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A variational calculation of the dynamics of a two level system interacting with a bath is 
presented. The effective tunneling matrix element is renormalized by the interaction with the 
bath. For the case of a bath with ohmic dissipation (or infrared divergence), the variational 
calculation gives a vanishing tunneling at T = 0 for critical values of the coupling and gives a 
highly unusual temperature dependence for the tunneling rate for large kT, all of which agree with 
recent path integral calculations. The present method also yields results for intermediate 
temperatures and coupling. This indicates that ajudicious choice of the zeroth order Hamiltonian 
to include the major part of the coupling can lead to correct results even in low order perturbation 
theory. 

Recently, there has been considerable interest in the 
study of the dynamics of a tunneling system coupled to a 
harmonic bath. This rather simple system has been used as a 
model for the effect of the environment on a number of inter­
esting chemical 1 and physical2 systems. The model we exa­
mine is found by representing the tunneling system by a two 
level system, so that the Hamiltonian can be written as 
(h = 1): 

H = Kux + L w/(a/ al + 1/2) + Uz L g/(al + a/), 
I I 

(1) 
where al and a/ are boson operators and (1/2)ux and (1/ 
2)uz are the usual Pauli matrices. In this Hamiltonian, K 
represents the bare tunneling matrix element and g the cou­
pling to the I th bath mode. In the limit that K = 0, the sys­
tem is just a collection of oscillators, displaced in one direc­
tion when the system is one of the two levels and displaced in 
the other direction when the system is in the other of the two 
levels. Thus there is a twofold degenerate localized ground 
state with energy E = - I.1g7WI- I. In the opposite limitthat 
gl = 0, the eigenstates of the system are the symmetric and 
antisymmetric combinations (delocalized states) of the spin 
states with energies E = ± K. Thus, this system exhibits a 
competition between the localization inherent in the interac­
tion with the bath and the delocalization inherent in the tun­
neling. In the intermediate regime, the effect of the bath is to 
modify the tunneling matrix element and damp the oscilla­
tions. 

In a recent paper, Harris and Silbey, 1 examined the rate 
of crossing from one localized state to the other in the weak 
coupling limit. At zero coupling to the bath, the system oscil­
lates between the two states with a frequency 2K. As the 
coupling increases, they found that the system could be rep­
resented as a damped oscillator whose probability P(t) for 
being in the initially populated level obeys the oscillator 
equation: 

P(t) +AP(t) + (2K)2p(t) = 0, (2) 

where3 

A = 21T L g7coth( {3wI12) 8(2K - WI)' (3) 
I 

In this approximation, for 4K > A, P (t ) oscillates with fre­
quency [(2K f - (A 12f]1/2; for 4K <A, P(t) is damped with 
lifetime (4K 21 A ). Although this calculation shows the com­
petition between friction effects and tunneling, it is not flexi­
ble enough to show the complete renormalization of the tun­
neling frequency as predicted by Bray and Moore? 

Indeed, Bray and Moore and others2 have predicted 
that as the coupling to the bath increases, for a model with 
ohmic dissipation, the renormalized tunneling rate goes to 
zero, even at T = O. This is a surprising result at first, be­
cause one expects that, although a two level system coupled, 
for e.g., to a phonon bath will tunnel more slowly as the 
coupling increases, the rate will not go to zero (at T = 0) 
except for infinitely strong coupling. However, as pointed 
out by Chakravarty and Kivelson,2 assuming ohmic dissipa­
tion leads to an infrared divergence and the pathology asso­
ciated with it.4 It turns out that this leads to the localization 
phenomenon. 

In this paper, we examine a simple variational model for 
this system, used earlier for the coupling of excitons to phon­
ons,5,6 which exhibits the central features of the renormal­
ization of the tunneling rate and the competition between 
tunneling kinetic energy and the localization potential ener­
gy. In addition, this model shows clearly the differences 
between the pathological cases (associated with the infrared 
divergence) and the nonpathological cases associated with a 
more exoteric environment. 

The Hamiltonian is transformed using a unitary trans­
formation 

U=exp {-Uz ~WI-I];(al-a/)}. (4) 

For K = O,h = gl diagonalizes H. For K =1=0: 

iI = UHU 

= Kuz + L w/(a/ al + 1/2) + L (fT - 2]; gilwl- 1 

I I 

+ V+u+ + V_u_ + Vouz ' (5) 
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where the renormalized tunneling matrix element is given by 

K = K exp { - 2 L;ftwI- 2coth( /3WI12}} K exp( - 2F) 

(6a) 

and the perturbation terms by 

V + = V!. = K exp { - 2 L;};w l- I(al - a l+)} - K, 

(6b) 

(6c) 

Since we have constructed Vi so that (Vi) = 0, where the 
average is over the bath, Bogoliubov-Peierls upper bound on 
the free energy is 7 

AD = APhon - /3 -lln{2 cosh(/3K)1 

(7) 

This upper bound is optimized by varying the { }; I to find 

}; = gIl 1 + 2Kwl- I coth( /3wI12}tanh /3K I-I, (8) 

which is an implicit equation for the {}; I. 
The effective tunneling matrix element K has a relative­

ly simple behavior as a function of temperature and coupling 
to the bath as long asF does not become infinite. However, in 
the case considered by Bray and Moore and others,2 they 
assume that J (W)=1Tl:Igt8(w - WI) = 1]W, where 1] is a fric­
tion constant; thus, 

We 

L gtWI- 2 coth /3w112 = ~ f dw J (~) coth (fJw/2) 
I 1TJO W 

= !L f W dw coth( /3w/2) , (9) 
1T Jo W 

which exhibits an infrared divergence (here We is the upper 
limit of the bath frequencies). Thus if}; = gl for alII, F is 
infinite and K zero. It is the assumption that J(w) = 1]W 
which leads to the divergence; for a three-dimensional 
phonon bath J (w) - w3 so that F remains finite, and increases 
with temperature in the normal way of a Debye-Waller fac­
tor. 

To examine the effect of the infrared divergence in this 
variational calculation, we look first at T = O. In this case, 
we find a self-consistent equation for K by substituting Eq. 
(8) into Eq. (6a): 

K = K (1 + W J2K ) - 2'1I1T exp {2; (1 + 2K 1 we) - I}. 
(10) 

For K Iwc < 1, we find (our parameter 21]11T is equal to a of 
Chakravarty and Leggett2) 

2'1 ( 2'1) - I 

K(T=0)=K(2Klwj"-;;:- 1--;;:- , 21]11T<1. (11) 

Thus as 21]11T-l, K(T= 0)-0 as predicted by earlier 
workers.2 Note however that if K IWe > 1, this does not oc­
cur. For example, in the limit of an adiabatic bath (where 
We -0), we see from Eq. (10) that either K = K (i.e.,}; = 0) or 
K = 0 (i.e.,}; = gl ). If}; = 0 for alII, then the third term on 
the right-hand side ofEq. (7), the potential energy ofinterac­
tion between the tunneling system and the bath, is 0; if 

}; = gl then this term equals -1]We whenJ(w) = 1]W. Ifwe 
assume that this term vanishes as Wc approaches 0, then the 
lowest energy solution of the variational equation is K = K 
(delocalized states) for all 1]; however, if we assume that this 
term ( - 1]We) remains finite as We approaches 0, then there 
is a transition from delocalized states (K #0) to localized 
states(K = 0) as 1] increases. 

For higher temperatures, but still low compared to We' 
the self-consistent equation for K(T) is 

K=Ke-2'1lliK[ 2+2/3K.:anh/3K_]2'1I1T, (12) 
/3we + 2/3K tanh /3K 

which also agrees with Eq. (10) as T -0. Equation (12) yields 
for /3K<1 and 1] <K IkT, 

(13) 

which is very similar to Bray and Moore [their Eq. (13)]. For 
1] > K 1 kT our calculation predicts that K = 0, and a second 
order calculation for the tunneling rate or relaxation must be 
done; we present this below. 

The probability of the system remaining in one state P (t ) 
again obeys an equation similar to Eq. (2), except that K is 
replaced by K and A by X (determined now by the spectrum 
of the Vi)' At T = o and 1] small,P(t) oscillates withfrequen­
cy[(2K)2 - (X /2)2] 1/2 and is damped with arateX 12. For this 
case, X = 4K 1] 8 so that the oscillation frequency is 
2K [l -1]2pl2.Note that the ratio of the frequency to decay 
rate is [1 _1]2]1/211] which agrees to lowest order for the 
small 1] limit ofChakravary and Leggett.2 For 1] > 1, P(t) has 
no oscillations, but is damped with rate - [(X 1 
2)2 - (2K)2] + (X 12). For 1] larger than 1T/2,K = Oandlocal­
ization occurs. 

Forlarge(kT IK ) and 1]<K IkT, wefindX = ekT, withe 
an unknown constant, so that P (t ) is overdamped with decay 
rate 

(2KfIX = {(2K flewe j(2kT IwJ4'1/1r)-I. (14) 

For large kT IK and 1] >K IkT, the tunneling is completely 
incoherent since K = O. The probability of tunneling (or the 
relaxationofP(t)) is then given by W = S;dt (Vdt)V21)dt, 
the Golden Rule expression, where V12 is given in Eq. (6b) 
with}; = gl and K = O. Because of the infrared divergence, 
great care must be taken with the integral; however it has 
been worked out for the x-ray singularity case.4 We find for 
/3we '> 1 and/3K<I, 

W = K 2 [21TkT] (4'1l1r) - I 1T cos 21] e - (2.28)'1/1T. (15) 
We We 21] 

These conclusions agree with those of Chakravarty and 
Leggett2 in almost all details. [Note however that their cal­
culation predicts that the oscillations of P(t) disappear at 
1] = 1T14 at T = 0 rather than at 1] = 1.] These results indi­
cate that the present method, based on a simple variational 
calculation contains enough flexibility to handle correctly 
the competition between the localization and delocalization 
effects in this problem and suggests that ajudicious transfor­
mation of the Hamiltonian to pick the best Ho can lead to 
good results using only low order perturbation theory. In 
addition, this method is flexible to handle even the patho­
logical cases associated with the infrared divergent terms.9

,10 
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