0, andP̃T (0) = 0.

Using this scheme, it is easy to calculate the Laplace (τ → u) transform of
f (τ ):

f̂ (u) = KexcK f (KGT + u)

u3 + 6u2 + 5u + KexcK f KGT
, (15)

where6 = Knr + Kisc + KGT + K f + Kexc, and5 = KexcK f + KexcKGT +
K f KGT + KexcKisc + KGTKisc. Finding the inverse Laplace transform off̂ (u) is
straightforward. Here we illustrate a few points based on this equation.

Using the smallu expansion of Equation 15

f̂ (u) = 1 − u〈τ 〉 + u2〈τ 2〉/2 . . . , (16)

we obtain the first two moments of the waiting-time function. The averaged time
between emission events

〈τ 〉 =
∞∫

0

τ f (τ ) dτ (17)

is

〈τ 〉 = Kexc(KGT + Kisc) + KGT(K f + Kisc + Knr)

KexcK f KGT
. (18)

Using Equation 54, derived later, we find that Mandel’sQ parameter is in the long
measurement time limit

Q = 2KexcK f
(−K 2

GT + KexcKisc
)

[Kexc(KGT + Kisc) + KGT(K f + Kisc + Knr)]2
. (19)

Depending on parameters,Q exhibits both sub- and super-Poissonian behaviors;
however, we believe that in usual circumstancesKexc > K 2

GT/Kisc. As a result a
super-Poissonian behaviorQ > 0 is encountered.

The simplest case to analyze is the two-level molecule, presented whenKisc → 0
assumingKnr = 0. For this case

Q = −2KexcK f /(Kexc+ K f )
2 < 0 (20)

and

f (τ ) = KexcK f

K f − Kexc
(e−K f τ − e−Kexcτ ). (21)

Hence, for short times

f (τ ) ' KexcK f τ. (22)
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Figure 6 The semilog plot of the waiting-time probability-density function for
a three-level SM. For very short times,f (τ ) exhibits the effect of antibunching:
f (τ )|τ=0 = 0. For longer times,f (τ ) exhibits a biexponential behavior. The fi-
nal slow decay of f (τ ) is characteristic for systems exhibiting triplet blinking.
K f = 108, Kisc = 106, Kexc = 105, KGT = 103, andKnr = 0 s−1.

This is the mathematical manifestation of antibunching. We may say that a photon is
delayed owing to the finite time it takes to excite the molecule; hence,f (τ )|τ=0 = 0.

In Figure 6 we show the waiting-time probability-density functionf (τ ) in a
scaling form for a set of parameters satisfyingK f > Kisc > Kexc > KGT > Knr .
Three time-regimes are found. For very short timesK f τ ¿ 1, f (τ ) exhibits
antibunching. For longer times we observe a bi-exponential behavior. ForK f τ <

1 (K f τ > 1) we see a rapid (slow) decay off (τ ). The long-time behavior is
caused by the long-lived triplet state of the molecule. While the molecule is in
the triplet state, no photons are emitted (dark state). Hence, a typical sequence
emitted from the molecule exhibits a triplet blinking effect. For the parameters
under consideration, this case corresponds to a two-state molecule turning from
bright to dark and vice versa.

The knowledge of the waiting-time function,f (τ ), makes possible the calcula-
tion of the statistical properties of photons emitted from the SM (for further details
see Section 6.2). The situation becomes more complicated when the molecule
interacts with a time-dependent environment because then the renewal concept
of the photon-emission process breaks down. In the next section we consider
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such a case: We investigate the effects of spectral diffusion on photon-counting
statistics.

5. THE GENERALIZED WIENER-KHINTCHINE THEOREM

In many SM experiments one observes large fluctuations in the number of photon
counts due to spectral diffusion. As mentioned in Section 3 perturbers in the vicinity
of the molecule cause random spectral shifts in such a way that the absorption
frequency of the molecule randomly fluctuates in time, leading to time-dependent
spectra (as we demonstrated in the spectral trail in Figure 2). Here we investigate
〈n〉 andQ for a model molecule undergoing a spectral diffusion process. We follow
our work presented in References 29 and 30, where this problem was considered
in detail.

We consider the semiclassical theory of photon-counting statistics. In this limit
one of the most widely used approaches to line-shape theory is based on the
Wiener-Khintchine theorem. This well-known theorem gives the line shape

〈I (ωL )〉 = lim
T→∞

〈n〉
T

(23)

in terms of the complex Laplace transform of the molecule’s dipole correlation
function (see Equation 31 below). This fundamental theorem was used in a large
number of theoretical investigations of line-shape phenomena [(55, 75, 76) and
references therein].

The merit of SMS is that it yields direct access to the measurement of the fluc-
tuations of the line, e.g.,Q. In what follows we generalize the Wiener-Khintchine
theorem and show that, within linear response theory,Q can be calculated on
the basis of a three-time dipole-correlation function. This fundamental correlation
function was obtained first by Plakhotnik (103) in the context of his intensity-
frequency time-correlation function technique for SMS (104). A detailed analysis
of the properties of the three-time correlation function and its relation toQ was
given in References 29 and 30. We will show how fluctuation in SMS, character-
ized byQ, can be used to obtain information on the underlying spectral diffusion
process not contained in the line〈I (ωL )〉.

In our investigation we assume fluctuations are caused by random modulations
of the absorption frequency (i.e., spectral diffusion) that are treated stochastically,
in a way similar to the Kubo-Anderson approach to line-shape theory. We ne-
glect other physical mechanisms responsible for the line-shape fluctuation such
as triplet-state dynamics, rotational dynamics, etc. We also assume semiclassical
treatment that neglects the time ordering of the intensity operator (compare Equa-
tions 26 and 39). In Section 7 we treat the problem quantum mechanically, and
then sub-Poissonian behaviorQ < 0 is found in certain limits. Further discussion
of the physical and mathematical assumptions are given in References 29–32, and
124.
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The molecule in such cases is described by a 2× 2 density matrix,ρ, whose
elements areρee, ρgg, ρeg, ρge. Thus

u = (ρgee
−i ωL t + ρege

i ωL t )/2,

v = −i (ρgee
−i ωL t − ρege

i ωL t )/2,

and

w = (ρee− ρgg)/2. (24)

The stochastic Bloch equations, in the rotating wave approximation, are

u̇ = δL(t)v − 0u/2,

v̇ = −δL(t)u − Äw − 0v/2, and

ẇ = Äv − 0w − 0/2. (25)

As previously mentioned,0 is the inverse lifetime of the molecule, andÄ is the
Rabi frequency. The detuning frequency

δL(t) = ωL − ω0 − ω(t)

is stochastic and time dependent (i.e., the spectral diffusion). Without loss of
generality, we set the bare absorption frequency of the molecule:ω0 = 0.

According to the semiclassical theory of photon-counting statistics (87), the
probability of recordingn photons in a time interval (0, T) is given by (87)

p(n, T) =
〈

Wn

n!
exp(−W)

〉
, (26)

where the dimensionless variable

W ≡ ξÄ

T∫
0

v(t) dt (27)

is the detection efficiencyξ times the work of the driving field per unit energy
(defined by ¯hωL). Using Equation 26, the average number of photons counted in
time interval (0, T) is

〈n〉 = 〈W〉, (28)

where〈· · ·〉 is an average over the spectral diffusion process. Mandel’sQparameter
(Equation 11), is used to characterize the fluctuations, and it is straightforward to
show that (87)

Q = 〈W2〉 − 〈W〉2

〈W〉 . (29)
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Here Q ≥ 0, indicating that photon statistics are super-Poissonian. Equation 29
shows that fluctuations in work done by the laser field on the molecule lead to
fluctuations in the number of photon counts.

We now consider the important limit of the weak cw-laser intensity of Equation
25. We use a perturbation expansion in the Rabi frequency to find within linear
response theory (29, 30),

v = Ä

2
Re


t∫

0

dt1 exp

−i

t∫
t1

dt ′δL(t ′) − 0
(t − t1)

2

 . (30)

In standard line-shape theories Equation 30 is averaged. The well-known result
gives the Wiener-Khintchine formula for the line shape, using Equation 27

〈I (ωL )〉 = lim
T→∞

〈W〉
T

= ξÄ2

2
Re

 ∞∫
0

dτe−i ωLτ−0τ/2C1(τ )

 , (31)

where

C1(τ ) ≡
〈
ei

∫ τ

0 ω(t ′)dt ′〉
(32)

is the one-time dipole-correlation function (i.e., a Kubo-Anderson expression for
the dipole-correlation function).

We now consider the fluctuation using Equations 27 and 30

〈W2〉 = ξ2Ä4

16

T∫
0

T∫
0

T∫
0

T∫
0

dt1dt2dt3dt4

× e−i ωL (t2−t1+t3−t4)−0(|t1−t2|+|t3−t4|)/2C3 (t1, t2, t3, t4) , (33)

where

C3 (t1, t2, t3, t4) =
〈
exp

i

t2∫
t1

ω(t ′) dt ′ − i

t4∫
t3

ω(t ′) dt ′

〉
. (34)

The correlation function in Equation 34 contains the information on the spectral
diffusion process relevant for the calculation ofQ (i.e., using Equations 29 and
31).

The detailed analysis of SM line-shape fluctuations based on Equations 33 and
34 (References 29 and 30) leads to the following points:

1. The correlation function (Equation 34) is a four-time dipole-correlation func-
tion. However, if the underlying spectral diffusion process is stationary, it is
given by a three-time correlation function.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
4.

55
:4

57
-5

07
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(M
IT

) 
on

 1
0/

28
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



17 Apr 2004 16:54 AR AR212-PC55-16.tex AR212-PC55-16.sgm LaTeX2e(2002/01/18)P1: FHD

474 BARKAI ¥ JUNG ¥ SILBEY

2. The correlation function has a structure similar to correlation functions found
in the theory of nonlinear spectroscopy (75). Thus, fluctuations in the number
of photon counts in linear SMS are mathematically related to nonlinear
ensemble-averaged spectroscopy. Recently, Mukamel (105) extended our
understanding of the relation between nonlinear spectroscopy and photon-
counting statistics to the fully quantum domain.

3. There are 24 ways to time-ordert1, t2, t3, and t4 in Equation 34; however,
only three of these time-orderings are important.

4. Qdepends on the measurement time,T. However, unless specified otherwise,
we consider only the steady-state limitT → ∞ of Q. For time dependencies
of Q, see References 29 and 30.

5.1. An Example

To investigate the generic behavior of line-shape fluctuation, a simple two-state
spectral-diffusion model was investigated in great detail (29, 30). The spectral-
diffusion process considered wash(t) = νh(t), whereh(t) is a telegraph process
h(t) = +1 or −1 with the transition rate between these two states equal toR as
was used by Kubo in his classical investigation of line shape.

Using this model one may characterize SM fluctuations in six regimes. These
depend on the relative magnitude of the parametersν,R, and0. In different regimes,
Q exhibits different physical behaviors.

5.1.1. SLOW MODULATION The most straightforward regime is the strong-coupling
slow-modulation limit,R ¿ 0 ¿ ν, where the spectral trail of the molecule
follows the absorption frequency of the molecule (as in Figure 2). Using the gen-
eralized Wiener-Khintchine approach, we derived the following expression for the
time-dependence ofQ:

Q ' ξ

2R

(
1 + e−2RT − 1

2RT

)
(I+ − I−)

(I+ + I−)
, (35)

where

I± = Ä20|0/2 + i (ωL ∓ ν)|−2

4

are stationary solutions of the time-independent Bloch equation. In this limit the
line is given by

〈I (ωL )〉 ' I+ + I−
2

. (36)

Comparing the last two equations, we see that bothQ and〈I (ωL )〉 exhibit splitting
behavior, with two peaks atωL = ±ν. However, unlike the line shape,Q depends
on timeT and the rateR. Thus, it isQ and not〈I (ωL )〉 that yields information on
the dynamics. The behavior of both〈I (ωL )〉 andQ is shown in Figure 7. A generic
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feature is the decrease inQ as the underlying spectral-diffusion process becomes
faster.

The behavior found in the slow-modulation limit can be easily understood on
the basis of a two-state random-walk model. The molecule can be found in either a
positive+ν or negative−ν state. In the slow-modulation limit, the rate of photon
emission is determined by the stationary solutions of the time-independent Bloch
equation, namelyI±, while transients may be neglected. Using this physical picture
one can easily derive Equations 35 and 36.

5.1.2. FAST MODULATION We now consider the fast-modulation limit (a typical
spectral trail is shown in Figure 3). In this limit the line is Lorentzian; its width is
0 + 0eff with

0eff = ν2

R
. (37)

As shown in Figure 8a (see insert) the line exhibits the well-known behavior of
motional narrowing, i.e., asR is increased, the line width is decreased. When
0eff = 0 (i.e.,R → ∞), the line width is determined by the lifetime of the excited
level, namely0.

Q exhibits either a Lorentzian or a splitting behavior depending on0 and0eff:

Q '


ξÄ20eff

20(ω2
L+02

eff/4) 0 ¿ 0eff

ξÄ20eff0ω2
L

(ω2
L+02/4)3 0eff ¿ 0.

(38)

A detailed discussion of Equation 38 based on a cumulant and factorization ap-
proximations of the three-time dipole-correlation function is given in References
29 and 30. When0eff = 0 (i.e.,R → ∞), we haveQ = 0, i.e., Poisson statistics.
The semiclassical behavior ofQ in other limits is summarized in Table 1.

In the fast-modulation limit, and when0eff is finite, small deviations from
Poisson statistics are found. For reasonable detection efficiency, a typical value
of Q is 10−4 (28), which is very difficult to detect in experiments [values of|Q|
as small as 10−4 have been detected in the context of antibunching (92)]. It is
therefore important to consider the problem in the limit of strong external fields
(124), for which linear response theory does not work (for details see Section 7).

The generalized Wiener-Khintchine approach yields the fluctuation of photon
counts in the linear response regime. This approach is based on a semiclassical
theory of photon-counting statistics (87). As such it neglects certain quantum
aspects of interaction of light with matter (29, 30). For example, it is not suited
for the description of antibunching and sub-Poissonian photon statistics. In the
next section, we consider the quantum-jump approach, which yields the quantum
evolution of single emitting objects in external fields. In Section 7 we consider the
quantum mechanical treatment of an SM undergoing the spectral diffusion process,
showing that for fast spectral-diffusion processes sub-Poissonian statistics describe
the emission process.
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TABLE 1 Behavior of the line shape〈I (ωL )〉 andQ based on semiclassical generalized
Wiener-Khintchine approach.

Slow modulation Intermediate Fast modulation

Weak coupling R ¿ ν ¿ 0 ν ¿ R ¿ 0 ν ¿ 0 ¿ R

〈I 〉 ∼ Ä20

4[ω2
L + 02/4]

Q ∼ 0eff

〈I 〉
(

d〈I 〉
dωL

)2

Strong coupling R ¿ 0 ¿ ν: case (i) 0 ¿ R ¿ ν: case (v) 0 ¿ ν ¿ R: case (iii)

〈I 〉 ∼ 1
2(I+ + I−) 〈I 〉 ∼ Ä2ν2R

(ω2
L − ν2)2 + 4R2ω2

L

〈I 〉 ∼ Ä2(0 + 0eff)

4[ω2
L + (0 + 0eff)2/4]

Q ∼ 〈I 〉
R

Q ∼ 2〈I 〉
0

Q ∼


2〈I 〉
0

0eff À 0

0eff

〈I 〉
(

d〈I 〉
dωL

)2

0eff ¿ 0


*We set the detection efficiencyξ = 1. The slow- and fast-modulation regimes are defined according toR ¿ ν andR À ν,
respectively. The strong and weak coupling regimes are defined according toν À 0 0 À ν, respectively. Rich types of
physical behaviors are shown. In the fast modulation limit a quantum mechanical treatment of the problem (124) yields
Q < 0, Equation 62, and then the semiclassical treatment of the problem breaks down.

6. QUANTUM-JUMP APPROACH

Usually a density matrix or rate equation is used to describe the time evolution of an
ensemble of particles interacting with an external laser field. In recent years a pow-
erful theoretical approach, based on non-Hermitian wave function evolution, was
developed to describe single experimental realizations of single quantum systems.
The approach, called the quantum-jump approach, was introduced to describe sim-
ple dissipative atomic systems interacting with a laser field (see References 28 and
107 for a review and historical account).

An important ingredient of this new approach is the concept of a quantum jump.
For our purposes, the quantum jump corresponds to the detection of a photon
emitted from an SM source. Such an event corresponds to a sudden change in
the information we have on the system, namely to the collapse of the SM wave
function to its ground state, following an emission of a photon. Thus, unlike the
standard density matrix description of an open quantum system, the evolution of
a single emitting object is not smooth.

An excellent review by Plenio & Knight (28) is a good starting point for an
introduction to the approach. In particular, Reference 28 gives valuable Monte
Carlo methods which are used in simulation of the photon emission process from
an SM source. Here we consider a simple problem that illustrates some of the basic
ingredients of the new approach. Then we briefly discuss the applications of the
quantum-jump approach in the context of SMS.
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Qualitatively speaking, the quantum-jump approach for SMS should be differ-
ent from the quantum-jump approach employed by the quantum optics community
for two simple reasons: First, molecules may exhibit a more complex behavior than
simple two-level atoms. The work of Makarov & Metiu (35, 106) examines this
idea. Second, SM interacts with their condensed-matter environment, leading to
stochastic time-dependent fluctuations not found for simple ideal isolated atomic
systems. Much work in this direction is needed.

6.1. Fluorescence Photon-Number Statistics

We consider a two-level SM/atom interacting with a cw-laser field, within the
rotating wave approximation, and neglect spectral diffusion and any other external
noise source. A classical problem is the calculation ofp(n, T): the probability that
n photons have been emitted by an SM in time interval (0, T). This problem is
usually solved using the counting formula (88, 108, 109, 113),

p(n, T) =
〈
T ::

1

n!

 T∫
0

dt Î (t)

n

exp

−
T∫

0

dt Î (t)

 〉
QM

, (39)

whereT is the time-ordering symbol, :: stands for normal ordering,〈〉QM represents
the quantum mechanical expectation value for the total state of the TLS plus field,
andÎ (t) is the operator for the total flux expressed in units of photons per unit time.
Results forp(n, T) (88, 108, 109, 113), are re-derived here using the quantum-
jump approach. Below, we omit the subscript QM in〈〉QM (the reader should not
confuse this average with the averaging over spectral diffusion discussed in the
previous section).

The ground and excited state of the molecule are denoted by|e〉 and |g〉, re-
spectively. The system is described by a non-Hermitian Hamiltonian

HnH = HM − i
0

2
|e〉〈e|. (40)

Here

HM = −1|e〉〈e| + Ä

2
(|g〉〈e| + |e〉〈g|) , (41)

where1 = ωL − ω0 is the detuning and0 is the radiative decay rate of the
molecule. The time evolution of the “wave function” is given by

i |9̇〉 = HnH |9〉. (42)

However, sinceHnH is non-Hermitian,|9〉 is not normalized,〈9|9〉 < 1 for
t > 0. The usual textbook interpretation of the wave function|9〉 clearly does not
hold. So, the fundamental question is, What is|9〉?

According to the quantum-jump approach,|9〉 yields the survival probability
of the photon.P0(t) is the probability that a photon was not emitted in the time
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interval (0, t). Then according to the quantum-jump approach,

P0(t) = 〈9|9〉. (43)

For the SM under consideration|9〉 is given by

|9〉 = α(t)|g〉 + β(t)|e〉, (44)

where initial conditions satisfy|α(0)|2 + |β(0)|2 = 1. The coefficientsα(t) and
β(t) can be easily calculated using the non-Hermitian Hamiltonian Equation 40.
Based on Equation 43

P0(t) = |α(t)|2 + |β(t)|2
1

|3+ − 3−|2
[|3+e3−t − 3−e3+t |2 + 3+3−|e3+t − e3−t |2] (45)

where

3± = i 1̃ ±
√

−1̃2 − Ä2

2
(46)

and1̃ ≡ 1 + i 0/2. Deriving Equation 45 we assumed that the system is initially
in its ground state|9(t = 0)〉 = |g〉.

Because a cw laser is acting on the SM, the molecule is excited, and it emits a
photon at a random time. Then the processes are renewed. Quantum jumps occur at
random times{t1, t2, · · · tn · · ·}. τn = tn+1 − tn is the time interval between succes-
sive emission events. The random variables{τn} are mutually independent, identi-
cally distributed random variables. The waiting-time probability-density function
describing these random variables is

f (τ ) = −dP0(τ )

dτ
(47)

(P0(τ ) is given in Equation 45). After each emission event the system is in the
ground state, so the proper initial conditions are those used to derive Equation 45.

For zero detuning (1 = 0):

f (τ ) = 40Ä2

|02 − 4Ä2|e
−0τ sinh2

(√
02 − 4Ä2

4
τ

)
, (48)

which is in agreement with Equation 30 (88). For weak laser fieldsÄ < 0, the
system exhibits a damped behavior, whereas in the opposite limit0 < Ä, under-
damped Rabi oscillations are found. As expected, antibunching yieldsf (τ )|τ=0 =
0. Figures 9 and 10 show the behavior of the waiting-time probability-density
function for weak and strong fields. At least in the strong-field limit, the behav-
ior is different from the behavior observed in Figure 6 for a three-level molecule
described by simple rate equations. The quantum mechanical calculation yields
Rabi oscillations in the waiting-time distribution. Both Rabi oscillations and
antibunching have been detected in SMS (91, 92, 94, 110–112).
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Figure 9 The waiting-time probability-density function for resonance fluorescence
(zero detuning) in the overdamped limitÄ/0 = 0.25. Whenτ → 0, f (τ ) = 0,
implying antibunching behavior. For longer timesf (τ ) decays exponentially.

6.2. Renewal Theory Approach

Once f (τ ) is known, statistics of a number of quantum jumps/photon emissions
can be calculated using renewal theory (101, 102).

f̂ (u) =
∞∫

0

exp(−uτ ) f (τ ) dτ (49)

denotes the Laplace transform off (τ ). The probability ofn emission events in a
given time interval (0, T) is easily calculated using the convolution theorem of the
Laplace transform

Pn(T) = L−1

{
1 − f̂ (u)

u
f̂ n(u)

}
, (50)

whereL−1 denotes the inverse Laplace transform. Here the system is in a ground
state at the start of the observation. Hence, statistics of waiting time for the first
photon are given byf (τ ).
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Figure 10 The waiting-time probability-density function for resonance flu-
orescence in the underdamped limitÄ/0 = 7 with zero detuning. Rabi
oscillations are observed, andf (τ ) exhibits a nonexponential behavior.

Using Equation 50 the mean may be calculated as

〈n̂(u)〉 =
∞∑

n=0

nP̂n(u) = f̂ (u)

u[1 − f̂ (u)]
, (51)

and the fluctuation of photon counts is described using

〈n̂2(u)〉 − 〈n̂(u)〉 = 2 f̂ 2(u)

u[1 − f̂ (u)]2
. (52)

Using the smallu expansion of these expressions, we obtain the larget behavior
of the mean

〈n〉 ∼ t

〈τ 〉 (53)

and ofQ

Q = 〈n2〉 − 〈n〉2

〈n〉 − 1 ∼ 〈τ 2〉 − 2〈τ 〉2

〈τ 〉2
. (54)

Here
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〈τ 〉 =
∞∫

0

τ f (τ ) dτ (55)

and

〈τ 2〉 =
∞∫

0

τ 2 f (τ ) dτ (56)

are the first two moments of the probability-density functionf (τ ). From Equation
54,−1 < Q.

Cox (101) showed that for renewal processes, in the long time limit,n is nor-
mally distributed with a meant/〈τ 〉 and variance (〈τ 2〉 − 〈τ 〉2)t/〈τ 〉3. This is a
consequence of the Gaussian central-limit theorem. It shows that for long mea-
surement times statistics of photons do not depend on the specific shape of the
waiting-time distribution, only on the first two moments (or on the average inten-
sity and onQ). This Gaussian central-limit theorem argument breaks down when
the mean or variance of time between consecutive photon emissions diverges.
Such a case corresponds to a L´evy type of behavior, which is relevant for the
single quantum-dot experiments discussed in Section 8.

For the quantum-jump model under investigation and for zero detuning,

〈τ 〉0 = 02 + 2Ä2

4Ä2
(57)

and

Q = − 6Ä202

(02 + 2Ä2)2
(58)

based on Equation 48. These results were obtained by Mandel (113) using Equation
39. ThusQ < 0. Owing to the Rabi oscillations, the emission process is not
Poissonian, instead the photons are correlated. If photons are strongly correlated,
f (t) = δ(t − τ0) andQ = −1. However, physically this limit cannot be reached.
Q attains its minimum whenÄ = 0/

√
2, and thenQmin = −3/4.

The results obtained here, although written in a slightly different form, are
identical to those obtained previously by Mandel (113), Cook (108), and Lenstra
(109). The method presented here simplifies the derivations based on Equation 39.
The other methods, however, are used to justify the physical interpretation of the
dynamical evolution of|9〉 based on the non-Hermitian Hamiltonian (Equation
42). Finally, f̂ (u) is related to other physical quantities, for example,g(2)(τ ) (28).

6.3. Single Photons on Demand

The possibility of generating single photons at predetermined times has attracted
recent attention as it may be an important element for quantum computing and
secure data transmission via quantum cryptography (114). The quantum-jump
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approach is a valuable tool in this direction because the approach can be used to
model single-photon control using SM sources. Single-photon control from an SM
source might lead to new insights into the field of deliberate quantum control (115).

Recent experiments by Brunel et al. (37) use the method of adiabatic following
to prepare an SM in its fluorescing exited state. “Spontaneous emission from
excited state gives rise to single photon. With our current experimental conditions,
up to 74% of the sweeps lead to emission of a single photon” (35, p. 2722).
The experiment shows that the SM (DBATT in an n-hexadecane matrix at 1.8 K)
performs as a reliable source for triggered photons.

Similar experiments, using different approaches, were performed in room tem-
perature SMS (110, 117) and for single quantum-dot spectroscopy (118–121).
Usingπ pulse excitations, one may obtain a single photon per sweep, with a prob-
ability of one (i.e., when the length of the pulse is much shorter than the lifetime
of the molecule).

Brunel et al. (37) used the quantum-jump approach to simulate the experimental
data they obtained. The nearly perfect agreement between experiment and simu-
lation is an indication that the quantum-jump approach, based on the picture of
a two-level molecule, is a reasonable approximation in this case. These experi-
ments (37) make use of the linear Stark effect. Using a radio-frequency (rf) field,
the molecule’s absorption frequency is varied in timeω = ω0 + ν cos (ωr f t). In
this way, the molecule is coming in and out of resonance with the exciting laser
(frequencyωL = ω0). Brunel et al. (37) used the quantum-jump approach to cal-
culate numerically the probabilities of emitting 0, 1, and 2 photons per sweep (the
probability of obtaining three photons was very small).

Makarov & Metiu (36) have investigated the control with an rf field of single
photon emission from an SM source. Using numerical simulations based on the
quantum-jump approach, they showed an interesting and nontrivial dynamical
localization behavior. In the context of SMS the dynamical localization manifests
itself as a sharp increase of the average time between successive emission events
for specific nontrivial values of the rf-driving field. Interestingly, the theoretical
problem in Reference 36 is related to laser-induced localization of a quantum
particle in a symmetric double-well potential (122, 123).

The problem of single photon control opens many interesting unsolved theo-
retical questions: (a) How does one choose the best control parameters that would
yield optimal control of photons (e.g., what is the minimum ofQ)? (b) During
each sweep, what is the probability of emitting 0, 1, 2, or more photons? (c) How
does one extend the models to investigate molecular systems beyond the two-level
molecule approximation?

7. GENERATING FUNCTION APPROACH

We briefly review the Zheng-Brown approach (31, 32), to photon statistics in
SMS. The approach, based on a generating function formalism, captures both sub-
Poissonian behavior (e.g., antibunching) and super-Poissonian behavior caused by
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spectral diffusion. As mentioned sub-Poissonian statistics and antibunching are
usually observed in the short-time behavior of theQ parameter (typical timescale
is nanoseconds).

The information on photon statistics is contained in the moment generating
function (31)

2Y(s) ≡
∞∑

N=0

sN PN(t) (59)

where PN(t) is the probability ofN emission events in the time interval (0, t).
Generalized optical Bloch equations are used to obtainY(s), for a chromophore
with single excited and ground state (31)

U̇ (s) = −0

2
U (s) + δL (t)V (s)

V̇ (s) = −δL (t)U (s) − 0

2
V (s) − ÄW (s)

Ẇ (s) = ÄV (s) − 0

2
(1 + s)W (s) − 0

2
(1 + s)Y (s) (60)

Ẏ (s) = −0

2
(1 − s)W (s) − 0

2
(1 − s)Y (s) .

These equations are exact within the rotating wave approximation and optical
Bloch equation formalism. Similar to the previous Section,0 is the spontaneous
emission rate of the electronic transition andÄ is the Rabi frequency. The time
evolving detuning isδL (t) = ωL −ω0−ω(t), whereωL is the laser frequency,ω0 is
the molecule’s bare frequency, andω(t) is the stochastic spectral diffusion process.

Solution of Equation 60 yields, in principle,Y(s) from which the moments of
N

〈N(t)〉QM = 2
∂Y(s)

∂s

∣∣∣∣∣
s=1

〈N2(t)〉QM = 2
∂2Y(s)

∂s2

∣∣∣∣∣
s=1

+ 2
∂Y(s)

∂s

∣∣∣∣∣
s=1

, (61)

are obtained. With Equation 61 the MandelQ parameter can be obtained. Two
types of averaging are involved in this problem: averages with respect to the
photon emission process (denoted with〈· · ·〉QM), and also averages with respect
to the spectral diffusion process.

The main questions concerning Equation 60 are as follows: (a) What is the
physical meaning and foundations of the generalized optical Bloch equations?
(b) What are the method of solutions of the equations (32)? (c) What is the meaning
and procedure of averaging over the spectral diffusion process and the stochastic
emission process in the context of SMS (this issue was not treated yet in depth)?
(d) What are characteristic behaviors of theQ parameter, for spectral diffusion
processes, specifically (124)? (e) When doesQ yield sub-Poissonian behavior? (f)
How can we maximize the sub-Poissonian nature of the emission process (i.e.,
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how to chooseÄ) (124)? The latter point (f) is important for the efficient detection
of quantum effects in SMS because choosing values of the Rabi frequency that are
too small or too large results in very small, and hence, undetectable values ofQ.

The physical meaning ofU (s), V(s), andW(s) and their relation to the stan-
dard Bloch equation was given in Reference 31, and in a closely related work by
Mukamel (105). The generating function formalism is mathematically equivalent
to other approaches to photon statistics developed in quantum optics (108), for
example, the quantum-jump formalism (28).

The behavior of theQ parameter for a single molecule undergoing a spectral
diffusion process, was investigated analytically only recently (124). Similar to
Section 5, a telegraph type of spectral diffusion process whereω(t) = νh(t), and
h(t) = +1 orh(t) = −1, with transition rateRbetween state+1 and state−1 was
choosen. An exact solution for the long-time behavior of the MandelQ parameter
was obtained by He & Barkai (124). The solution is valid for weak and strong laser
fields, and gives the conditions on the spectral diffusion timescale and magnitude
of spectral jumps for sub-Poissonian nonclassical behavior to be observed.

In the slow-modulation limitR ¿ ν super-Poissonian behavior was obtained
(124) Q > 0, similar to the predictions of the semiclassical theory (29, 30) dis-
cussed in Section 5. Also Zheng & Brown (31) used numerical simulation to show
that the semiclassical approach works well in the slow-modulation limit. Most of
the SM experiments are analyzed in a limit in which bath fluctuations are slow
because these types of fluctuations are easier to detect experimentally.

In the fast-modulation limitν ¿ Ra sub-Poissonian behavior is obtained (124),
and a similar conclusion was obtained in Reference 32 on the basis of numerical
simulations. The behavior ofQ is shown in Figure 8. Strong sub-Poissonian be-
havior is observed for nonperturbative driving fieldÄ = 0/

√
2, implying that

predictions of the linear response semiclassical theory are not valid in this case.
The exact solution of Equation 60 yields in the limitR → ∞ keepingÄ, 0, and
ν fixed Mandel’s result, Equation 58. As expected when the timescale for spec-
tral jumps becomes very short, the molecule does not respond to the stochastic
fluctuation. A more physically interesting case is to letR → ∞ andν → ∞ but
keep the spectral diffusion contribution to the line width0eff ≡ ν2/R finite. In this
limit the line shape is (a) Lorentzian with a full width at half maximum equal to
0 + 0eff (provided that the external fields are weak) and (b) as shown in Figure 8
the line shape exhibits motional narrowing i.e., asR is increased the line becomes
narrower. In this limit (124)

Qfast = −20Ä2
[
303 + 5002

eff + 03
eff − 40ω2

L + 0eff
(
702 + 4ω2

L

)][
03 + 002

eff + 20Ä2 + 20eff(02 + Ä2) + 40ω2
L

]2 , (62)

where the bare frequency of the molecule’s electronic transitionω0 was set to zero.
Note that photon statistics are sub-Poissonian provided that the detuningωL is not
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too large. TheQ parameter, for zero detuning, obtains its minimum when

Ämin

0
=

√
(0 + 0eff)

20
, (63)

and thenQmin = −(0eff + 30)/4(0 + 0eff). The simple Equation 63 shows how
to choose the Rabi frequency in order to obtain strong sub-Poissonian behavior.
Unlike R andν, the parameter0eff is a physical observable, obtained in experi-
ment from the width of the line shape, hence Equation 63 is of practical value.
Finally we note that it would be interesting to obtain a quantum version of the gen-
eralized Wiener-Khintchine in Section 5, based on the linear response theory of
Equation 60.

8. FLUORESCENCE INTERMITTENCY
AND STRANGE KINETICS

Many SMS experiments exhibit fascinating fluorescent intermittency. The phe-
nomenological and stochastic description of these fluctuations, for example, the
fluorescence intermittency of single quantum dots (125, 126), is now considered.
Quantum dots exhibit blinking behavior: At random times the quantum dot jumps
between a bright state in which it emits many photons and a dark state in which
it is turned off. The on (or off) state is believed to correspond to the neutral (or
charged) state of the quantum dot (127). Thus statistics of on and off times teach
us about the charging kinetics of the quantum dot.

Several examples of intensity fluctuations that are due to different physical
mechanisms may be found in other SM systems. As mentioned in Section 4,
intersystem crossing into a nonemissive triplet state causes triplet blinking (58,
134). Chemical dynamics can cause an SM to change its emissive state. For ex-
ample, enzymatic turnovers of single cholesterol oxidase molecules have been
observed in real time by monitoring the emission from the enzymes’s active site
(flavin adenine dinucleate) (63). Large and slow spectral shifts (i.e., shifts due to
spectral diffusion) can cause the molecule to turn off and on when the exciting laser
frequency is fixed. The latter behavior is also found in SMS in low-temperature
glasses.

Unexpectedly, recent single quantum-dot experiments (38, 39, 43) showed that
distributions of on and off times follow a universal power-law behavior. The
probability-density function of on and off times decay asψ(ton) ∝ t−αon

on and
ψ(toff) ∝ t−αoff

off . Brokmann et al. (43) measured 215 QDs, and the exponentsαon

andαoff were estimated to be 1.58 ± 0.17 and 1.48 ± 0.15, respectively. Using
the Kolmogorov-Smirnov likelihood estimator, they concluded that the QDs are
statistically identical.

The power-law behavior of the off time is temperature independent, found in
different types of quantum dots (both CdSe and CdTe), and is independent of the
radius of the quantum dot as well as the laser intensity. The on times exhibit similar
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Figure 11 Blinking behavior of single quantum dots based on a two-state stochastic
model. The intensity of the model quantum dot jumps between two statesI = 1 and
I = 0. The distribution of on times (I = 1) and off times (I = 0) is long tailed, in
such a way that the averaged on and off times diverge. Such a behavior was observed
in the experiments of Bawendi’s (39) and Nesbitt’s (38) groups. Notice the off-time
interval 6600 <t < 11700 (upper panel), which is of the order of the measurement
time [time measured in arbitrary units]. The lower panel is a zoom of the upper panel
for timest < 2100. We usedψ±(t) ∝ t−3/2 and a simple computer program to generate
this figure.

features; however, a secondary photoinduced mechanism introduces a cut-off in the
probability-density function (PDF) of on times. The mentioned cut-off depends on
the laser intensity and temperature; however, when these approach zero, the cut-off
time seems to diverge. The power-law behavior indicates that these systems exhibit
extremely large fluctuations (see below for more details). A single realization of
intensity fluctuations in a two-state model quantum dot is shown in Figure 11.

Thet−3/2 behavior of the on and off times suggests that a simple one-dimensional
random-walk mechanism may be responsible for the power-law behavior. For an
ordinary one-dimensional random walk, the probability-density function of first
passage times (from, say,L to the origin) exhibitsP(t) ∝ t−3/2 behavior. An elec-
tron or hole once ionized may perform a random walk, either in energy space or
perhaps on the surface of the quantum dot. If such a random walk is one dimen-
sional, the off times obey a 3/2 power-law behavior. Similar mechanisms may also
control the on times.
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Verberk et al. (129) suggested a random distribution of traps in the vicinity of
the QD to explain the power-law behavior of off times. The model in Reference
129 predicts thatαoff < 1; the exponent is then nonuniversal in the sense that it
depends on the specific configuration of traps. Currently, further measurements
are needed to clarify whether the exponents vary from one QD to the other (129)
or are universal (43). The QD behavior is one example where experiments in SMS
have yielded a surprising result that still requires detailed theoretical investigation.

Next, we analyze photon-counting statistics based on a two-state model. This
approach is useful for describing both simple Poisson processes and power-law
processes. The latter is related to L´evy statistics, whereas the former is described
well by Gaussian statistics.

8.1. Nonergodic, Nonstationary Dynamics: Lévy Walk Approach

For a two-state intensity modelI (t) = I+ and I (t) = I−. In the quantum dot
experiments, the positive state is on, whereas the negative state is off:I− = 0
(i.e., a neglecting background). For a more general case, corresponding to an SM
jumping between two emission states, the positive and negative times are mutually
independent; each is an identically distributed random variable. The PDF of the
±times isψ(t±), and their Laplace transforms are

ψ̂± (s) =
∞∫

0

e−stψ±(t) dt. (64)

For an experiment in which the number of photon counts is recorded in a given
time interval (0, T), what is the probabilityP(n, T) of detectingn photon counts?
Mandel’s counting formula (Equation 26) is rewritten as

P(n, T) =
∞∫

0

P(W, T)
Wn

n!
exp(−W) dW, (65)

where

W = ξ

T∫
0

I (t) dt. (66)

Hereξ is the detection efficiency, which, without loss of generality, may be set to 1.
P(n, T) is the Poisson transform ofP(W, T), which, in principle, can be calculated
from the statistical properties of the random processI (t). If I (t) is nonrandom and
independent of time, the counting statistics are Poissonian. A general discussion
of the relation betweenP(W, T) and P(n, T) is given elsewhere [(87, 128) and
references therein]. In several SM experiments one may obtain direct information
on P(W, t) (when fluctuations are slow). However, when the experimental time
resolution is not sufficient (e.g., fast blinking), analysis based on counting statistics
might still be a useful tool.
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The two-state model under consideration can be mapped onto a simple random-
walk model. We imagine the intensityI (t) is a one-dimensional Brownian–type
of particle whose velocity is given byI (t), which jumps between two-state values
I− and I+. Then, according to Equation 66,W is the coordinate of the particle.
Random-walk theory can be used to analyze this type of problem. Hence, in the
long-time limit, we expect central-limit theorems (Gauss and L´evy) to play an
important role.

Skinner & Geva (19) considered Poisson jumps between these two states.
Berezhkovskii et al. (22, 23) used a random-walk approach, developed by Weiss
(130), and obtained a general expression forP(W, T) Laplace-Fourier space and
explicitly for a Poisson process. For such processes, the two-state model describes
fluorescence intermittency of probes attached to single DNA (131, 132) and tRNA
(133). Molski (134) investigatedP(n, T) for the Poisson process in the context of
triplet blinking.

We emphasize that the power-law case considered in Reference 42 exhibits a
statistical behavior different from that found in the Poissonian-jump models. The
random on and off times from a single realization follow the sequence{

t1
on, t1

off, t2
on, t2

off, · · · , tn
on, tn

off · · ·
}
.

In Figures 12 and 13 we plot a “staircase” usington for the length of each step and
toff for the height of the step. For an identical number of steps the Poissonian and
power-law processes exhibit different behaviors.

The characteristic function of the random variableW is then written as a sum
of four terms:

P(k, T) =
∑
m=±

∑
n=±

pmPmn(k, T), (67)

whereP(k, T) is the Fourier transform ofP(W, T), pm is the probability that the
process begins from statem (p+ + p− = 1), andPmn(k, T) = 〈eikW〉mn is the
conditional characteristic function that is obtained by an average over the paths
restricted to the statem at the initial timet = 0 and to the staten at the final
observation timeT. This procedure yields (42)

P++(k, T) = L−1

{
1 − ψ̂+(s+)

s+[1 − ψ̂+(s+)ψ̂−(s−)]

}
,

P−(k, T) = L−1

{
1 − ψ̂−(s−)

s−[1 − ψ̂+(s+)ψ̂−(s−)]

}
,

P+−(k, T) = L−1

{
ψ̂+(s+)[1 − ψ̂−(s−)]

s−[1 − ψ̂+(s+)ψ̂−(s−)]

}
,

P−+(k, T) = L−1

{
ψ̂−(s−)[1 − ψ̂+(s+)]

s+[1 − ψ̂+(s+)ψ̂−(s−)]

}
, (68)
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Figure 12 Power-law “staircase” for blinking quantum dots based on the two-state
model. The height of each step is the off time, and the length of each step is the on
time. There are 1000 steps in the figure. However, only a few large on and off times
dominate the landscape of this staircase.

wheres± = s − ik I± ands is the Laplace variable.
We now consider the power-law case:

ψ±(s) = 1 − A±sα + · · · s → 0, (69)

in which ψ±(t) ∝ t−(1+α) for t → ∞ and 0< α < 1. The quantum-dot case
corresponds toα = 1/2. We assume the initial conditionsp± = A±/(A− + A+)
and find in the long-timeT limit (42)

〈W〉 ∼ (p+ I+ + p− I−) T (70)

and

〈W2〉 − 〈W〉2 ∼ (1 − α)p+ p− (I+ − I−)2 T2. (71)

Within the context of Lévy walks (146) the behavior in Equation 71 is called bal-
listic transport because the fluctuations exhibit a ballistic behavior (∝T2) instead
of the normal Gaussian behavior (∝T).

As a second exampleψ+(t) = ψ−(t). Here these sojourn-time probability-
density functions have a first finite moment,〈t+〉 = 〈t−〉 = τ , but a diverging
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Figure 13 Normal “staircase” for exponential blinking. Compared with the corre-
sponding blinking of the quantum dots, this staircase exhibits small fluctuations around
the mean of many such staircases (i.e., the straight curve). There are 1000 steps in the
figure.

second moment:

ψ̂±(s) = 1 − τs + Asα + · · · , s → 0, (72)

where 1< α < 2. For simplicity p+ = p− = 1/2. In this case, we find in the
long-time limit

〈W〉 '
(

I+ + I−
2

)
T, (73)

and

〈W2〉 − 〈W〉2 ∼ A (α − 1) (I+ − I−)2

2τ0 (4 − α)
T3−α, (74)

where0(x) is the Gamma function. This type of behavior is called super-diffusion.
Whenα → 2 the fluctuations tend to become linear in time (forα = 2 Lévy walks
exhibit logarithmic corrections to the diffusive behavior). Ifα > 2, namely the
case when the first two moments of the± times are finite, the fluctuations grow
linearly with time.
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The photon statistics exhibit a behavior that is different from the standard
photon-counting statistics, andQ may increase with measurement time even for
long times. Using Equation 29

Q ∝
 T 0 < α < 1

T2−α 1 < α < 2
T0 2 < α.

(75)

This behavior is in contrast with traditional theories of photon-counting statistics
that predictQ → T0 in the limit of long measurement time. The resulting fluc-
tuations are extremely large if compared with the standard case corresponding to
α > 2. One can show that the ballistic behavior ofQ (0 < α < 1) is controlled by
long sojourn of on and off times that are on the order of the measurement timeT.
The mean photon count always increases as〈n〉 ∼ T (see Equations 28, 70, and
73). Thus,Q, not〈n〉 yields information on these unusual kinetics.

In terms of the nonergodic property of quantum dots, long measurement of the
spectra of a single quantum dot does not yield an average equal to that found over
an ensemble of chemically identical quantum dots. A time average over a single
realization of a stochastic trajectory according to

Wn(T) =
∫ T

0 Wn(t) dt

T
(76)

with n = 1, 2, . . . is different from the averaging denoted by〈. . .〉. For a process
with α < 1 one will typically find a long time interval in which the system is
in either a positive or a negative state; this time is on the order of the measure-
ment timeT. Thus, for two chemically identical quantum dots obeying this type
of power-law dynamics, long-time averages over the two quantum dots are not
generally identical, even in the limitT → ∞. This is expected because we have
no microscopic timescale in this problem.

The meaning of our averaging〈. . .〉 within an SM context is based on the follow-
ing assumptions: Stochastic trajectories of the intensity fluctuation are recorded
many times in a time interval (0, T). The processes begins anew at timet = 0
(i.e., the underlying stochastic process begins when the laser is turned on at start
of observationt = 0). Then averages over many such trajectories are computed to
yield the average〈· · ·〉. Finally, Verberk & Orrit (135) have calculated the intensity-
intensity correlation function of the on-off process. However, their results are valid
only for stationary processes that have finite averaged on and off times.

9. SINGLE MOLECULES IN LOW-TEMPERATURE GLASSES

In this section, we consider SMS in a disordered medium with special emphasis
on SMS in low-temperature glasses. We use the approach of Geva & Skinner (44),
who modeled the line shape of SM in low-temperature glasses on the basis of the
Kubo-Anderson sudden-jump approach to line-shape theory. The glass is modeled
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on the basis of the so-called standard tunneling model developed by Anderson,
Halperin & Varma (137) and independently by Phillips (138) in the early 1970s.

The standard tunneling model is a phenomenological model for low-temperature
glasses (say,T < 3 K). At its center is the concept of a two-level system (TLS).
It is assumed that low-temperature excitations of glassy materials are two-level
tunneling systems coupled to phonons. The tunneling parameters are distributed ac-
cording to laws discussed below so as to mimic the disordered and complicated en-
ergy landscape of glass. Tunneling systems are randomly distributed in space with
a low density. To a first approximation it is assumed that these tunneling systems in-
teract with phonons but not with each other. Thus, the complicated glass is replaced
with a simple noninteracting model. Brown & Silbey (139) have partially justified
the assumption of the noninteracting TLS for SMS in low-temperature glasses.

The standard TLS model was used successfully to predict macroscopic behav-
iors of many types of low-temperature glasses. For example, experiments have
shown that low-temperature glasses exhibit a nearly linear dependence of the heat
capacity with temperature, consistent with the standard tunneling model. The TLS
approach was used successfully to model ensemble-averaged linear and nonlinear
spectroscopy experiments. A fundamental first-principle understanding of TLS is
still missing, although numerical simulations by Heuer & Silbey (140) give some
evidence of the microscopic nature of a few of these entities, whereas Lubchenko
& Wolynes relate the TLS to motions of domain walls in the glass (141).

SMS can be used to investigate the assumptions of the standard tunneling model.
The main questions in this direction are as follows: (a) Is the standard model valid?
(b) How does one analyze the complex line shape behavior of an SM in a glass?
(c) What is the physical nature of the TLS [e.g., can we control an individual TLS
using, for example, the Stark effect and thus learn something of its microscopic
origin (142)]? (d) Are TLS randomly distributed in the glass or do they preferen-
tially appear at boundaries of clusters of atoms or molecules? (e) What is the nature
of the interaction between TLS and the probe SM? Because the spectra of SM are
sensitive to their local nanoenvironments dynamics, SM experiments are used to
investigate the dynamics of the glass and to start answering the above questions.

Beautiful experiments by Boiron et al. (52) showed how SMS may be used to
investigate the validity of the tunneling model. The spectral trails of 70 SM were
recorded, and the data were compared with predictions based on the TLS picture
of glass. Thirty percent of the SM behavior is not compatible with the standard
model. Even though the number of molecules investigated is not large (owing to
experimental difficulties) this method is a clear step forward in the pursuit of a
better understanding of the dynamics of glasses. Recently, an analysis based on
a larger sample of SM concluded that in a statistical sense the standard model
predictions work well, although a few SM exhibited behavior not compatible with
the standard model (48).

Let us briefly explain the main theoretical ideas behind the behavior of SM in
a low-temperature glass and then consider some aspects of the problem in more
detail. TLS are coupled to phonons in such a way that the state of the TLS changes
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with time. The state of thenth TLS is described by an occupation parameter,ξn(t),
which is equal to 1 or 0 if the TLS is in the ground or excited state, respectively.
The stochastic processξn(t) is assumed to be a telegraph process described by up
and down transition ratesKu andKd, respectively, which are related to each other
by a detailed balance condition. When a TLS is excited by phonons, it shifts the
absorption frequency of the molecule byνn (see below for further details).

Figures 2 and 3 exhibit model spectral trails of an SM coupled to a single TLS.
In the slow modulation limit, the spectral trail follows the absorption frequency of
the molecule. When a TLS is excited to its upper level (Ku), or when it relaxes to
its ground state (Kd), we observe a frequency jump in the spectral trail [a typical
timescale for spectral jumps observed using spectral trails in glasses is measured
in seconds, although faster dynamics can be detected usingg(2)(τ )].

The Orrit group (70, 71) investigated SM coupled strongly to a single TLS. Such
behavior can be found when a TLS in the glass is in the vicinity of an SM in such
a way that its frequency shiftν is much larger than the frequency shifts caused by
other TLS in the system that serve as a background. In fact, such an SM-single TLS
is not uncommon in low-temperature glasses. To determine whether the dynamical
behavior of the SM is compatible with an interaction with a tunneling system,
one needs to vary the temperature of the system. The temperature dependence of
K = Ku + Kd can be used to determine if the underlying process is a thermal
activation or a phonon-assisted tunneling. In the experiments to date one finds
behaviorsK (T) ∝T (one-phonon process) andK (T) ∝T3 (two-phonon process).
The case in whichK (T) ∝ exp(−1E/T) (classical activation over barrier) was
also found but only for one SM (70, 71).

When a TLS is excited it shifts the SM absorption frequency byνn (spectral
jump). Thus, according to Kubo-Anderson’s sudden-jump approximation the ab-
sorption frequency of the SM is

ω(τ ) = ω0 +
Nact∑
n=1

ξn(τ )νn, (77)

whereNact is the number of active TLS andω0 is the bare transition frequency.
The summation (index n) is over randomly distributed TLS (see below for further
details). The frequency shift due to thenth TLS is

νn = 2πα
ψ(Ä)1n

r 3
, (78)

whereα is a coupling constant,1n is a dimensionless function of the internal
parameters of the TLS, and9(Ä) is a dimensionless function of order unity defined
by the orientation of thenth TLS and the SM.1 is given by1 = A/E. An
assumption made in Equation 78 is that the SM/TLS interaction is dipolar, hence,
the 1/r 3 interaction results.

Following previous findings (44) we generate the random environments and
parameters as follows: Each TLS is characterized by its symmetry variableA and
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tunneling elementJ, and the energy splitting of the TLS isE = √
A2 + J2.

The probability of finding a TLS in its upper state (ξ = 1), p, is given by
a standard Boltzmann formp = 1/ {1 + exp[E/(kbT)]}. The distribution of
the asymmetry and tunneling parameters isP(A)P(J) = N−1J−1 for Jmin <

J < Jmax and 0< A< Amax, whereAmax, Jmin, Jmax are phenomenological para-
meters (given in Table 2), andN is a normalization constant. The rate of the flipping
TLS is K = cJ2E coth(βE/2), wherec is the TLS phonon-coupling constant.

On the basis of Equations 77 and 78 one may, in principle, simulate the line shape
or spectral trails of SM in low-temperature glasses, using the Bloch equation and
Mandel’s counting formula or using the quantum-jump approach (to date, however,
no extensive simulations of spectral trails of an SM in a glass have been made).
Because each molecule is in a unique environment, the spectral trail and line shape
of each SM are also unique.

Geva & Skinner (44) used such an approach to simulate line shapes of SM
in glasses. They used the Wiener-Khintchine theorem (Equations 31 and 32) and
generated random line shapes of one molecule at a time. The line shape exhibits
complex behavior owing to the random environments each individual SM is situ-
ated in. The predictions in Reference 44 are in agreement with recent experiments
shown in Figure 14. In their approach (44), the cutoff approximation was used.
Thus in the simulation only TLS with jumping rates satisfyingK T > 1 were
included. The idea is that if the jumping times are longer than measurement time
T, then the jumping event of the TLS will not be observed in the experiment.

Plakhotnik (81) simulated line shapes in a time-dependent environment. He
emphasized that taking a spectra of an SM in a glass (for one second), yields a
random number of counts. Hence, repeating the measurement on an SM several
times, i.e., taking snapshots, yields different line shapes for each snapshot. Thus the

TABLE 2 Parameter set for terrylene in polystryrene. See
Reference 143, and the work of Geva & Skinner (44) for further
details

Parameter Description Value

T Temperature 1.7 K

τexp Experiment 120 s

Amax Maximal asymmetry 17 K

Jmin Minimal tunneling element 2.8 × 10−7 K

Jmax Maximal tunneling element 17 K

rmax Maximal radial distance 27.48 nm

ρ TLS density 1.15× 10−2 nm−3

α SM/TLS coupling 3.75× 1011 nm3 Hz

c TLS/phonon coupling 3.9 × 108 K−3 Hz
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Figure 14 Line shapes of single tetra-tert-butylterrylene chromophores embedded in
an amorphous polyisobutylene matrix, as measured by the Kador–Vainer group (48).
Note the doublet and quartet features of some of the line shapes due to strong coupling
to one or two TLS. One of the molecules has three peaks, indicating the possibility
that this molecule is coupled to a three-level system. This rare type of behavior is not
consistent with the standard tunneling model and the Geva-Skinner picture. Another
possibility is that the measurement time was not long enough in this case and that
in a longer measurement the molecule would be seen jumping between four states.
Note that the analysis of the spectral trail histories allows us to distinguish between
these possibilities. Following this line, we note that due to the nonergodicity of the
glass increasing the measurement time might reveal different line shapes; thus the
statistical properties of the line shapes in a glass generally depend on the timescale of
the measurement.
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standard Wiener-Khintchine concept of averaged line shape breaks down. Plakhot-
nik objected to the approach by Geva and Skinner, claiming that the cutoff approx-
imation is not justified. The cutoff approximation breaks down whenK T ' 1,
i.e., if the jumping time of a TLS (1/K ) in the vicinity of the SM is of the order of
measurement timeT. The questions he raised (81) are not limited to the context of
SMS in a glass. Because in SM measurement there is no averaging, the number of
photon counts measured in any experiment is random. Thus the question is when
one can use concepts like the Wiener-Khintchine theorem.

For glass we must distinguish between three kinds of perturbers (i.e., TLS).
In fixing the measurement timeT we must demand thatK T ¿ 1 or K T À 1
for all the TLS in the vicinity of the SM for standard line-shape theory to hold.
In effect, either the TLS jumps many times on the timescale of the measurement
or the TLS is static (and then they do not contribute to the broadening of the
line). If a TLS resides in the vicinity of the molecule withK T ' 1, and if the
frequency shift due to this TLS is large, then standard line-shape theory is not
valid. Using simulation one can estimate how many molecules in the glass belong
to the categoryK T ' 1. However, this issue has not been investigated in detail.
Thus it is still not clear how many SM will interact strongly with a TLS whose
jumping timescale is of the order of a reasonable measurement time. Owing to a
wide distribution of relaxation rates in glass, one cannot simply solve this problem
by increasing the measurement time. We suspect that in a statistical analysis the
number of such SM is not too large.

Finally, deviations between predictions based on simulations of the SM/glass
model and measurement of SM line-width distribution have been recently reported
(144). Good agreement between experiment and simulation was found by intro-
ducing an additional distribution of the coupling constantα. The assumption of
distribution of the coupling constant seems reasonable.

9.1. Lévy Distribution of Line-Shape Cumulants

The standard characterization of line shapes is based on their width and center
location. This was used by Geva and Skinner to characterize line shapes in glasses.
Such an approach is justified if the lines have simple shapes, i.e., all lines are
Lorentzian or Gaussian with random widths. Hou et al. (145) used such an approach
in their characterization of lines of SM in thin polymer films. However, as shown
in Figure 14, the line shape of SM in low-temperature glasses is not a simple
single-peaked function like a Lorentzian or a Gaussian. Its width at half maximum
cannot be defined in many cases. Furthermore, the distribution of line widths
gives only partial information on the complicated behavior of the lines. Instead
of handling the problem of the distribution of a single parameter (e.g., the width),
we are confronted with the problem of the distribution of the line shape (i.e., the
distribution of a random function).

Barkai et al. (50) considered an infinite hierarchy of distribution functions to
describe the behavior of the line shapes of SM in glasses. They suggested that each
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line be characterized by an infinite set of cumulantsκ1, κ2, κ3 · · ·. Because each
molecule is in a random environment, these cumulants are random variables. The
PDFsP1(κ1), P2(κ2) · · · , Pj (κ j ), · · · describe the statistical behavior of the lines.
These distribution functions yield important information about the glass. They
are also used to answer various questions. For example, are the TLS randomly
distributed in space? Is the TLS/SM interaction dipolar (as suggested in Reference
44)? Is the standard model valid? Recently, data analysis of experiments based on
this approach was made (48) (see details below).

Barkai et al. (50) showed thatP(κ j ) are stable L´evy PDFs , in the limit of
slow modulation as defined byKn ¿ νn. Thus in the slow-modulation limit
Lévy’s generalized central-limit theorem is valid. Using numerical simulations
they (50) showed that L´evy statistics yields a good approximation to the distribu-
tion of line-shape cumulants, thus justifying the assumption of slow modulation
(150).

Also, when all TLS are in the fast-modulation limit, a case that seems irrele-
vant for glasses, all lines exhibit simple behavior. Such lines are Lorentzian with a
random center and a random width at a half maximum (50). The distribution of the
center location and of the line widths also obeys L´evy statistics. A transition from
simple line-shape behavior (i.e., Lorentzian line shapes, fast modulation) to com-
plex line-shape behavior (i.e., multipeaked line shapes, splitting, slow modulation)
of SM in disordered media has been investigated (50).

We now consider the theory of distribution of line-shape cumulants in some
detail and discuss its relation to L´evy statistics. In terms of the sum ofn independent
identically distributed random variables

∑n
i =1 xi , if the variance ofxi is finite, then

the scaled sum converges in the limit of largen to a Gaussian distribution. When
the variance ofxi diverges, the scaled sum converges in a limit to a L´evy-stable law,
which is a natural generalization of the Gaussian (102). There are many physical
applications of Lévy statistics in different fields of research (146–149).

The Fourierx → k transform of a Lévy-stable probability densityLγ,η(x) is
of the form

ln[ L̂γ,η (k)] = −zγ |k|γ
[
1 − i η

k

|k| tan
(πγ

2

)]
, (79)

where 0< γ ≤ 2 is called the characteristic exponent,− 1 ≤ η ≤ 1 is the index
of symmetry, andzγ > 0 is a scale parameter.

The cumulants of the random line shapes of SM have been derived (46), and they
are given here in Table 3. To derive the cumulants, one uses the Wiener-Khintchine
theorem (Equation 32) for the line where correlation function is calculated using
Equations 31, 77, and 78. No averaging over disorder is made to derive the cumu-
lants in Table 3.

As previously mentioned, the cumulants are random numbers because they
depend on the local nanoenvironment of the SM.

〈·〉r ÄAJ denotes an averaging over the random TLS parameters. The character-
istic function of the oddj cumulant, in the slow-modulation limit is given by (50),
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TABLE 3 Cumulantsκ j of the SM line shape∗

j κ j

1
∑

n pnνn

2
∑

n pn(1 − pn)ν2
n

3
∑

n pn (1 − pn) (2pn − 1) ν3
n + i

∑
n pn(1 − pn)Knν

2
n

4
∑

n pn(−1 + pn)
[
K 2

n + ν2
n

(−1 + 6pn − 6p2
n

)]
ν2

n−
2i

∑
n Kn (−1 + pn) pn (−1 + 2pn) ν3

n

∗ pn is the occupation probability of thenth TLS, νn is the frequency shift
Equation 78 andKn is the flipping rate of the TLS. See Reference 50 for
further details.

〈exp (ikκ j )〉r ÄAJ = L̂γ,0(k), (80)

with characteristic exponent

γ = 1/j (81)

and a scale parameterzγ (50). The probability-density function of thejth cumu-
lant is the inverse Fourier transform of Equation 80; hence, it is a L´evy-stable
probability-density function. This L´evy behavior is not sensitive to the details of
the model such as the exact distribution of tunneling parameter.γ depends only on
the dimensiond of the problem (d = 3, in our case) and the interaction exponentδ

in ν ∼ r −δ (from Equation 78;δ = 3, in our case). To derive Equation 80 we have
used the assumption of independent TLS uniformly distributed in the system. For
even cumulants and 0< γ < 1 we find

〈exp (ikκ j )〉r ÄAJ = L̂γ,η(k), (82)

with a Lévy index of symmetryη (50). Unlike the exponentγ (Equation 81),
the exponentη depends on details of the model and on many parameters such as
temperature (see Reference 50).

A comparison between the analytical predictions and a numerical simulation
has been performed (50). The main question is whether the assumption of slow-
modulation limit used in the derivation of analytical formulas is reasonable. In
Figures 15 and 16 we show the model predictions for the first three cumulants.
The figures show that L´evy statistics yields a good approximation for the numerical
results.

The appearance of L´evy statistics in this context is due to the long-range in-
teraction between the SM and the TLS. Briefly, the frequency shiftν can become
very large (TLS in the vicinity of the SM) or small (TLS far from the SM). For
power-law interaction (dipole interaction is an example) this leads to a L´evy type
of behavior. Had the TLS/SM interaction been short ranged, the distribution of
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Figure 15 Scaled probability density of the first cumulantP(κ1)z1 versusκ1/z1.
Symbols are the simulation results obtained from 4000 molecules for different cases
indicated in the figure. The theory, plotted as a solid curve, predicts a Lorentzian density
P(κ1) = L1,0(κ1) with a scaling parameterz1, which varies from one set of data to the
other.M1 andM2 are two slightly different models for the TLS/SM system (discussed
in Reference 50).

the cumulants would be Gaussian-like. The importance of L´evy-stable laws in
systems with long-range interactions, although usually overlooked, is not limited
to the problem of SM in a glassy environment. Long-range interaction models of
spectral diffusion (151, 152) and inhomogeneous line broadening (56) belong to
the domain of attraction of L´evy statistics (see References 46 and 136 for further
details).

Recent experiments analyzed by Barkai et al. (48) demonstrated that the statis-
tical behavior of random line shapes of 244 single tetra-tert-butylterrylene chro-
mophores embedded in an amorphous polyisobutylene matrix atT = 2 K is
compatible with Lévy statistics and the theoretical predictions based on the stan-
dard tunneling model. The experimental results for the distribution of the first two
cumulants are shown in Figures 17 and 18. In Reference 48 the ratio of the width
of the Lévy distributions in Figures 17 and 18 is shown to be universal, in the sense
that it does not depend on the coupling of the molecule to the TLS. This universal
amplitude ratio is used to test the predictions of the standard model (see Reference
48 for details).
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Figure 16 Scaled probability density of the second cumulant.P(κ2)z2
1/2 versus

κ2/z2
1/2. The solid curve is Smirnov’s densityL1/2,1(κ2). The inset shows the same

theory plotted in Figure 15 but for Re[κ3]. The solid curve is a L´evy density
L1/3,0(Re[κ1/3]).

10. SUMMARY AND CONCLUSIONS

The merit of SMS is that it removes the need for ensemble averaging. Hence,
one has direct access to temporal fluctuations and fluctuations due to distribu-
tion of local nanoenvironments. The relation between photon-counting statistics
and underlying microscopic events occurring in the molecules embedded in their
condensed phase environment is a fascinating theoretical subject. Here we have
discussed five approaches to time-dependent fluctuations in SMS and calculated
for each case the correspondingQ parameter:

1. The most straightforward approach is the rate-equation approach. The analy-
sis of photon statistics in triplet blinking yields information on the dynamics
within the molecule, for example, the triplet lifetime.

2. A generalized Wiener-Khintchine approach has been used to investigate
the relation between photon-counting statistics and spectral diffusion. This
analysis is useful when dynamics of the environment is investigated. In such
a case the SM is a probe for the nanoenvironment dynamics. SMS in low-
temperature glasses belongs to this class. Because the theory is based on
semiclassical concepts, it yields super-Poissonian behaviorQ > 0.
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Figure 17 Experimental verification of theoretical predictions in Figure 15. Scaled
probability density of the experimental results discussed in Reference 48 for the first
cumulantκ1 (units are GHz). The dots represent experimental results of the Vainer-
Kador group, and the curve is a one-parameter fit to a symmetric L´evy probability-
density function with index 1, i.e., it is a Lorentzian.

Figure 18 Experimental verification of theoretical predictions in Figure 16. Scaled
probability density of the experimental results discussed in Reference 48 for the second
cumulantκ2 (units GHz2). The dots represent experimental results, and the curve is a
one-parameter fit to a one-sided L´evy probability density with index 1/2.
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3. The quantum-jump approach for SM sources yields the quantum mechanical
description of a two-level SM interacting with a strong laser field. Unlike the
semiclassical approach, this model yields negative values ofQ (87) (i.e., in
the absence of spectral diffusion). Generalizations of this approach, beyond
the two-level atomistic picture to different types of SM experiments seem
important.

4. The generating function formalism captures both sub-Poissonian and super-
Poissonian behavior of SMS. For the problem of an SM undergoing a spectral
diffusion process, the MandelQ parameter exhibits a transition between
super- (slow process) to sub-Poissonian statistics (fast process). In most
applications the solution to the generalized optical Bloch equations must be
based on numerical methods (e.g., matrix inversion). These solutions yield
probabilistic information (e.g.,PN(t), 〈N(t)〉, Q etc). On the other hand the
quantum-jump approach uses a numerical Monte Carlo strategy, in which
photons are generated one at a time (28).

5. Finally, motivated by single quantum-dot experiments, we considered a
Lévy-walk approach to SMS. This stochastic approach shows thatQ
depends on the measurement time even in the long-time limit. This
behavior is very different from existing theories forQ. These systems ex-
hibit a nonergodic behavior and are fundamentally different from other SM
systems.

The problem of line shapes in disordered materials (with an emphasis on line
shapes in low-temperature glasses) has also been considered. Both theory and
experiment have revealed the complexity of the line-shape structure of an SM
in a low-temperature glass. The experiments in this field seem to confirm the
validity of the phenomenological standard tunneling model. More generally, SMS
in disordered materials leads to the problem of distribution of line shapes (or
distribution of cumulants/moments of the line) as well as other parameters, for
example, the distribution of lifetimes of SM. These distributions yield new insight
into the disordered system (e.g., the power-law interaction between TLS and SM
can be verified). They also lead to the need for new types of theories that go beyond
the ensemble average.

In many cases, SMS experiments have revealed new types of dynamical be-
haviors that are still poorly understood theoretically: for example, (a) the “cat’s
ears” resonances observed by Caruge & Orrit (153) in an SM coupled to cur-
rents in semiconductors, (b) the microscopic origin of the exponentsαon andαof f

in quantum-dot experiments, (c) the slow non-Markovian dynamics found in en-
zymatic turnovers of single cholesterol-oxidase molecules observed by Lu, Xun
& Xie (63), and (d) the distribution of relaxation times and sudden jumps of
relaxation rates observed in SMS in a polymer system close to the glass transi-
tion (60). Although not discussed in this review, the theoretical understanding of
SM experiments of macromolecules dynamics, using, for example, fluorescence
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resonance energy transfer, is an interesting topic of research (154–157). Because
SMS unravels the ensemble average made in usual spectroscopic experiments, it is
expected that this powerful technique will continue to reveal surprising results. We
hope this review encourages theoretical studies that solve the existing enigmas of
SMS.
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Laser Cooling. Cambridge, UK: Cam-
bridge Univ. Press

148. Bouchaud JP, Georges A. 1990.Phys.
Rep.195:127–93

149. Metzler R, Klafter J. 2000.Phys. Rep.
339:1–77

150. Pfluegl W, Brown FLH, Silbey RJ.

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
4.

55
:4

57
-5

07
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(M
IT

) 
on

 1
0/

28
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



17 Apr 2004 16:54 AR AR212-PC55-16.tex AR212-PC55-16.sgm LaTeX2e(2002/01/18)P1: FHD

SINGLE-MOLECULE SPECTROSCOPY 507

1998. J. of Chem. Phys.108:6876–
83

151. Klauder JR, Anderson PW. 1962.Phys.
Rev.125:912–32

152. Zumofen G, Klafter J. 1994.Chem. Phys.
Lett.219:303–9

153. Caruge JM, Orrit M. 2001.Phys. Rev. B
64:205202

154. Yang SL, Witkoskie JB, Cao JS. 2002.J.
Chem. Phys.117:11010–23

155. Chakrabarti D, Bagchi B. 2003.J. Chem.
Phys.118:7965–62

156. Lee CL, Lin CT, Stell G, Wang J. 2003.
Phys. Rev. E67:041905

157. Gopich IV, Szabo A. 2003.J. Phys. Chem.
B 107:5058–63

A
nn

u.
 R

ev
. P

hy
s.

 C
he

m
. 2

00
4.

55
:4

57
-5

07
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

by
 M

as
sa

ch
us

et
ts

 I
ns

tit
ut

e 
of

 T
ec

hn
ol

og
y 

(M
IT

) 
on

 1
0/

28
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



SINGLE-MOLECULE SPECTROSCOPY C-1

Figure 2   Spectral trail of an SM undergoing a slow spectral-diffusion process. The spectral
trail mimics, for example, an SM coupled to a single TLS in a low-temperature glass (52). In
the jump model, the absorption frequency jumps between two states, ω 5 ω0 1 ν and ω 5
ω0 − ν, where  ν 5 5 Γ and Γ 5 1. Here R 5 10−4 Γ; hence, the process is slow: R ¿ Γ ¿
ν.  The spectral trail follows the absorption frequency of the molecule. The upper panel shows
the total number of photon counts versus the laser frequency, i.e., the line shape of the
molecule.
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C-2 BARKAI  ■ JUNG  ■ SILBEY

Figure 3   Spectral trail of an SM undergoing a fast  spectral-diffusion process. R 5 10 Γ; while
other parameters are the same as in Figure 2 hence, Γ < ν < R. Owing to motional narrowing,
the spectral trail does not follow the absorption frequency of the molecule i.e., ω 5 ω0 6 ν.
Unlike the slow-modulation case, straightforward identification of the underlying rate and fre-
quency jumps is impossible. However, careful analysis of the photon-counting statistics of
such a process may lead to the determination of the underlying stochastic process and, hence,
to the indirect detection of fast processes occurring in the condensed-phase SM system.
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SINGLE-MOLECULE SPECTROSCOPY C-3

Figure 7  Mandel's parameter Q and line shape I(ωL) in the slow-modulation limit, R¿ Γ ¿
ν. The steady state, T → ∝ limit is shown. In the slow-modulation  limit, Q is large compared
with that  in the fast-modulation limit. The figure mimics an SM coupled to a single TLS in a
low-temperature glass. Parameters are ν 5 1 GHz, Γ 5 100 MHz, Ω 5 Γ/10, and R 5 1 −
100 Hz, for details see Reference 30. In this limit Q depends on the rate R, whereas I(ωL) does
not. Thus it is the fluctuations [i.e., Q or g(2)τ] not the averaged line shape that yield insight
into the underlying dynamics. ωL is the detuning; ω0 5 0.
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C-4 BARKAI  ■ JUNG  ■ SILBEY

Figure 8   Q and I(ωL) in the fast-modulation limit. The line exhibits motional narrow-
ing: As the spectral diffusion process becomes faster, the line becomes narrower. The Q
parameter is calculated based on the generating function method Equation 62. Q < 0
indicating sub-Poissonian behavior. As the processes become faster, the Q parameter
approaches Mandel's solution Equation 58. We used Γ 5 40 MHz, Ω 5 Γ/√2, ν 5 5 Γ,
and R 5 5 Γ, 25 Γ, 100 Γ for dashed, dot-dashed,  and solid lines respectively.
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