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A close examination of the validity of the Markovian approximation in the context of 
relaxat~on t?eory is presented. In particular, we examine the question of positivity of various 
approxImations to the reduced dynamics of an open system in interaction with a heat 
r.es~rvoir. It is show~ that the Markovian equations of motion obtained in the weak coupling 
lImIt .(Redfield equatIons) are a consistent approximation to the actual reduced dynamics 
only If supplemented by a slippage in the initial conditions. This slippage captures the effects of 
the non-Markovian evolution that takes place in a short transient time, of the order of 
the relaxation time of the isolated bath. 

I. INTRODUCTION 

Because of the remarkable success of the phenomeno­
logical Bloch equations in the description of quantum re­
laxation processes,1 the derivation of a quantum master 
equation from a microscopic model is of fundamental im­
portance. This task has proven to be unexpectedly compli­
cated and full of mathematical sUbtleties.2 In fact, no single 
attempt to complete this derivation seems to be fully sat­
isfactory.3,4 

One of the most elegant approaches to this program is 
the projection operator technique inaugurated by Zwan-

• 5 Th' zig. IS procedure allows us to rewrite the equations of 
motion for the reduced density matrix of an open system 
interacting with a heat bath in the form of a generalized 
master equation (Le., there are memory effects present). 
This form is particularly useful as a starting point for suc­
cessive approximations. One of the most frequent approx­
imations (consistent with the success of Bloch-type equa­
tions in accounting for experimental results) is to assume 
that all the memory effects in the dynamics of the open 
system are rapidly dissipated by the bath, and that the 
reduced equations of motion become Markovian (i.e., local 
in time).s-7,2 

This approximation has been criticized in the litera­
ture,3,7,8 since it breaks the positivity of the reduced dy­
namics (that is, it leads to negative values for popUlation 
variables). In particular, for the case of an open system 
weakly coupled to its environment, Diimcke and Spohn8 

have suggested that the only Markovian approximation 
consistent with the requirement of positivity of the dynam­
ics is the one proposed by Davies,9 which unfortunately 
does not comply with the symmetry of the Hamiltonian 
and hence is physically unacceptable. 

In this paper, we argue that the Markovian approxi­
mation that preserves the symmetry of the Hamiltonian is 
in fact correct, provided that we take into account nonlocal 
memory effects that take place in a very short time scale. It 
is only after this transient time that the reduced dynamics 
are properly described by the standard Markovian evolu­
tion. These effects will be the object of the investigation 
carried out in this paper. In Sec. II, we shall examine the 
various Markovian approximations in detail, comparing 

them and assessing their consistency with physical require­
ments. In Sec. III the origin of the brief non-Markovian 
evolution regime will be clarified. Finally, Sec. IV will be 
devoted to the effect of initial conditions on the magnitude 
of the nonlocal memory effects. 

II. THE QUANTUM MASTER EQUATION 

The starting point for the derivation of the quantum 
master equation is the reversible dynamics (generated by a 
Hamiltonian) of a large macroscopic system. The objective 
is to obtain equations that describe the irreversible ap­
proach of reduced quantities (referring to a small number 
of degrees of freedom) to their equilibrium values, from 
the complete reversible dynamics. The project, as described 
by Zwanzig,5 can be summarized as follows: First, we di­
vide the universe into the system of interest and a reservoir. 
This division is arbitrarily dictated by the fact that we are 
interested in performing measurements of observables of 
the system alone, regardless of the state of the environ­
ment. Then, by means of an appropriate technique, we 
shall obtain a generalized Fokker-Planck equation for the 
reduced density matrix of the open system in interaction 
with the bath, or, equivalently, a generalized Langevin 
equation for the system observables. This can be exactly 
accomplished by using a suitably defined projection oper­
ator. The function of the projection operator is twofold. 
First, it separates the dynamics into a "relevant" and an 
"irrelevant" part. Second, it provides a definition for the 
temperature at which the evolution takes place. 

Once more there is some arbitrariness as to which pro­
jection operator should be chosen, and a variety of criteria 
can be adopted (see Romero-Rochin and Oppenheim4 for 
a discussion on the sUbject). 

In order to be more explicit, consider the dynamics 
generated by the Hamiltonian H=Hs+Hb+AVsb> where 
Hs is the Hamiltonian for the free system, Hb is the Hamil­
tonian of the isolated bath, and A Vsb is the interaction 
between them (A is a dimensionless parameter measuring 
the strength of the coupling). The time evolution of the 
total density matrix for the system is given by 

pet) =exp( -iHXt)p(O), (1) 
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5102 Suarez, Silbey, and Oppenheim: Relaxation of quantum open systems 

where HXO = [H,&'], i.e., the commutator of the Hamil­
tonian with an arbitrary operator &'. Assume that we have 
chosen a projector f?lJ (Hermitian, idempotent, f?lJ +.e? 
= 1). This projector divides the density matrix into a rel­
evant part Pl(t) = f?lJp(t), and an irrelevant part P2(t) 
= PJp(t), with p(t) =Pl (t) +P2(t). The equation of mo­
tion for the relevant part of the density matrix has the form 
of a generalized Fokker-Planck equation (note that gener­
alized is used to indicate that the equation includes mem­
ory effects, i.e., it is non-Markovian), 

iPI (t) = f?lJ H X exp{ -if!) H Xt}P2(0) + f?lJ HXPI (t) 

-i f: d7f?lJHx exp{-if!)Hx7} 

Xf!)HXPl(t-7). (2) 

Note that the right-hand side of the equation consists 
of three terms, the first of which is explicitly dependent on 
the initial conditions. The usual assumption is that this 
term vanishes after a short time, the characteristic relax­
ation time of the bath 7b (usually, on the order of ps or 
faster). Alternatively, we may take the viewpoint that the 
projection operator selects a very special kind of initial 
conditions, for which P2(0) vanishes identically. 

As an example, consider the following two proposals 
for a projection operator, encountered in the literature. 
The first is 

where 

exp{ -f3Hb} 
pr:= Trb(e (JHb) , (3) 

and Trb indicates "trace over the bath degrees of freedom" 
(&' is an arbitrary system-bath operator). It corresponds 
to the choice of factorized initial conditions, in which the 
system is in an arbitrary state and the bath is in equilibrium 
with respect to H b, 

p(O) =Pl (0) =pr:a(O) , 

where a(t) = Trb[P(t)] is the reduced density matrix for 
the system. This is in fact the projector that we shall use 
throughout most of this paper. 

A second choice is given by4 

f?lJ &' = !</> Trb &' + Trb &'p+), 

with 

and 

- W- 1 
P=Pe e , 

P-+-W-1p 
- e '" 

Pe Trbs(e-{1H) ' We=Trb(Pe), 

which has the advantage of separating the streaming and 
dissipative parts on the right-hand side of Eq. (2). 

We note that although the appearance of Eq. (2) is 
very promising, we have done nothing but reformulate the 
problem. In order to come closer to a solution, we have to 
deal with two difficulties: on one hand, the equation is 
nonlocal in time. On the other, the tensor kernel of the 
convolution is unknown; furthermore, its exact form re­
quires our solving the full dynamics. 

Both these problems can be approximately solved in 
the weak coupling limit (A small). We shall approximate 
the kernel by its expansion to second order in the weak 
coupling parameter A, which can be easily calculated. This 
limit also provides a separation of time scales; the relax­
ation time of the bath, 7/]> which is assumed to be fast, and 
a slower time scale corresponding to the relaxation of the 
system when it is coupled to the bath or heat reservoir 7R' 

The latter scale is of order 7 R - ( 1/,1.2) >7 b' It has been 
pointed out by several authors3,8,7,l0 that even though such 
approximation preserves the Hermiticity and the trace of 
p(t), in general it does not preserve positivity. This implies 
that if we start with an arbitrary reduced density matrix, 
the approximate time evolution might map a(O) into an 
unphysical aCt) whose eigenvalues lie outside the interval 
[0,1] in contradiction with their physical interpretation as 
populations of states. 

In order to elucidate this point, consider a particular 
Hamiltonian describing the interaction between a nonde­
generate two-level system and its environment 

(4) 

We shall also assume (somewhat optimistically) that we 
have been able to obtain an analytical form for the equa­
tions of motion for the elements of the density matrix to all 
orders in A, and that the Markovian approximation is 
valid. Although this program is possible in theory, in prac­
tice it becomes a forbiddingly difficult task to carry out. 
(However, see Larid et al. 11 for this derivation beyond 
weak coupling, up to fourth order in A. If we stop at second 
order in the perturbation parameter, we obtain the usual 
Redfield equations.6 See also Harris and StodolskyY) The 
equations of motion for the elements of the density matrix 
in the basis set that diagonalizes av azl ±) = ± I ±), are 

(5) 

for the diagonal terms, where A = a~_/a~+, and r is a 
real constant. For the off-diagonal terms 

(6) 

with C=r+iGlw,r and GlW real. These are usually referred 
to as Redfield equations. 

Note that these expressions have been written solely on 
the basis of the symmetry of the Hamiltonian and that the 

J. Chem. Phys., Vol. 97, No.7, 1 October 1992 

Downloaded 21 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



Suarez, Silbey, and Oppenheim: Relaxation of quantum open systems 5103 

equations are local in time. It shall be convenient to rewrite 
these equations in the form of a Bloch vector, defined as 

z(t) =u++ (t) -u __ (t), 

x(t) =u+_ (t) +u_+(t), 

yet) =i[u + _ (t) -u _+ (t)], 

leading to 

i(t) = - (1 +A)rz(t) + (l-A)r, 

x(t) =ay(t), 

y(t) = - (a-28w)x(t) -2r y(t). 

(7) 

(8) 

(9) 

(10) 

We remark that, even though Eqs. (8) and (10) are ap­
proximate, Eq. (9) is exact for this Hamiltonian. It is also 
straightforward to check that such equations do not in 
general preserve positivity. The relations that the coeffi­
cients in Eqs. (8 )-( 10) have to fulfill, lest the Markovian 
map should be nonpositive are (from Alicki and Lendi lO

) 

(I) 2y= (1 +A)r, 

(II) 4(8w)2+ (A-1)2r2<(1 +A)2r2_4Y. 

Both conditions cannot be simultaneously fulfilled unless 
8w = 0 and A = 1. This fact can also be checked directly by 
solving the set of Eqs. (8)-( 10), 

z(t) = (z(O) -zeq)exp[ - (1 +A)rt] +Zeq, 

xU) = {X(O)COs wt+ [~y(O) +~ x(O) ] sin wt}e- rr, (11) 

yct) = k(O)COS wt- [~y(O) + a-~8w x(O) ] sin wt}e- rr, 

with the definition w2 = a (a - 28w) - y. 
In particular, for the weak-coupling case (that is, r, 

Ar, and C approximated by their expansion truncated to 
second order in A.), the explicit expressions for these coef­
ficients are 

Ar=..1.2 f:oo dre- ib.1"d'(r)V)=e-{3b.r, 

r=..1.2 f:oo dreib.1"(V(r)V), 

C=..1.2 fooo 
dre- ib.1"([V(r),V]+), 

(12) 

where V(t) = eiH/lVe-iH/I is in the interaction represen­
tation with respect to the bath Hamiltonian, [A,B] + =.AB 
+BA is an anticommutator, and (tJ) = Trb(pbltJ)is the 
thermal average of the bath operator tJ. In the weak cou­
pling case, condition (I) for positivity is fulfilled [Le., 
(1 + A)r = 2Re(C)], but not condition (II) [since 
Im(C)~]. In order to be more specific, we shall carry out 
a numerical calculation which will explicitly show the ei­
genvalues of the reduced density matrix straying away 
from the interval [0,1]. The model chosen for the environ-

(t) 
0.95 

0.9 

0.85 

0.8 

0.75 

0.7 

0.65 

10 ,,10" 

FIG. 1. Relaxation of the population variable z(t) from its initial value 
z(O) =0.5 to its equilibrium value Zeq = I, according to Redfield equations. 
The parameters for this and following simulations are 1]=0.01; d=O.I; 
wc= I; T=O, unless otherwise indicated. 

ment is a Debye bath of independent harmonic oscillators, 
and linear coupling between the bath and the system, 

1 ~ 2 2 2 
Hb="i £.. (Pa+W;tXa)' 

a 
(13) 

..1.V= L CaXa' 
a 

The spectral strength for this bath (assuming that the de­
formation potential approximation is valid) is feW) 
= l:a(c~/2wa)8(wa - w) = 1/(w3/w~) exp[ - (W/we)].1/ 
is a dimensionless friction constant (of order ..1.2 ), and We is 
an appropriate cutoff frequency. The following parameters 
have been used in the simulation: 1/=0.01; a=O.I; we=l; 
T=O. Energies are measured in units of we and time in 
units ofw;i. For this set of parameters, 8w=2X 10-3 and 
r=5.7X 10-5

; A=O. If the cutoff frequency for the bath is 
we;::::: 100 cm- i (Le., rb is on the order ofps), the relaxation 
rate for the system rR is on the order of ns, which is rea­
sonable from a experimental point of view. This is also 
consistent with the requirement that rR>rb> so that the 
time scales are well separated and the Markovian approx­
imation is valid. 

Figure 1 shows the evolution of the system population 
variable in the [ I ±)} basis, z(t). In Fig. 2 (solid line), we 
present the simulation for the time evolution of the deter­
minant of the reduced density matrix, given a particular set 
of initial conditions [x(O) =0; yeO) = .j3/2;z(O) 
= 0.5]. We observe that it soon becomes negative, signaling 
that one of its eigenvalues is lower than zero and the other 
is larger than one. As expected, the amount by which the 
positivity is broken is of order ..1.2• 

The solution proposed by Diimcke and Spohn8 to the 
lack of positivity of Redfield equations is to substitute for 
this set of weak coupling equations another (positivity pre­
serving) set, which is equivalent to the same order in A.. 
The details of how to obtain such an approximation can be 
found in Refs. 8 and 9. Here we shall just quote the results 
for the Hamiltonian under consideration. The equations 

J. Chern. Phys., Vol. 97, No.7, 1 October 1992 

Downloaded 21 Oct 2012 to 18.111.99.30. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



5104 Suarez, Silbey, and Oppenheim: Relaxation of quantum open systems 

det[<T{t)] I,--~-~---~~-~-~~-~---, 

-I 

-2 

-4 

-5 

FIG. 2. Comparison between the standard weak coupling evolution (full 
line) and Diimcke and Spohn's proposal (dashed line). The quantity 
plotted is the determinant of the reduced density matrix of the system. 
The initial conditions which have been chosen are x(O} =0; y(O} 

= .j312;z(O} = 0.5, which implies that the determinant initially vanishes. 

for the diagonal terms remain unchanged, whereas, for the 
off-diagonal elements, the equations become 

c7+_(t) =ill.u+_ -Cu+_(t), 

c7_+(t) = -ill.u_+ -C'*u_+(t), 

which, in terms of a Bloch vector is 

x(t) = (ll.-lSw)y(t) -rx(t), 

y(t) = - (ll.-lSw)x(t) -ry(t). 

(14) 

(15) 

(16) 

The only condition for positivity in this case is ( 1 
+A)r,2r, which is immediately fulfilled in the weak cou­
pling case [as (1+A)r=2r]. The explicit solution for 
x(t), y(t) is 

xCt) = [x(O)cos(wt) +y(O)sin(wt) ]e- rt, 

yet) = [y(O)cos(wt) -x(O)sin(wt) ]e-rt, 
(17) 

where w=ll.-lSw. The dashed line in Fig. 2 gives the time 
evolution for the determinant of the system reduced den­
sity matrix, for the same parameters and initial conditions 
as in the corresponding Redfield case. It shows how the 
behavior is modified from one approximation to the other, 
with Diimcke and Spohn's map becoming a completely 
positive one. 

We note, however, that the oscillations of the determi­
nant have been suppressed in the latter approximation. 
This is related to the fact that Eqs. (15) and (16) cannot 
be obtained naturally from a Hamiltonian such as Eq. (4). 
Henceforth, we shall argue this approximation is arbitrary, 
in the sense that it fixes the lack of positivity of the Mar­
kovian map [Eqs. (5) and (6)] but is inconsistent with the 
symmetry of the problem. 

III. NON LOCAL EFFECTS 

In the previous section, it has been shown that even if 
we are able to obtain a Markovian master equation valid to 
infinite order in perturbation theory, we encounter the fun-

damental difficulty that the reduced dynamics do not pre­
serve the positivity of the density matrix. In addition, the 
alternatives proposed in the literature are obtained by 
rather arbitrary procedures and present further drawbacks. 

In our proposal, we emphasize that the Markovian 
master equation is valid only after a transient time, on the 
order of the relaxation time of the isolated bath and inde­
pendent of A.. During this transient regime, correlations (in 
a sense that shall be specified later on) are being built 
between the bath and the system, implying that the evolu­
tion is complex and highly non-Markovian. The former 
fact is well-known in the literature. 13 However, its rele­
vance to the present discussion has not been stressed in 
past work. These nonlocal effects are also important be­
cause they seem to restrict a class of density matrices that 
can evolve under the Markovian master equation. That is, 
not all physical reduced density matrices (that is, Hermit­
ian, with unit trace and non-negative eigenvalues) can be 
chosen as initial conditions for Redfield equations. 

In this fashion, the problem of positivity seems to be 
resolved, without abandoning the symmetry restrictions 
imposed by the Hamiltonian. The conditions obtained by 
Alicki and Lendi 10 for positivity preserving maps were de­
rived based on the assumption that the set of all physical 
reduced density matrices (Y) should be mapped into itself 
by the dynamics. However, we argue that only a subset can 
actually evolve under the Markovian dynamics, and that it 
is only elements of this subset that have to be mapped 
into Y. 

As an illustration of these points, we proceed to per­
form numerical calculations on the Hamiltonian Eq. C 4 ). 
Since these effects take place at a very short time scale, we 
expect that second order perturbation theory should be 
adequate.2 [Note that this approximation is different from 
the one we make in the derivation of Redfield equations, in 
which we effectively resum terms of order (Ah)n.] The 
results for the Bloch vector are 

y(t) =y(O) [cos ll.t-03(t)] -x(O) [sin ll.t-02(t)], 

(18) 

with the values 

A 

XRe(V(T)V), 

rt 
A 

O2 (t) =2A. 2 Jo dT(t-T)sin ll.(t-T)Re( V( T) V), 

A 

XRe(V(T)V), 
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z(t) O~r--~-~-~--~-~-~-~-----, 

()·NK 

04% 

04'14 

049 

0488 

0486 

0484 

0482 

0480L--~--I:':-O-~15::---20~--:'25:---3=O------::35:-----,l40 

t 

FIG. 3. Short time dynamics of the population variable z(t) obtained by 
two different approximations. (i) The full line corresponds to the result of 
second order perturbation theory. (ii) The broken line corresponds to the 
standard Redfield equations and slipped initial conditions. In both cases 
z(O) =0.5. 

(I A 

0 4(t)=4,t2 Jo dr(t-r)cosLlrRe(V(r)V), 

0 s(t)=4,t2 J: dr(t-r)sinLlrIm(V(r)V). 

The results are plotted in Figs. 3 and 4 , for the same 
parameters as in the previous section (7]=0.01; Ll=O.I; 
W£'= 1; T=O). We remark that the hypothesis that the 
memory effects take place on a very short time scale is in 
fact correct. After t> lOw; 1, the local Redfield equations 
seem to take over the dynamics. This picture suggests that 
we could extrapolate the Markovian evolution back to zero 
time to find a different set of slipped initial conditions x(O), 
y10), z(O). If we were to use these slipped initial condi­
tions together with the quantum master equation, we 
should get the same dynamics as in the case when we 
evolve the true initial conditions x(O), yeO), z(O) with the 

()(I~:,\ 

<I~t[u(t)1 

O()~ 

• >"" 

O()I~ 

OUi 

()O(l~ 

0 
0 10 15 20 25 30 40 

FIG. 4. Short time dynamics of det[a(t)]. The same initial conditions as 
in Fig. 2 have been used. The full line corresponds to second order per­
turbation theory and the dashed line to Redfield equations with slipped 
initial conditions. The discrepancy for 1>30 is due to the breakdown of 
perturbation theory. 

det[u(t)] 
0.Q25,-----~-~-_--~-_-~-~--, 

0.02 

0.015 

(!.OI 

0.005 

o ---

-0.005 

-O.010L--~--'1~0-~15::-----:2~O---:25;-----:3~O----::35;:----:40· 

FIG .. 5. Short time dynamics of det[a(t)] at finite temperature (KBT 
= 0.1 ). The full line corresponds to second order perturbation theory and 
the dashed line to Redfield equations (without slipped initial conditions). 

actual non-Markovian dynamics, after a short transient 
time. This is shown in Fig. 4, where the broken line cor­
responds to slipped initial condition evolved under the 
master equation, and the full line corresponds to the actual 
initial condition evolved under the non-Markovian 
dynamics. Note also that the determinant det[a(t)] 
= *[1 - x(t)2 - y(t)2 - z(t)2], which was chosen to be zero 
for the initial {x(O), yeO), z(O)}, is slipped towards posi­
tive values {i.e., [1-x(0)2-y(0)2_z(0)2] > O} by an 
amount which seems to be sufficient in all cases to ensure 
that the Markovian evolution preserves the condition 
det[a(t) ];;;'0, for all times. 

In Fig. 5, we present the evolution of the reduced den­
sity matrix at a nonzero temperature (KBT=O.l), without 
modifying the remaining parameters (7]=0.01; Ll=O.I; We 
= 1 ). This simulation demonstrates that memory effects 
are also present at finite temperatures and that the quali­
tative features of the evolution are similar to the zero­
temperature paradigm; the usual Markovian approxima­
tion (Le., without slippage) leads to a breakdown of 
positivity. In the true (non-Markovian) evolution, this 
anomalous behavior is corrected by an initial slippage of 
det[ a(t)] away from zero, towards positive values; this 
slippage is followed by a regime in which relaxation pro­
ceeds without significant memory effects. 

In the next section, we shall suggest a physical inter­
pretation of this process, which will clarify its origin. 

IV. PHYSICAL ORIGIN OF THE SLIPPAGE 

The common element shared among the different ap­
proximations to the time evolution for the reduced quan­
tities associated with the two-level system that have been 
derived in the previous sections is the assumption that ini­
tially system and bath are uncorrelated. The bath is in 
equilibrium with respect to its own Hamiltonian, and the 
system is prepared in an arbitrary state (factorization as­
sumption). Hence, it is not unreasonable to posit that in 
the early time of their joint evolution, system and bath will 
adjust to each other's state on a fast time scale rb.13 Once 
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ott) 
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L ----:,----:';:10---7�5;-----:2O::;;----::25;---3-:,;o----::35.--------;.40 

FIG. 6. Effect of initial conditions on slippage. The dashed line corre­
sponds to factorized initial conditions; the full line corresponds to polaron 
initial conditions; and the dotted line is the pure Markovian evolution 
(assuming no slippage). The parameters used are the same as in the 
previous simulations (A = 0.1). For this and the following simulations, 
the initial conditions are x(O) =y(O) =0; z(O) =0.5. 

these correlations are established, the slow exponential re­
laxation to equilibrium should be the dominant type of 
dynamics. 

This implies that if we use a different set of initial 
conditions (or equivalently, a different projection operator 
for the bath), we should get a different amount of slippage, 
as the bath would be either "closer" or "further" from the 
appropriate correlations. The question is, therefore, what 
are those appropriate correlations? 

One of the possibilities that we have explored is that a 
fairly good approximation to the correlated state should be 
a polaron; that is, the bath is assumed to be fast enough to 
equilibrate immediately to the instantaneous state of the 
two-level system. As the coupling is linear in the oscilla­
tors' coordinates, the equilibration simply involves dis­
placements of the oscillators' minima by the amount 
ca/w~ax for the ath oscillator. This pseudoparticle, con­
sisting of the two level system together with the displaced 
oscillators, has received the name of polaron. 14 This sce­
nario will be more likely to occur if the characteristic time 
scale of the system evolution is much longer than the bath 
relaxation time (i.e., wc>6.). In Fig. 6 we have shown the 
slippage in the population variable z(t) for both polaron 
(full line) and factorized initial conditions (dashed line) 
for the case 6.=0.1; wc= 1. We note that the slippage for 
the polaron initial state is smaller in magnitude and oppo­
site in sign to the slippage for the factorized one. In Fig. 7 
we present the results of a simulation for an identical sys­
tem with the same parameters except for 6.=0.01. While 
the slippage for the factorized initial conditions is of com­
parable magnitude in both cases, the polaron initial state 
shows considerably less slippage in the second instance, 
i.e., in the case that the time scale of the system evolution 
is much slower than that of the bath. 

The fact that the polaron induces a slippage of opposite 
sign to the one produced by the factorized initial condition 
suggests that in this case, we overestimate the displacement 
of the oscillator's minima in order to account for other 
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FIG. 7. The same as Fig. 6, except for the value of A=O.OI. 

nonlinear effects that take place during the formation of 
these system-bath correlations. This can be partially cor­
rected by choosing an initial condition in which the oscil­
lators have been displaced by an amount determined vari­
ationally to minimize the free energy at that particular 
temperature. IS The simulation in Fig. 8 confirms that for 
this variational polaron initial condition, the nonlocal ef­
fects are actually smaller. 

Finally, we have also chosen as initial conditions the 
following case: 

p(O) = Up~a(O) U+ 

where 

(19) 

where U is the unitary transformation that diagonalizes H 
to second order in the weak coupling parameter (Frohlich 
diagonalization).16 For this case there is no evolution to 
lowest order in perturbation theory (see Fig. 8). 
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FIG. 8. Effect of initial conditions on slippage. The dashed line corre­
sponds to factorized initial conditions; the full line corresponds to polaron 
initial conditions; the dotted line corresponds to variational polaron; and 
the dash-dot line corresponds to the Frohlich initial conditions. 
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It is worth noting that in all cases the duration of this 
transient regime is roughly the same, confirming the prop­
osition that Tb is the only time scale relevant for these 
effects. 

v. SUMMARY 

The main result of this paper is that the standard Mar­
kovian weak coupling approximation for the equations of 
motion of the reduced density matrix of an open system 
interacting with its environment is physically consistent. 
However, there are transient memory effects, which cannot 
be neglected in a rigorous discussion of the approximation. 

It has been shown that these effects can be absorbed in 
a modification of the initial conditions (slippage) upon 
which the generator for the Markovian evolution acts. The 
objections raised by the strict nonpositivity of this Markov­
ian map are readily dismissed when a careful examination 
of the implications of the slippage of the initial conditions 
is undertaken. In all cases explored, the determinant of the 
reduced density matrix is shifted in such a way that the 
Markovian evolution does not lead to the emergence of 
negative eigenvalues. Unfortunately, the magnitude of the 
nonlocal effect strongly depends on the particular initial 
condition and cannot be predicted quantitatively. The 
analysis has been carried out in great detail for the weak 
coupling case (in which the slippage is of order ,t 2), but the 
same effects should be present when the coupling is stron­
ger. 

The physical origin of this slippage has been ascribed 
to the fact that initially the bath and the system are not 
appropriately correlated. During the time that system-bath 
correlations are being built, we observe that the time evo­
lution is very different from the one predicted by Markov­
ian equations. Only after a transient time, on the order of 
the relaxation time of the bath, is the evolution well de­
scribed by a quantum master equation. We should bear in 
mind that, in the weak coupling case, the solutions of the 

quantum master equation proposed by Diimcke and Spohn 
and of the standard one are equivalent. In this regime we 
are interested only in the effects of order 1 for a timescale 
of order 1/,t 2. Any difference of order ,t2 in the quantities 
we are calculating has no relevance from a computational 
point of view. Nonetheless, the standard approximation 
should be preferred, as it displays the proper symmetries of 
the problem. 
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