
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking

Ravi Netravali*, Ameesh Goyal*, James Mickens†, Hari Balakrishnan*

*MIT CSAIL †Harvard University

Abstract
To load a web page, a browser must fetch and eval-
uate objects like HTML files and JavaScript source
code. Evaluating an object can result in additional ob-
jects being fetched and evaluated. Thus, loading a web
page requires a browser to resolve a dependency graph;
this partial ordering constrains the sequence in which a
browser can process individual objects. Unfortunately,
many edges in a page’s dependency graph are unobserv-
able by today’s browsers. To avoid violating these hidden
dependencies, browsers make conservative assumptions
about which objects to process next, leaving the network
and CPU underutilized.

We provide two contributions. First, using a new mea-
surement platform called Scout that tracks fine-grained
data flows across the JavaScript heap and the DOM,
we show that prior, coarse-grained dependency analyz-
ers miss crucial edges: across a test corpus of 200
pages, prior approaches miss 30% of edges at the me-
dian, and 118% at the 95th percentile. Second, we quan-
tify the benefits of exposing these new edges to web
browsers. We introduce Polaris, a dynamic client-side
scheduler that is written in JavaScript and runs on un-
modified browsers; using a fully automatic compiler,
servers can translate normal pages into ones that load
themselves with Polaris. Polaris uses fine-grained depen-
dency graphs to dynamically determine which objects to
load, and when. Since Polaris’ graphs have no missing
edges, Polaris can aggressively fetch objects in a way that
minimizes network round trips. Experiments in a variety
of network conditions show that Polaris decreases page
load times by 34% at the median, and 59% at the 95th
percentile.

1 INTRODUCTION

Users demand that web pages load quickly. Extra delays
of just a few milliseconds can result in users abandon-
ing a page early; such early abandonment leads to mil-
lions of dollars in lost revenue for page owners [5, 6, 10].
A page’s load time also influences how the page is
ranked by search engines—faster pages receive higher
ranks [12]. Thus, a variety of research projects [17, 23,
33, 34] and commercial systems [1, 21, 22, 31] have tried
to reduce page load times.

To load a page, a browser must resolve the page’s
dependency graph [8, 18, 37]. The dependency graph
captures “load-before” relationships between a page’s
HTML, CSS, JavaScript, and image objects. For exam-
ple, a browser must parse the HTML <script> tag for

(a) The dependencies captured by traditional approaches.

(b) The dependencies captured by Scout, which tracks fine-
grained data flows. New edges are shown in red.

Figure 1: Dependency graphs for weather.com.

a JavaScript file before that file can be fetched. Similarly,
the browser must execute the JavaScript code in that file
to reveal which images should be dynamically fetched
via XMLHttpRequests. The overall load time for a
page is the time that the browser needs to resolve the
page’s dependency graph, fetch the associated objects,
and evaluate those objects (e.g., by rendering images or
executing JavaScript files). Thus, fast page loads require
efficient dependency resolution.

Unfortunately, a page’s dependency graph is only par-
tially revealed to a browser. As a result, browsers must
use conservative algorithms to fetch and evaluate objects,
to ensure that hidden load-before relationships are not
violated. For example, consider the following snippet of
HTML:
<script src=‘‘http://x.com/first.js’’/>
<script src=‘‘http://y.com/second.js’’/>

When a browser parses this HTML and discovers the
first <script> tag, the browser must halt the pars-
ing and rendering of the page, since the evaluation
of first.js may alter the downstream HTML [19].
Thus, the browser must synchronously fetch and eval-
uate first.js; this is true even if first.js does
not modify the downstream HTML or define JavaScript
state required by second.js. Synchronously loading
JavaScript files guarantees correctness, but this approach
is often too cautious. For example, if first.js and
second.js do not modify mutually observable state,
the browser should be free to download and evaluate the
files in whatever order maximizes the utilization of the

1

Scheduler Stub

Unmodified
Web Browser

Fine-grained
Dependency

Graph

HTTP request (e.g. GET /)

HTTP response Website

Offline
Dependency

Tracker
(Scout)Client

Web Servers

Original
HTML

<html>
…
</html>

Scheduler
Logic

Fine-grained
Dependency

Graph

Figure 2: With Polaris, clients request web pages using standard HTTP requests. Servers return a page’s HTML, as
well as the Polaris scheduler (written in JavaScript) and the page’s fine-grained dependency graph (generated offline
by Scout). Polaris then determines the best order to fetch the external objects that are referenced by the HTML.

network and the CPU. However, pages do not expose
such fine-grained dependency information to browsers.
This forces browsers to make conservative assumptions
about safe load orders by using coarse-grained relation-
ships between HTML tags to guide object retrieval. As a
result, pages load more slowly than necessary.

This paper makes two contributions. First, we intro-
duce a new measurement infrastructure called Scout that
automatically tracks fine-grained data dependencies in
web pages. By rewriting JavaScript code and HTML
files, Scout instruments web pages to track precise data
flows between and within the JavaScript heap and the
browser’s internal HTML and CSS state. For example,
Scout can track read/write dependencies for an indi-
vidual JavaScript variable that is accessed by multiple
JavaScript files. The resulting dependency graphs are
more accurate than those of prior frameworks. As shown
in Figure 1, our graphs also have dramatically different
structures than those of previous approaches. In particu-
lar, for 81% of the 200 real-world pages that we exam-
ined, our new graphs have different critical paths than
those of graphs from prior work (§3.5). The critical path
defines the set of object evaluations which, if delayed,
will always delay the end-to-end load time for a page.
Thus, the fact that our new graphs look different is not
just an academic observation: our graphs imply a faster
way to load web pages.

Our second contribution is Polaris, a dynamic client-
side scheduler which uses Scout’s fine-grained depen-
dency graphs to reduce page load times. Figure 2 pro-
vides an overview of how Polaris works. When a user
makes a request for a Polaris-enabled page, the server
returns a scheduler stub instead of the page’s orig-
inal HTML. The scheduler stub includes the Polaris
JavaScript library, the page’s fine-grained dependency
graph (as generated by Scout), and the original HTML.
The Polaris library uses the Scout graph, as well as dy-
namic observations about network conditions, to load ob-
jects in an order that reduces page load time.

As shown in Figure 1, our fine-grained data track-
ing adds new constraints to standard dependency graphs.
However, and perhaps counterintuitively, the Polaris
scheduler has more opportunities to reduce page load
times. The reason is that, since Polaris has a priori knowl-
edge of the true data dependencies in a page, Polaris can
aggressively fetch and evaluate objects “out-of-order”
with respect to lexical constraints between HTML tags.
In contrast, prior scheduling frameworks lack knowl-
edge of many dependencies, and are forced to make con-
servative assumptions that are derived from the lexical
HTML relationships (§2.2). Those conservative assump-
tions guarantee the correctness of an assembled page in
the face of hidden dependencies, but they often leave a
browser’s CPU and network connections underutilized.
By using fine-grained dependency graphs, Polaris can
ensure both correctness and high utilization of proces-
sors and network connections.

Because Polaris’ scheduler is implemented in
JavaScript, Polaris can reduce page load times on
unmodified commodity browsers; this contrasts with
load optimizers like Klotski [8], Amazon Silk [3], and
Opera Mini [30], which require modified browsers to
interact with a server-side component. Polaris is also
complementary to previous load optimizers that use data
compression (§6) or multiplex several HTTP requests
atop a single TCP connection (§5.4).

We evaluated Polaris using 200 popular web pages and
a variety of network conditions, with latencies ranging
from 25 ms to 500 ms, and bandwidths ranging from 1
Mbit/s to 25 Mbits/s. Polaris reduced page load times by
34% at the median, and 59% for the 95th percentile sites.

2 BACKGROUND

In a conventional page load, the browser first downloads
the page’s top-level HTML. For now, we assume that
the HTML does not reference any JavaScript, CSS, or
multimedia files. As the browser parses the HTML tags,
it generates a data structure called the Document Ob-
ject Model (DOM) tree. Each HTML tag has a corre-

2

sponding node in the DOM tree; the overall structure
of the DOM tree mirrors the hierarchical tag structure
of the HTML. Once the HTML parse is finished and
the DOM tree is complete, the browser constructs a ren-
der tree, which only contains the DOM nodes to be dis-
played. For example, a <text> node is renderable, but
a <head> node is not. Each node in the render tree is
tagged with visual attributes like background color, but
render nodes do not possess on-screen positions or sizes.
To calculate those geometric properties, the browser tra-
verses the render tree and produces a layout tree, which
determines the spatial location of all renderable tags. Fi-
nally, the browser traverses the layout tree and updates
(or “paints”) the screen. Modern browsers try to pipeline
the construction of the various trees, in order to progres-
sively display a page.

2.1 Loading More Complicated Pages
JavaScript: Using <script> tags, HTML can in-
clude JavaScript code. A script tag blocks the HTML
parser, halting the construction of the DOM tree
and the derivative data structures. Script tags block
HTML parsing because JavaScript can use interfaces
like document.write() to dynamically change the
HTML after a <script> tag; thus, when the HTML
parser encounters a <script> tag, the parser cannot
know what the post-<script> HTML will look like
until the JavaScript code in the tag has executed. As a re-
sult, script tags inject synchronous JavaScript execution
delays into a page load. If a script tag does not contain
inline source code, the browser also incurs network la-
tencies to download the JavaScript code.

To reduce these synchronous latencies, modern
browsers allow developers to mark a <script> tag
with the async or defer attribute. An async script is
downloaded in parallel with the HTML parse, but once it
is downloaded, it will execute synchronously, in a parse-
blocking manner. A defer script is only downloaded
and executed once HTML parsing is complete.

By default, a <script> tag is neither async nor
defer. Such scripts represent 98.3% of all JavaScript
files in our test corpus of 200 popular sites (§3.5). When
the HTML parser in a modern browser encounters a syn-
chronous <script> tag, the parser enters speculation
mode. The parser initiates the download of the JavaScript
file, and as that download completes in the background,
the parser continues to process the HTML after the script
tag, fetching the associated objects and updating a spec-
ulative version of the DOM. The browser discards the
speculative DOM if it is invalidated by the execution of
the upstream JavaScript code. We demonstrate in Sec-
tion 5 that speculative parsing is limited in its ability to
resolve deep dependency chains consisting of multiple
JavaScript files.

Object Type Median 95th Percentile
HTML 11.8% 26.2%

JavaScript 22.9% 43.0%
CSS 3.7% 16.7%

Images 44.9% 77.4%
Fonts 0.0% 7.8%
JSON 0.4% 5.0%
Other 0.0% 7.8%

Table 1: Per-page object distributions for 200 popular
sites.

CSS: A page may use CSS to define the visual pre-
sentation of HTML tags. The browser represents those
stylings using a CSS Object Model (CSSOM) tree. The
root of the CSSOM tree contains the general styling rules
that apply to all HTML tags. Different paths down the
tree apply additional rules to particular types of nodes,
resulting in the “cascading” aspect of cascading style
sheets.

A browser defines a default set of CSS rules known
as the user agent styles. A web page provides additional
rules by incorporating CSS <link> tags. To create the
render tree, the browser uses the DOM tree to enumer-
ate a page’s visible HTML tags, and the CSSOM tree to
determine what those visible tags should look like.

CSS tags do not block HTML parsing, but they do
block rendering, layout, and painting. The reason is that
unstyled pages are visually unattractive and potentially
non-interactive, so style computations should be handled
promptly. Best practices encourage developers to place
CSS tags at the top of pages, to ensure that the CSSOM
tree is built quickly. Since JavaScript code can query
the CSS properties of DOM nodes, the browser halts
JavaScript execution while CSS is being processed; do-
ing so avoids race conditions on CSS state.

Images: Browsers do not load tags syn-
chronously. Thus, a page can be completely rendered
and laid out (and partially painted) even if there are out-
standing image requests. However, browsers are still mo-
tivated to load images as quickly as possible, since users
do not like pages with missing images.

Other media files: Besides images, a page can include
various types of video and audio files. However, in this
paper, we focus on the loading of HTML, JavaScript,
CSS, and image files, which are the most common types
of web objects (see Table 1). Optimizing the loading pro-
cess for rich multimedia files requires complex, media-
specific techniques (e.g., [11, 15]).

2.2 The Pitfalls of Lexical Dependencies
As described above, the traditional approach for loading
a page is constrained by uncertainty. For example:

3

• A script tag might read CSS style properties from
the DOM tree, so CSS evaluation must block
JavaScript execution.
• A script tag might change downstream HTML, so

when the browser encounters a script tag, either
HTML parsing must block (increasing page load
time), or HTML parsing must transfer to a specu-
lative thread (a thread which, if aborted, will have
wasted network and computational resources).
• In the example from Section 1, two script tags that

are lexically adjacent might exhibit a write/read
dependency on JavaScript state. Thus, current
browsers must execute the script tags serially, in lex-
ical order, even if a different order (or parallel exe-
cution) would be more efficient.

These inefficiencies arise because HTML expresses a
strict tag ordering that is based on lexical dependen-
cies between tags. In reality, a page’s true dependency
graph is a partial ordering in which edges represent true
semantic dependencies like write/read dependencies on
JavaScript state. Since HTML does not express all of the
true semantic dependencies, the browser is forced to pes-
simistically guess those dependencies, or use optimistic
speculation that may waste resources.

In Section 3, we enumerate the kinds of true semantic
dependencies that pages can have, and introduce a new
framework to extract them. In Section 4, we describe how
developers can expose true dependencies to the browser,
allowing the browser to load pages faster.

3 DEPENDENCY TRACKING

In a traditional dependency graph [8, 13, 18, 25, 26], a
vertex represents an object like an image or a JavaScript
file. An edge represents a load-before relationship that
is the side-effect of parsing activity. For example, if a
page incorporates an image via an tag, the im-
age’s parent in the dependency graph will be the HTML
file which contains the tag; if an image is fetched via an
XMLHttpRequest, the image’s parent will be the as-
sociated JavaScript file.

By emphasizing fetch initiation contexts, i.e., the file
whose parsing causes an object to be downloaded, tra-
ditional dependency graphs mimic the lexical restric-
tions that constrain real browsers (§2). However, fetch
initiation contexts obscure the fine-grained data flows
that truly govern the order in which a page’s objects
must be assembled. In this section, we provide a tax-
onomy for those fine-grained dependencies, and de-
scribe a new measurement framework called Scout that
captures those dependencies. The resulting dependency
graphs have more edges than traditional graphs (be-
cause finer-grained dependencies are included). How-
ever, as we show in Section 5, fine-grained dependency
graphs permit more aggressive load schedules, because

browsers are no longer shackled by conservative assump-
tions about where hidden dependencies might exist.

3.1 Page State
Objects in a web page interact with each other via two
kinds of state. The JavaScript heap contains the code
and the data that are managed by the JavaScript run-
time. This runtime interacts with the rest of the browser
through the DOM interface. The DOM interface reflects
internal, C++ browser state into the JavaScript runtime.
However, the reflected JavaScript objects do not directly
expose the rendering and layout trees. Instead, the DOM
interface exposes an extended version of the DOM tree
in which each node also has properties for style infor-
mation and physical geometry (§2). By reading and writ-
ing this DOM state, JavaScript code interacts with the
browser’s rendering, layout, and painting mechanisms.
The DOM interface also allows JavaScript code to dy-
namically fetch new web objects, either indirectly, by in-
serting new HTML tags into the DOM tree, or directly,
using XMLHttpRequests or WebSockets.

3.2 Dependency Types
We are interested in capturing three types of data flows
that involve the JavaScript heap and the DOM state
belonging to HTML and CSS.

Write/read dependencies arise when one object pro-
duces state that another object consumes. For example,
a.js might create a global variable in the JavaScript
heap; later, b.js might read the variable. When op-
timizing the load order of the two scripts, we cannot
evaluate b.js before a.js (although it is safe to fetch
b.js before a.js).

Read/write dependencies occur when one object must
read a piece of state before the value is updated by
another object. Such dependencies often arise when
JavaScript code must read a DOM value before the
value is changed by the HTML parser or another
JavaScript file. For example, suppose that the HTML
parser encounters a JavaScript tag that lacks the async
or defer attributes. The browser must synchronously
execute the JavaScript file. Suppose that the JavaScript
code reads the number of DOM nodes that are currently
in the DOM tree. The DOM query examines a snapshot
of the DOM tree at a particular moment in time; as
explained in Section 2, a browser progressively updates
the DOM tree as HTML is parsed. Thus, any reordering
of object evaluations must ensure value equivalence
for DOM queries—regardless of when a JavaScript
file is executed, its DOM queries must return the
same results. This guarantees deterministic JavaScript
execution semantics [24] despite out-of-order evaluation.

4

Write/write dependencies arise when two objects up-
date the same piece of state, and we must preserve the
relative ordering of the writes. For example, CSS files
update DOM state, changing the rules which govern a
page’s visual presentation. The CSS specification states
that, if two files update the same rule, the last writer wins.
Thus, CSS files which touch the same rule must be evalu-
ated in their original lexical ordering in the HTML. How-
ever, the evaluation of the CSS files can be arbitrarily re-
ordered with respect to the execution of JavaScript code
that does not access DOM state.

Output devices are often involved in write/write
dependencies. As described in the previous paragraph,
CSS rules create a write/write dependency on a ma-
chine’s display device. Write/write dependencies can
also arise for local storage and the network. For ex-
ample, the localStorage API exposes persistent
storage to JavaScript using a key/value interface. If we
shuffle the order in which a page evaluates JavaScript
objects, we must ensure that the final value for each
localStorage key is the same value that would
result from the original execution order of the JavaScript
files.

Traditional dependencies based on HTML tag con-
straints can often be eliminated if finer-grained depen-
dencies are known. For example, once we know the
DOM dependencies and JavaScript heap dependencies
for a <script> tag, the time at which the script can
be evaluated is completely decoupled from the position
of the <script> tag in the HTML—we merely have
to ensure that we evaluate the script after its fine-grained
dependencies are satisfied. Similarly, we can parse and
render a piece of HTML at any time, as long as we en-
sure that we have blocked the evaluation of downstream
objects in the dependency graph.

Images do need to be placed in specific locations in
the DOM tree. However, browsers already allow images
to be fetched and inserted asynchronously. So, images
can be fetched in arbitrary orders, regardless of the state
of the DOM tree, but their insertion is dependent on
the creation of the associated DOM elements. We model
this using write/write dependencies on DOM elements:
the HTML parser must write an initially empty
DOM node, and then the network stack must insert the
fetched image bitmap into that node.

3.3 Capturing Dependencies with Scout
To capture the fine-grained dependencies in a real web
page, we first record the content of the page using
Mahimahi [28]. Next, we use a new tool called Scout
to rewrite each JavaScript and HTML file in the page,
adding instrumentation to log fine-grained data flows
across the JavaScript heap and the DOM. Scout then

loads the instrumented page in a regular browser. As the
page loads, it emits a dependency log to a Scout analysis
server; the server uses the log to generate the fine-grained
dependency graph for the page.

Tracking JavaScript heap dependencies: To track
dependencies in which both actors are JavaScript code,
Scout leverages JavaScript proxy objects [27]. A proxy
is a transparent wrapper for an underlying object, allow-
ing custom event handlers to fire whenever external code
tries to read or write the properties of the underlying ob-
ject.

In JavaScript, the global namespace is explicitly name-
able via the window object; for example, the global
variable x is also reachable via the name window.x.
Scout’s JavaScript rewriter transforms unadorned global
names like x to fully qualified names like window.x.
Also, for each JavaScript file (whether inline or exter-
nally fetched), Scout wraps the file’s code in a closure
which defines a local alias for the window variable. The
aliasing closures, in combination with rewritten code us-
ing fully qualified global names, forces all accesses to the
global namespace to go through Scout’s window proxy.
Using that proxy, Scout logs all reads and writes to global
variables.

Scout’s window proxy also performs recursive prox-
ying for non-primitive global values. For example, read-
ing a global object variable window.x returns a logging
proxy for that object. In turn, reading a non-primitive
value y on that proxy would return a proxy for y. By
using recursive proxying and wrapping calls to new in
proxy generation code, Scout can log any JavaScript-
issued read or write to JavaScript state. Each read or
write target is logged using a fully qualified path to the
window object, e.g., window.x.y.z. Log entries also
record the JavaScript file that issued the operation.

Scout’s proxy generation code tags each underlying
object with a unique, non-enumerable integer id. The
proxy code also stores a mapping between ids and the
corresponding proxies. When a proxy for a particular ob-
ject is requested, Scout checks whether the object already
has an id. If it does, Scout returns the preexisting proxy
for that object, creating proxy-level reference equalities
which mirror those of the underlying objects.

Some objects lack a fully-qualified path to window.
For example, a function may allocate a heap object and
return that object to another function, such that neither
function assigns the object to a variable that is recur-
sively reachable from window. In these cases, Scout
logs the identity of the object using the unique object id.

Tracking DOM dependencies: JavaScript
code interacts with the DOM tree through the
window.document object. For example, to find

5

the DOM node with a particular id, JavaScript calls
document.getElementById(id). The DOM
nodes that are returned by document provide addi-
tional interfaces for adding and removing DOM nodes,
as well as changing the CSS properties of those nodes.

To track dependencies involving JavaScript
code and DOM state, Scout’s recursive proxy for
window.document automatically creates proxies
for all DOM nodes that are returned to JavaScript
code. For example, the DomNode returned by
document.getElementById(id) is wrapped
in a proxy which logs reads and writes to the object via
interfaces like DomNode.height.

Developers do not assign ids to most DOM nodes.
Thus, Scout’s logs identify DOM nodes by their paths
in the DOM tree. For example, the DOM path <1,5,2>
represents the DOM node that is discovered by examin-
ing the first child of the HTML tag, the fifth child of that
tag, and then the second child of that tag.

A write to a single DOM path may trigger cascading
updates to other paths; Scout must track all of these up-
dates. For example, inserting a new node at a particular
DOM path may shift the subtrees of its new DOM sib-
lings to the right in the DOM tree. In this case, Scout
must log writes to the rightward DOM paths, as well as to
the newly inserted node. Similar bookkeeping is neces-
sary when DOM nodes are deleted or moved to different
locations.

The DOM tree can also be modified by the evaluation
of CSS objects that change node styles. Scout models
each CSS tag as reading all of the DOM nodes that are
above it in the HTML, and then writing all of those DOM
nodes with new style information. To capture the set of
affected DOM nodes, Scout’s HTML rewriter prepends
each CSS tag with an inline JavaScript tag that logs the
current state of the DOM tree (i.e., all of the live DOM
paths) and then deletes itself from the DOM tree.

In Scout logs, we represent DOM operations us-
ing the window.$$dom pseudovariable. For example,
the identifier window.$$dom.1 represents the first
child of the topmost <html> node. We also use the
window.$$xhr pseudovariable to track network reads
and writes via XMLHttpRequests. These pseudovari-
ables allow us to use a single analysis engine to process
all dependency types.

Missing Dependencies: To generate a page’s depen-
dency graph, Scout loads an instrumented version of the
page on a server-side browser, and collects the result-
ing dependency information. Later, when Polaris loads
the page on a client-side browser (§4), Polaris assumes
that Scout’s dependency graph is an accurate representa-
tion of the dependencies in the page. This might not be
true if the page’s JavaScript code exhibits nondetermin-
istic behavior. For example, suppose that a page contains

three JavaScript files called a.js, b.js, and c.js. At
runtime, a.js may call Math.random(), and use the
result to invoke a function in b.js or c.js (but not
both). During some executions, Scout will log a depen-
dency between a.js and b.js; during other execu-
tions, Scout will log a dependency between a.js and
c.js. If there is a discrepancy between the dependency
logged by Scout, and the dependency generated by the
code on the client browser, then Polaris may evaluate
JavaScript files in the wrong order, breaking correctness.

We have not observed such nondeterministic depen-
dencies in our corpus. However, if a page does in-
clude such dependencies, Scout must create a depen-
dency graph which contains the aggregate set of all pos-
sible dependencies. Such a graph overconstrains any par-
ticular load of the page, but guarantees that clients will
load pages without errors. The sources of nondeterminis-
tic JavaScript events are well-understood [24], so Scout
can use a variety of techniques to guarantee that non-
deterministic dependencies are either tracked or elimi-
nated. For example, Scout can rewrite pages so that calls
to Math.random() use a deterministic seed [24], re-
moving nondeterminism from calls to the random num-
ber generator.

For a given page, a web server may generate a differ-
ent dependency graph for different clients. For example,
a web server might personalize the graph in response to a
user’s cookie; as another example, a server might return
a smaller dependency graph in response to a user agent
string which indicates a mobile browser. The server-side
logic must run Scout on each version of the dependency
graph. We believe that this burden will be small in prac-
tice, since even customized versions of a page often share
the same underlying graph structure (with different con-
tent in some of the nodes).

Implementation: To build Scout, we used Es-
prima [14], Estraverse [36], and Escodegen [35] to
rewrite JavaScript code, and we used Beautiful Soup [32]
to rewrite HTML. We loaded the instrumented pages in
a commodity Firefox browser (version 40.0). Each page
sent its dependency logs to a dedicated analysis server;
logs were sent via an XMLHttpRequest that was trig-
gered by the onload event.

Our implementation of Scout handles the bulk of
the JavaScript language. However, our implementation
does not currently support the eval(sourceCode)
statement, which pages use to dynamically execute
new JavaScript code. To support this statement, Scout
would need to shim eval() and dynamically rewrite
the sourceCode argument so that the rewritten code
tracked dependencies.

Our current implementation also does not support the
with(obj) statement, which places obj at the be-
ginning of the scope chain that the JavaScript runtime

6

1 <h1>Text</h1>
2 <p>Text</p>
3 <script src=”first.js”/>

 <!--Reads <p> tag-->
4 Text
5 <script src=”second.js”/>

 <!--Accesses no DOM nodes-->
 <!--or JS state from first.js----->

6 <link rel=”stylesheet” href=”…”>
 <!--CSS-->

7 Text
8 Text
9 <script src=”third.js”/>

 <!--Writes tag-->
10 Text

(a) The HTML for a simple
page.

first.js@HTML[3]

second.js@HTML[5]HTML[1—2]

HTML[4]

HTML[7—8,10]

CSS@HTML[6]

third.js@HTML[9]

(b) The dependency graph gen-
erated by Scout.

second.jsfirst.js third.js CSS

HTML

(c) The dependency graph cre-
ated by Klotski [8].

HTML[1—2]

second.js@HTML[5]

HTML[7—8]

2]]
first.js@HTML[3]

HTML[4]

CSS@HTML[6]

third.js@HTML[9]

HTML[10]

(d) The dependency graph cre-
ated by WProf [37].

Figure 3: Comparing the order in which different tools declare that a simple page’s objects must be evaluated. The
notation HTML[i:j] refers to HTML lines i up to and including j. The notation obj@HTML[k] refers to the object
whose corresponding tag is at HTML[k].

uses to resolve variable names. To support this statement,
Scout merely needs to wrap the obj argument in code
which checks whether obj is a proxy; if not, the wrap-
per would return one.

3.4 Dependency Graphs: Scout vs. Prior Tools
Figure 3(a) depicts a simple web page with two
JavaScript files and one CSS file. Figures 3(b), (c), and
(d) show the dependency graphs that are produced by
Scout, Klotski [8], and WProf [37].
• Scout allows second.js and the first chunk of

HTML to be evaluated in parallel, since second.js
does not access DOM state or JavaScript state de-
fined by prior JavaScript files. first.js does ac-
cess DOM state from upstream HTML tags, but
Scout allows the evaluation of first.js to pro-
ceed in parallel with the parsing of downstream
HTML. Scout treats CSS as a read and then a write
to all upstream HTML, so the CSS file must be eval-
uated before the evaluation of downstream HTML
and downstream scripts which access DOM state.
• Klotski [8] cannot observe fine-grained data flows,

so its dependency graphs are defined by lexi-
cal HTML constraints (§2). Given a dependency
graph like the one shown in Figure 3(c), Klotski
uses heuristics to determine which objects a server
should push to the browser first. However, Klotski
does not know the page’s true data dependencies,
so Klotski cannot guarantee that prioritized objects
can actually evaluate ahead of schedule with respect
to their evaluation times in the original page. It is
only safe to evaluate an object (prioritized or not)
when its ancestors in the dependency graph have
been evaluated. So, Klotski’s prioritized pushes can
safely warm the client-side cache, but in general, it
is unsafe for those pushes to synchronously trigger
object evaluations.

• By instrumenting the browser, WProf observes the
times at which a browser is inside the network stack
or a parser for HTML, CSS, or JavaScript. Thus,
WProf can track complex interactions between a
browser’s fetching, parsing, and evaluation mech-
anisms. However, this technique only allows WProf
to analyze the critical path for the lexically-defined
dependency graph. This graph does not capture
true data flows, and forces conservative assumptions
about evaluation order (§2.2). As shown in Fig-
ure 3(d), WProf overconstrains the order in which
objects can be evaluated (although WProf may al-
low objects to be fetched out-of-lexical-order).

In summary, only Scout produces a dependency graph
which captures the true constraints on the order in which
objects can be evaluated. Polaris uses these fine-grained
dependencies to schedule object downloads—by priori-
tizing objects that block the most downstream objects,
Polaris reduces overall page load times (§4).

3.5 Results
We used Mahimahi [28], an HTTP record-and-replay
tool, to record the content from 200 sites in the Alexa Top
500 list [2]. The corpus spanned a variety of page cat-
egories, including news, ecommerce, and social media.
The corpus also included five mobile-optimized sites.
Since our Scout prototype does not support the eval()
and with() statements, we selected pages which did
not use those statements.

Figure 4 summarizes the differences between Scout’s
dependency graphs and the traditional ones that are de-
fined by Klotski [8] and the built-in developer tools from
Chrome [13], Firefox [26], and IE [25]. As shown in
Figure 4(a), traditional graphs are almost always incom-
plete, missing many edges that can only be detected via
data flow analysis. That analysis adds 29.8% additional

7

(a) (b) (c) (d)

Figure 4: How traditional dependency graphs change when updated with information from fine-grained data flows.
The updated graphs have additional edges which belong to previously untracked dependencies. The new edges often
modify a page’s critical paths. Note that a slack node is a node that is not on a critical path.

0

1 2

(a)

0

1 2

3

(b)

0

1 2

3 5

4

(c)

Figure 5: An example of dynamic critical paths during
the load of a simple page. Dynamic critical paths are
shown in red. Numbers represent the order in which Po-
laris requests the objects. Shaded objects have been re-
ceived and evaluated; numbered but unshaded objects
have been requested, but have no responses yet. We as-
sume that all objects are from the same origin, and that
only two outstanding requests per origin are allowed.

edges at the median, and 118% more edges at the 95th
percentile.

Those additional edges have a dramatic impact on
the characteristics of dependency graphs. For example,
adding fine-grained dependencies alters the critical
path length for 80.8% of the pages in our corpus
(Figure 4(b)). The set of objects on those paths often
changes, with old objects being removed and new ob-
jects being added. Furthermore, as shown in Figure 4(d),
86.6% of pages have a smaller fraction of slack nodes
when fine-grained dependencies are considered. Slack
nodes are nodes that are not on a critical path. Thus, a
decrease in slack nodes means that browsers have fewer
load schedules which result in optimal page load times.

4 POLARIS: DYNAMIC CLIENT-SIDE
SCHEDULING

Polaris is a client-side scheduler for the loading and eval-
uation of a page’s objects. Polaris is written completely

in JavaScript, allowing it to run on unmodified commod-
ity browsers. Polaris accepts a Scout graph as input, but
also uses observations about current network conditions
to determine the dynamic critical path for a page. The
dynamic critical path, i.e., the path which currently has
the most unresolved objects, is influenced by the order
and latency with which network fetches complete; im-
portantly, the dynamic critical path may be different than
the critical path in the static dependency graph.1 Polaris
prioritizes the fetching and evaluation of objects along
the dynamic critical path, trying to make parallel use of
the client’s CPU and network, and trying to keep the
client’s network pipe full, given browser constraints on
the maximum number of simultaneous network requests
per origin.

Figure 5 shows how a page’s dynamic critical path
can change over time. In Figure 5(a), Polaris has eval-
uated object 0, and issued requests for objects 1 and 2,
because those objects are the roots for the deepest un-
resolved paths in the dependency graph. In Figure 5(b),
Polaris has received and evaluated object 1, although ob-
ject 2 is still in-flight. Polaris has one available request
slot, so it requests object 3, because that object is the
root of the deepest unresolved path. In Figure 5(c), Po-
laris has received and evaluated object 3; Polaris uses the
available request slot to fetch object 4. Then, object 2
is received and evaluated. The critical path changes—the
deepest chain is now beneath object 2, so Polaris requests
object 5 next.

To use Polaris with a specific page, a web developer
runs Scout on that page to generate a dependency graph
and a Polaris scheduler stub. The developer then config-
ures her web server to respond to requests for that page
with the scheduler stub’s HTML instead of the page’s

1This is why a dynamic client-side scheduler is better than a static
client-side scheduler that ignores current network conditions and deter-
ministically fetches objects from a server-provided URL list.

8

regular HTML (see Figure 2). The stub contains four
components.
• The scheduler itself is just inline JavaScript code.
• The Scout dependency graph for the page is repre-

sented as a JavaScript variable inside the scheduler.
• DNS prefetch hints indicate to the browser that the

scheduler will be contacting certain hostnames in
the near future. DNS prefetch hints are expressed
using <link> tags of type dns-prefetch, e.g.,
<link rel=’’dns-prefetch’’

href=’’http://domain.com’’>

DNS hints allow Polaris to pre-warm the DNS
cache in the same way that the browser does dur-
ing speculative HTML parsing (§2.1).
• Finally, the stub contains the page’s original

HTML, which is broken into chunks as deter-
mined by Scout’s fine-grained dependency resolu-
tion (see §3.3 and Figure 3). When Scout gener-
ates the HTML chunks, it deletes all src attributes
in HTML tags, since the external objects that are
referenced by those attributes will be dynamically
fetched and evaluated by Polaris.

Polaris adds few additional bytes to a page’s original
HTML. Across our test corpus of 200 sites, the sched-
uler stub was 3% (36.5 KB) larger than a page’s original
HTML at the median.

The scheduler uses XMLHttpRequests to dynam-
ically fetch objects. To evaluate a JavaScript file, the
scheduler uses the built-in eval() function that is pro-
vided by the JavaScript engine. To evaluate HTML,
CSS, and images, Polaris leverages DOM interfaces like
document.innerHTML to dynamically update the
page’s state.

In the rest of this section, we discuss a few of the
subtler aspects of implementing an object scheduler as
a JavaScript library instead of native C++ code inside the
browser.

Browser network constraints: Modern browsers limit
a page to at most six outstanding requests to a given ori-
gin. Thus, Polaris may encounter situations in which the
next missing object on the dynamic critical path would
be the seventh outstanding request to an origin. If Po-
laris actually generated the request, the request would
be placed at the end of the browser’s internal network
queue, and would be issued at a time of the browser’s
choosing. Polaris would lose the ability to precisely con-
trol the in-flight requests at any given moment.

To avoid this dilemma, Polaris maintains per-origin
priority queues. With the exception of the top-level
HTML (which is included in the scheduler stub), each
object in the dependency graph belongs to exactly one
queue. Inside a queue, objects that are higher in the de-

pendency tree receive a higher priority, since those ob-
jects prevent the evaluation of more downstream objects.
At any given moment, the scheduler tries to fetch objects
that reside in a dynamic critical path for the page load.
However, if fetching the next object along a critical path
would violate a per-origin network constraint, Polaris ex-
amines its queues, and fetches the highest priority object
from an origin that has available request slots.2

Frames: A single page may contain multiple iframes.
Scout generates a scheduler stub for each one, but the
browser’s per-origin request cap is a page-wide limit.
Thus, the schedulers in each frame must cooperate to re-
spect the limit and prevent network requests from getting
stuck inside the browser’s internal network queues.

The scheduler in the top frame coordinates the sched-
ulers in child frames. Using postMessage() calls,
children ask the top-most parent for permission to re-
quest particular objects. The top-most parent only autho-
rizes a fetch if per-origin request limits would not be vi-
olated.

URL matching: A page’s coarse-grained dependency
graph has a stable structure [8]. In other words, the edges
and vertices that are defined by lexical HTML constraints
change slowly over time. However, the URLs for specific
vertices change more rapidly. For example, if JavaScript
code dynamically generates an XMLHttpRequest
URL, that URL may embed the current date in its query
string. Across multiple page loads, the associated object
for the URL will have different names, even though all
of the objects will reside in the same place in the depen-
dency graph.

To handle any discrepancies between the URLs
in Scout’s dependency graphs and the URLs which
XMLHttpRequests generate on the client, Polaris
uses a matching heuristic to map dynamic URLs to their
equivalents in the static dependency graph. Our proto-
type implementation uses Mahimahi’s matching heuris-
tic [28], but Polaris is easily configured to use oth-
ers [8, 9, 33].

Page-generated XHRs: When Polaris evaluates a
JavaScript file, the executed code might try to fetch an
object via XMLHttpRequest. Assuming that a page
has deterministic JavaScript code (§3.3), Scout will have
included the desired object in the page’s dependency
graph. However, during the loading of the page in a
real client browser, Polaris requires control over the or-
der in which objects are fetched. Thus, Polaris uses an

2Browsers allow users to modify the constraint on the maximum
number of connections per origin; Polaris can be configured to respect
user-programmed values.

9

Figure 6: Polaris’ average reduction in page load times,
relative to baseline load times with Firefox v40.0. Each
bar is the average reduction in load time across the entire
200 site corpus. Error bars span one standard deviation
in each direction of the average.

RTT
25 ms 100 ms 500 ms

L
in

k
R

at
e 1 Mbit/s 256.3 ms 883.9 ms 1857.5 ms

12 Mbit/s 309.1 ms 1274.1 ms 2935.0 ms
25 Mbit/s 382.5 ms 1385.3 ms 3188.3 ms

Table 2: Polaris’ raw reduction in median page load times
for a subset of the parameter values in Figure 6.

XMLHttpRequest shim [24] to suppress autonomous
XMLHttpRequests. Polaris issues those requests us-
ing its own scheduling algorithm, and manually fires
XMLHttpRequest event handlers when the associated
data has arrived.

5 RESULTS

In this section, we demonstrate that Polaris can decrease
page load times across a variety of web pages and net-
work configurations: performance improves by 34% and
59% for the median and 95th percentile sites, respec-
tively. Polaris’ benefits grow as network latencies in-
crease, because higher RTTs increase the penalty for bad
fetch schedules. Thus, Polaris is particularly valuable for
clients with cellular or low-quality wired networks. How-
ever, even for networks with moderate RTTs, Polaris can
often reduce load times by over 20%.

5.1 Methodology
We evaluated Polaris using the 200 site corpus that is de-
scribed in Section 3.3. We used Mahimahi [28] to cap-
ture site content and later replay it using emulated net-
work conditions. To build Polaris-enabled versions of
each page, we post-processed the recorded web content,
generating Polaris scheduler stubs for each site. We then
compared the load times of the Polaris sites and the orig-
inal versions of those sites. All experiments used Firefox
v40.0. Unless otherwise specified, all experiments used
cold browser caches and DNS caches.

A page’s load time is normally defined with re-
spect to JavaScript events like navigationStart and
loadEventEnd. However, loadEventEnd is inac-
curate for Polaris pages, since the event only indicates
that the scheduler stub has been loaded; the rest of the
page’s objects remain to be fetched by the dynamic
scheduler. So, to define the load time for a Polaris page,
we first loaded the original version of the page and used
tcpdump to capture the objects that were fetched between
navigationStart and loadEventEnd. We then
defined the load time of the Polaris page as the time
needed to fetch all of those objects.

5.2 Reducing Page Load Times
Figure 6 demonstrates Polaris’ ability to reduce load
times. There are two major trends to note. First, for a
given link rate, Polaris’ benefits increase as network la-
tency increases. For example, at a link rate of 12 Mbits/s,
Polaris provides an average improvement of 10.1% for
an RTT of 25 ms. However, as the RTT increases to 100
ms and 200 ms, Polaris’ benefits increase to 27.5% and
35.3%, respectively. The reason is that, as network la-
tencies grow, so do the penalties for not prioritizing the
fetches of objects on the dynamic critical path. Polaris
does prioritize the fetching of critical path objects. Fur-
thermore, Polaris never has to wait for an object evalua-
tion to reveal a downstream dependency—Polaris knows
all of the dependencies at the beginning of the page load,
so Polaris can always keep the network pipe full.

The second trend in Figure 6 is that, for a given RTT,
Polaris’ benefits increase as network bandwidth grows.
This is because, if bandwidth is extremely low, transfer
times dominate fetch costs. As bandwidth increases, la-
tency becomes the dominant factor in download times.
Since Polaris prioritizes the fetch orders for critical path
objects (but does nothing to reduce those objects’ band-
width costs), Polaris’ gains are most pronounced when
latencies govern overall download costs.

Figure 6 describes Polaris’ gains in relative terms. Ta-
ble 2 depicts absolute gains, describing how many raw
milliseconds of load time Polaris removes. Even on a fast
network with 25 ms of latency, Polaris eliminates over
250 ms of load time. Those results are impressive, given
that web developers strive to eliminate tens of millisec-
onds from their pages’ load times [5, 6, 10].

The error bars in Figure 6 are large. The reason is that,
for a given network bandwidth and latency, Polaris’ ben-
efits are determined by the exact structure of a page’s de-
pendency graph. To understand why, consider the three
sites in Figure 7.
• The homepage for apple.com has a flat dependency

graph, as shown in Figure 8. This means that, once
the browser has the top-level HTML, the other ob-
jects can be fetched and evaluated in an arbitrary or-

10

Figure 7: Polaris’ average reduction in page load times,
relative to baseline load times, for three sites with diverse
dependency graph structures. Each experiment used a
link rate of 12 Mbits/s.

Figure 8: The dependency graph for Apple’s homepage.

der; all orders will result in similar end-to-end page
load times. Thus, for low RTTs, Polaris loads the
apple.com homepage 1–2% slower than the base-
line, due to computational overheads from Polaris’
scheduling logic.
• In contrast, the ESPN homepage has a dependency

path of length 5, and several paths of length 4. Also,
48% of the page’s content is loaded from only two
origins (a.espncdn.com and a1.espncdn.com), mag-
nifying the importance of optimally scheduling the
six outstanding requests for each origin (§4). In
ESPN’s dependency graph, many of the long paths
consist of JavaScript files. However, the standard
Firefox scheduler has no way of knowing this. So,
when Firefox loads the standard version of the page,
it initially requests a small number of JavaScript ob-
jects, and then fills the rest of its internal request
queue with 32 image requests. As a result, when a
JavaScript file evaluates and generates a request for
another JavaScript file on the critical path, the re-
quest is often stuck behind image requests in the
browser’s internal network queue. In contrast, Po-
laris has a priori knowledge of which JavaScript
files belong to deep dependency chains. Thus, Po-
laris prioritizes the fetching of those objects, using
its knowledge of per-origin request caps to ensure
that the fetches for critical path objects are never
blocked.
• As shown in Figure 1(b), the weather.com home-

page is even more complicated than that of ESPN.
Deep, complex dependency graphs present Polaris

Figure 9: Request initiation times for the regular and
Polaris-enabled versions of StackOverflow. These results
used a 12 Mbits/s link with an RTT of 100 ms.

with the most opportunities to provide gains. Thus,
of the three sites in Figure 7, weather.com enjoys
the largest reductions in load time.

Figure 9 depicts the order in which requests issue for the
normal version of the StackOverflow site, and the Polaris
version. In general, Polaris issues requests earlier; by pri-
oritizing the fetches of objects on the dynamic critical
path, Polaris minimizes the overall fetch time needed to
gather all objects. However, as shown in Figure 9, Polaris
briefly falls behind the default browser scheduler after
fetching the tenth object. The reason is that, in our cur-
rent Polaris implementation, HTML is rendered in large
chunks. While that HTML is being rendered, Polaris can-
not issue new HTML requests, because executing Po-
laris’ JavaScript-level scheduler would block rendering
(§2.1). In contrast, a native browser scheduler can issue
new requests in parallel with HTML rendering. Thus, the
default Firefox scheduler has a lower time-to-first paint
than Polaris, and Polaris falls behind the default sched-
uler after the tenth object fetch. However, after Polaris
renders the bulk of the HTML, Polaris quickly regains
its lead and never relinquishes it. To minimize Polaris’
time-to-first-paint, future versions of Polaris will render
HTML in smaller increments; this will not affect Polaris’
ability to optimize network utilization.

5.3 Browser Caching
Up to this point, our experiments have used cold browser
caches. In this section, we evaluate Polaris’ performance
when caches are warm. To do so, we examined the HTTP
headers in our recorded web pages, and, for each object
that was marked as cacheable, we rewrote the caching
headers to ensure that the object would remain cacheable
for the duration of our experiment. Then, for each page,
we cleared the browser’s cache, and loaded the page
twice, recording the elapsed time for the second load.

Figure 10 depicts Polaris’ benefits with warm caches;
the improvements are normalized with respect to Po-

11

ESPN

Apple

Ebay

Figure 10: Polaris’ benefits with warm caches, normal-
ized with respect to Polaris’ gains with cold caches. Each
data point represents one of the 200 sites in our corpus.
Pages were loaded over a 12 Mbits/s link with an RTT of
100 ms.

laris’ improvements when caches are cold. In general,
Polaris’ benefits decrease as cache hit rates increase, be-
cause there are fewer opportunities for Polaris to opti-
mize network fetches. For example, Ebay caches 92%
of all objects, including most of the JavaScript files in-
volved in deep dependency chains; thus, Polaris provides
little advantage over the standard scheduling algorithm.

That being said, there are many instances in which
caching does not touch objects along a page’s criti-
cal path. For example, on ESPN’s site, 76% of objects
are cacheable, but only one object on the deepest de-
pendency chain is cached. Furthermore, a.espncdn.com
serves many uncacheable images and JavaScript objects,
leading Firefox’s standard scheduler to bury critical path
JavaScript files behind images that are not on the crit-
ical path (§5.2). So, even though ESPN caches 76% of
its objects, Polaris still provides 71% of its cold-cache
benefits.

Note that the Apple site is an outlier: it caches 93% of
its objects, but Polaris provides little benefit in the cold
cache case (§5.2), so Polaris provides most of that negli-
gible benefit in the warm cache case as well.

5.4 SPDY
Google proposed SPDY [22], a transport protocol for
HTTP messages, to remedy several problems with the
HTTP/1.1 protocol. SPDY differs from HTTP/1.1 in four
major ways:
• First, SPDY uses a single TCP connection to multi-

plex all of a brower’s HTTP requests and responses
involving a particular origin. This allows HTTP re-
quests to be pipelined, and reduces the TCP and
TLS handshake overhead that would be incurred if
a browser opened multiple TCP connections to an
origin.
• SPDY also allows a browser to prioritize the fetches

of certain objects (e.g., JavaScript files which block

Figure 11: Average reductions in page load time us-
ing SPDY, Polaris over HTTP/1.1, and Polaris over
SPDY. The performance baseline was load time using
HTTP/1.1. The link rate was 12 Mbits/s.

HTML parsing). Priorities give servers hints about
how to allocate limited bandwidth to multiple re-
sponses.
• SPDY compresses HTTP headers. HTTP is a text-

based protocol, so compression can result in non-
trivial bandwidth savings.
• Finally, SPDY allows a server to proactively push

objects to a browser if the server believes that the
browser will request those objects in the near future.

SPDY was a major influence on the HTTP/2 protocol [4]
whose deployment is currently starting.

Mahimahi supports SPDY page loads using the
mod spdy Apache extension [20]. Thus, we could use
Mahimahi to explore how SPDY interacts with Polaris.
We loaded each page in our test corpus using four differ-
ent schemes: HTTP/1.1 (which all of our previous exper-
iments used), Polaris over HTTP/1.1, SPDY, and Polaris
over SPDY. In our experiments, SPDY used TCP mul-
tiplexing, object prioritization, and HTTP header com-
pression, but not server push, since few of the sites in our
test corpus defined SPDY push policies.

Figure 11 compares load times using the four schemes
on a 12 Mbits/s link with various RTTs; the perfor-
mance baseline is the load time using HTTP/1.1. On av-
erage, load times using SPDY are 1.74%–3.98% faster
than those with HTTP/1.1. Load times using Polaris
over SPDY are 2.05%–4.03% faster than those with
Polaris over HTTP/1.1. These results corroborate prior
work [38] which found that object dependencies limit
the ability of SPDY to maximize network utilization.
For example, a SPDY-enabled browser may prioritize a
JavaScript file in hopes of minimizing the stall time of
the HTML parser. However, without Polaris, the SPDY-
enabled browser is still limited by conservative lexical
dependencies (§2.2), meaning that it cannot aggressively
fetch objects “out-of-order” with respect to lexical con-
straints. In contrast, both Polaris over HTTP/1.1 and Po-

12

laris over SPDY have fine-grained dependency informa-
tion. That information allows Polaris to issue out-of-
lexical-order fetches which reduce page load time while
respecting the page’s intended data flow semantics.

In theory, SPDY-enabled web servers could use
Scout’s dependency graphs to guide server push poli-
cies. However, we believe that clients, not servers, are
best qualified to make decisions about how a client’s net-
work pipe should be used. A server from origin X can-
not see the objects being pushed by origin Y, so different
origins may unintentionally overload a client’s resource-
constrained network connection. Furthermore, Scout’s
dependency graphs do not capture dynamic critical paths,
i.e., the set of object fetches which a client should priori-
tize at the current moment (§4). Thus, a well-intentioned
server may hurt load time by pushing objects which are
not on a dynamic critical path. Polaris avoids this prob-
lem using dynamic client-side scheduling.

6 RELATED WORK

Prior dependency trackers [8, 13, 25, 26, 37] deduce de-
pendencies using lexical relationships between HTML
tags. As discussed in Sections 2.2 and 3.3, those lexi-
cal relationships do not capture fine-grained data flows.
As a result, load schedulers which use those dependency
graphs are forced to make conservative assumptions to
preserve correctness.

WebProphet [18] determines the dependencies be-
tween objects by carefully perturbing network fetch de-
lays for individual objects; delaying a parent should de-
lay the loads of dependent children. This technique also
relies on course-grained lexical dependencies, since the
perturbed browser uses those HTML dependencies to de-
termine which objects to load.

Silo [23] uses aggressive inlining of JavaScript and
CSS to fetch entire pages in one or two RTTs. However,
Silo does not use the CPU and the network in parallel—
all content is fetched, and then all content is evaluated.
In contrast, Polaris overlaps computation with network
fetches.

Compression proxies like Google FlyWheel [1] and
Opera Turbo [29] transparently compress objects before
transmitting them to clients. For example, FlyWheel re-
encodes images into space-saving formats, and minifies
JavaScript and CSS. Polaris is complementary to such
techniques.

JavaScript module frameworks like RequireJS [7] and
ModuleJS [16] allow developers to manually specify de-
pendencies between JavaScript libraries. Once the de-
pendencies are specified, the frameworks ensure that
the relevant libraries are loaded in the appropriate or-
der. Keeping manually-specified dependencies up-to-
date can be challenging for a large web site. In con-
trast, Scout automatically tracks fine-grained dependen-

cies between JavaScript files. Scout also tracks depen-
dencies involving HTML, CSS, and images.

7 CONCLUSION

Prior approaches for loading web pages have been con-
strained by uncertainty. The objects in a web page can
interact in complex and subtle ways; however, those sub-
tle interactions are only partially captured by lexical rela-
tionships between HTML tags. Unfortunately, prior load
schedulers have used those lexical relationships to ex-
tract dependency graphs. The resulting graphs are under-
specified and omit important edges. Thus, load sched-
ulers which use those graphs must be overly conserva-
tive, to preserve correctness in the midst of hidden de-
pendencies. The ultimate result is that web pages load
more slowly than necessary.

In this paper, we use a new tool called Scout to track
the fine-grained data flows that arise during a page’s load
process. Compared to traditional dependency trackers,
Scout detects 30% more edges for the median page, and
118% more edges for the 95th percentile page. These
additional edges actually give browsers more opportu-
nities to reduce load times, because they enable more
aggressive fetch schedules than allowed by conserva-
tive, lexically-derived dependency graphs. We introduce
a new client-side scheduler called Polaris which lever-
ages Scout graphs to assemble a page. By prioritizing the
fetches of objects along the dynamic critical path, Polaris
minimizes the number of RTTs needed to load a page.
Experiments with real pages and varied network condi-
tions show that Polaris reduces load times by 34% for the
median page, and 59% for the 95th percentile page.

8 ACKNOWLEDGEMENTS

We thank Katrina LaCurts, Amy Ousterhout, the NSDI
reviewers, and our shepherd, Paul Barford, for their help-
ful comments and suggestions. We also thank the mem-
bers of the MIT Center for Wireless Networks and Mo-
bile Computing (Wireless@MIT) for their support. This
work was supported in part by NSF grant CNS-1407470.

REFERENCES

[1] V. Agababov, M. Buettner, V. Chudnovsky, M. Co-
gan, B. Greenstein, S. McDaniel, M. Piatek,
C. Scott, M. Welsh, and B. Yin. Flywheel: Google’s
Data Compression Proxy for the Mobile Web. In
Proceedings of NSDI, 2015.

[2] Alexa. Top Sites in United States. http://www.
alexa.com/topsites/countries/US, 2015.

[3] Amazon. Silk Web Browser. https://amazonsilk.
wordpress.com/, December 16, 2014.

[4] M. Belshe, R. Peon, and M. Thomson. Hyper-
text Transfer Protocol Version 2. http://httpwg.org/
specs/rfc7540.html, May 2015.

13

[5] N. Bhatti, A. Bouch, and A. Kuchinsky. Integrat-
ing User-perceived Quality into Web Server De-
sign. In Proceedings of World Wide Web Con-
ference on Computer Networks: The International
Journal of Computer and Telecommunications Net-
working, 2000.

[6] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality
is in the Eye of the Beholder: Meeting Users’ Re-
quirements for Internet Quality of Service. In Pro-
ceedings of CHI, 2000.

[7] J. Burke. RequireJS. http://requirejs.org/, 2015.
[8] M. Butkiewicz, D. Wang, Z. Wu, H. V. Mad-

hyastha, and V. Sekar. Klotski: Reprioritizing Web
Content to Improve User Experience on Mobile De-
vices. In Proceedings of NSDI, 2015.

[9] Chromium. web-page-replay. https://github.com/
chromium/web-page-replay, 2015.

[10] D. F. Galletta, R. Henry, S. McCoy, and P. Polak.
Web Site Delays: How Tolerant are Users? Journal
of the Association for Information Systems, 5(1),
2004.

[11] A. Ganjam, F. Siddiqui, J. Zhan, X. Liu, I. Stoica,
J. Jiang, V. Sekar, and H. Zhang. C3: Internet-Scale
Control Plane for Video Quality Optimization. In
Proceedings of NSDI, 2015.

[12] Google. Using site speed in web search ranking.
http://googlewebmastercentral.blogspot.com/2010/
04/using-site-speed-in-web-search-ranking.html,
April 9, 2010.

[13] Google. Chrome DevTools Overview. https://
developer.chrome.com/devtools, August 2013.

[14] A. Hidayat. Esprima. http://esprima.org, 2015.
[15] J. Jiang, V. Sekar, and H. Zhang. Improving

Fairness, Efficiency, and Stability in HTTP-based
Adaptive Video Streaming with FESTIVE. In Pro-
ceedings of CoNext, 2012.

[16] L. Jung. modulejs lightweight JavaScript module
system. https://larsjung.de/modulejs/, 2016.

[17] Q. Li, W. Zhou, M. Caesar, and P. B. Godfrey.
ASAP: A Low-latency Transport Layer. In Pro-
ceedings of SIGCOMM, 2011.

[18] Z. Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg,
and Y.-M. Wang. WebProphet: Automating Perfor-
mance Prediction for Web Services. In Proceedings
of NSDI, 2010.

[19] Google Developers. Remove Render-Blocking
JavaScript. https://developers.google.com/speed/
docs/insights/BlockingJS, April 8, 2015.

[20] Google Developers. SPDY. https://developers.
google.com/speed/spdy/mod spdy/, May 27, 2015.

[21] The Chromium Projects. QUIC, a multi-
plexed stream transport over UDP. https://www.

chromium.org/quic, 2015.
[22] The Chromium Projects. SPDY. https://www.

chromium.org/spdy, 2015.
[23] J. Mickens. Silo: Exploiting JavaScript and DOM

Storage for Faster Page Loads. In Proceedings of
WebApps, 2010.

[24] J. Mickens, J. Elson, and J. Howell. Mugshot: De-
terministic Capture and Replay for Javascript Ap-
plications. In Proceedings of NSDI, 2010.

[25] Microsoft. Meet the Microsoft Edge De-
veloper Tools. https://dev.windows.com/
en-us/microsoft-edge/platform/documentation/
f12-devtools-guide/, 2015.

[26] Mozilla. Firefox Developer Tools. https://
developer.mozilla.org/en-US/docs/Tools, 2015.

[27] Mozilla. Proxy. https://developer.mozilla.
org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Proxy, February 16, 2016.

[28] R. Netravali, A. Sivaraman, S. Das, A. Goyal,
K. Winstein, J. Mickens, and H. Balakrish-
nan. Mahimahi: Accurate Record-and-Replay for
HTTP. In Proceedings of USENIX ATC, 2015.

[29] Opera. Data savings and turbo mode. http://www.
opera.com/turbo, 2015.

[30] Opera. Opera Mini. http://www.opera.com/mobile/
mini, 2015.

[31] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and
B. Raghavan. TCP Fast Open. In Proceedings of
CoNext, 2011.

[32] L. Richardson. Beautiful Soup. http:
//www.crummy.com/software/BeautifulSoup/,
February 17, 2016.

[33] A. Sivakumar, S. Puzhavakath Narayanan,
V. Gopalakrishnan, S. Lee, S. Rao, and S. Sen.
PARCEL: Proxy Assisted BRowsing in Cellular
Networks for Energy and Latency Reduction. In
Proceedings of CoNext, 2014.

[34] S. Sundaresan, N. Feamster, R. Teixeira, and
N. Magharei. Measuring and Mitigating Web Per-
formance Bottlenecks in Broadband Access Net-
works. In Proceedings of IMC, 2013.

[35] Y. Suzuki. Escodegen. https://github.com/estools/
escodegen, 2015.

[36] Y. Suzuki. Estraverse. https://github.com/estools/
estraverse, 2016.

[37] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. Demystifying Page Load
Performance with WProf. In Proceedings of NSDI,
2013.

[38] X. S. Wang, A. Balasubramanian, A. Krishna-
murthy, and D. Wetherall. How Speedy is SPDY?
In Proceedings of NSDI, 2014.

14

