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Examination of cyclotriphosphate and cyclotetraphosphate as

ligands for Co(III) in aqueous solutions revealed that cyclo-

tetraphosphate affords stable complexes as a hemilabile ligand,

while cyclotriphosphate exhibits facile hydrolysis.

The utilization of inexpensive, readily available materials is

essential for the development of cost-effective catalysts for

renewable energy applications.1 Important progress in this

field was made by Kanan and Nocera with the discovery of

a heterogeneous Co(III)-based water oxidation catalyst, which

was electrodeposited from a neutral aqueous solution containing

orthophosphate and simple Co(II) salts.2 This discovery

prompted us to examine condensed phosphate oligomers as

low-cost, redox-stable polyanionic ligands for Co(III) in the

context of water oxidation chemistry. As part of this effort, we

have been investigating cyclophosphates,3 which are the focus

of this communication.

Cyclophosphates have received scant attention as ligands for

cobalt, and only a handful of well-defined complexes are known,4

all of which involve Co(II) and are based on solid-state data.5

Herein, we describe the reactions of a cationic Co(III) precursor,

[Co(TACN)(H2O)3](CF3SO3)3 (complex 1; TACN = 1,4,7-

triazacyclononane),6–8 with sodium salts of cyclotriphosphate

(P3O9
�3) and cyclotetraphosphate (P4O12

�4) in aqueous

solutions. These reactions facilitated a comparison of the two

cyclophosphates as ligands for Co(III) under conditions relevant

to water oxidation, and have also led to the isolation of the first

Co(III)–cyclophosphato complexes.4

Cyclotriphosphate was initially sought as a tripodal capping

ligand for Co(III), since it features facially-oriented terminal

oxygen donor groups and is known to bind other transition

metals in this fashion.9 Nevertheless, our study yielded

markedly different results, which are attributable to the use of

water as a reaction medium rather than organic solvents, which

served as reaction media for the other transition metals. As shown

in Scheme 1a, when an aqueous solution of 1was treated with one

equivalent of Na3P3O9 at room temperature, no coordination of

the cyclophosphate was observed. Instead, the salt-metathesis

product, [Co(TACN)(H2O)3](P3O9), separated from the solution

as red prismatic crystals (59% yield). The crystal structure of the

salt, which was isolated as a trihydrate from a D2O solution, is

shown in Fig. 1.10 This structure exhibits an extensive network of

hydrogen bonds that involves the water molecules, outer-sphere

P3O9
�3 and TACN ligand. Similar hydrogen bonding between

orthophosphate and Co(III)-bound water molecules may play an

important role in Nocera’s catalyst (e.g., proton shuttling).

When the reaction was repeated at 80 1C crystallization of

the salt was prevented, but no P3O9-containing complexes

were obtained. Instead, the solution contained the previously

reported complex 211 (Scheme 1a) as the major product. This

was isolated from the reaction mixture using ion-exchange

chromatography to afford the dilithium salt in 73% yield

(or the diprotonated form in 61% yield).12 The appearance

of 2, in which cobalt is not coordinated to P3O9
�3, but rather

to the linear P3O10
�5 ligand (partially protonated in the

reaction mixture),13 clearly shows that the cyclophosphate

ring had undergone hydrolytic P–O bond cleavage. The same

result was obtained at room temperature when the reaction

was carried out in buffered solutions with pH = 5.5–7.0,14

wherein crystallization of the salt-metathesis product was

prevented.

The observed hydrolysis of P3O9
�3 conforms to the known

behavior of cyclophosphates in aqueous media, particularly under

basic or acidic conditions,15 but also in the presence of metal

complexes.15b,16 In our study, the experimental evidence strongly

suggests that hydrolysis of P3O9
�3 is not acid-catalyzed, despite

the weak acidity of 1,7 but is promoted by coordination to the

Co(III) center. This conclusion is supported by the fact that 2 is

Scheme 1 Reactions of [Co(TACN)(H2O)3](CF3SO3)3 (1) with the

cyclophosphates Na3P3O9 (a) and Na4P4O12 (b) in water. Yields refer

to isolated material (Li+ salts in the case of 2 and 3), except for the

reaction 3 - 2 for which NMR yield is cited. Pi = orthophosphate.
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obtained from 1 and Na3P3O9 at pH = 5.5–7.0,14 wherein

acid catalysis is suppressed. In the absence of the cobalt

precursor P3O9
�3 exhibits no significant hydrolysis under the

same conditions.

The facile hydrolysis of P3O9
�3 in the presence of 1 led us to

explore its larger congener, cyclotetraphosphate (P4O12
�4), as a

more hydrolytically stable alternative.15 Indeed, mixing equimolar

amounts of 1 andNa4P4O12 at room temperature led to formation

of P4O12-containing complexes. However, this reaction proceeded

very slowly (over several days) and was hampered by stirring-

induced precipitation of the salt [Co(TACN)(H2O)3]4(P4O12)3
(57% yield), in a manner reminiscent of Na3P3O9. Never-

theless, heating at 80 1C prevented precipitation and signifi-

cantly accelerated the reaction, leading within minutes

to the formation of the complex [Co(TACN)(k3-P4O12)]Na

(3; Scheme 1b) as the predominant product.

The new complex was purified by ion-exchange chromato-

graphy to afford its lithium salt in 45% yield. Its 31P NMR

spectrum in D2O features three signals at �11.80 (t, 2JPP =

20.5 Hz), �14.70 (dd, 2JPP = 26.8 Hz, 2JPP = 20.5 Hz) and

�26.81 ppm (t, 2JPP = 26.8 Hz).17 These signals, which exhibit

a 1 : 2 : 1 integral ratio, are consistent with a Cs-symmetrical

structure, bearing a tridentate P4O12
�4 ligand. This proposed

structure was corroborated by X-ray crystallographic analysis

(see below). To the best of our knowledge, this is the first

documented case of a Co(III)–cyclophosphato complex, as well

as the first case in which P4O12
�4 binds to a transition metal in

a tridentate fashion.4,18

The crystal structure of 319 (Fig. 2) features a cobalt ion

situated in an octahedral environment defined by the facially-

coordinated TACN and P4O12
�4 ligands. Interestingly, the

structure also exhibits a trihydrated lithium counter-cation

which is bound to one of the coordinated PO3
� moieties,

rather than to the non-coordinated PO3
� fragment.

Nevertheless, this ‘‘free’’ PO3
� group is fully engaged in

hydrogen bonding, as part of an extensive network that also

involves the N–H moieties, water molecules and non-coordinated

terminal oxygen atoms of the cyclophosphato ligand.

Complex 3 is stable in the solid state for months under

normal ambient conditions. More importantly, it also exhibits

notable stability in water, as only minor cyclophosphate

hydrolysis is observed over several days at room temperature,

and even at 80 1C complete consumption of the complex

requires prolonged heating (e.g., 16 h for [3]0 = 4.5 mM).

Moreover, 3 was found to be surprisingly stable under highly

acidic conditions, exhibiting a hydrolytic half-life of 146 min in

1 M HNO3 at 40 1C, which is close to that of the parent

cyclophosphate Na4P4O12 (t1
2
= 174 min).20 As shown in

Scheme 1, hydrolytic decomposition of 3 involves loss of

orthophosphate with concomitant formation of 2 as a major

product (e.g., ca. 65% yield21 in pure water at 80 1C).

Significantly different behavior was observed under basic

conditions. When 3 was treated at room temperature with excess

LiOH (e.g., 3 equiv.) the complex was fully consumed within

minutes, mainly due to displacement of intact P4O12
�4 (ca. 80%

yield),21 rather than its hydrolysis. This reaction is reversible, as

neutralization of the reaction mixture with HNO3, followed by

heating at 80 1C, regenerated 3 (albeit in ca. 50% yield21 due to

hydrolysis of P4O12
�4). It is important to stress that the rapid

reaction of 3 with hydroxide stands in marked contrast to its

relative substitutional inertness in non-basic aqueous solutions,

wherein cyclophosphate dissociation occurs to only a small extent

over several hours at room temperature (see below). These

observations imply that the hydroxide-promoted extrusion of

P4O12
�4 occurs via the dissociative conjugate base (DCB)

mechanism, whereby N–H group deprotonation induces

dissociation of P4O12
�4. This type of anionic ligand dissociation

is well documented for Co(III) complexes bearing nitrogen donor

ligands with N–H bonds.22

When 3 was dissolved in water a small amount of a new

species appeared within a few hours at room temperature.

The new species, which was identified as the complex

[Co(TACN)(k2-P4O12)(H2O)]Na (4; Scheme 2), gives rise to

two identical multiplets at �14.51 and �24.89 ppm in the 31P

NMR spectrum (D2O, 5 1C). These multiplets exhibit a 1 : 1

integral ratio and their pattern is consistent with an AA0XX0

spin system (downfield multiplet: 2JAA0 = 23 Hz, 2JAX =
2JA0X0 = 25 Hz; upfield multiplet: 2JXX0 =

2JAX = 2JA0X0 =

25 Hz). This, in turn, is commensurate with a P4O12
�4 ligand

which is coordinated in a bidentate fashion via two vicinal

PO3
�moieties (1,5-chelate).23 The remaining coordination site

on Co(III) is most likely occupied by a water molecule.24

Interestingly, 4 could be generated as the predominant

species by treating 3 with LiOH (3 equiv.) at 0 1C, and then

neutralizing the cold solution within a few minutes using

HNO3 (Scheme 2). The complex was then purified by ion-

exchange chromatography and isolated in 42% yield. When 4

Fig. 1 ORTEP drawing (50% probability level) of the asymmetric

unit of the salt [Co(TACN)(D2O)3](P3O9)�3D2O (TACN H-atoms

were omitted for clarity; dashed lines represent H-bonds).

Fig. 2 ORTEP drawing (50% probability level) of the asymmetric

unit of complex 3 (TACN H-atoms were omitted for clarity; a dashed

line represents an H-bond and dotted lines represent Li–O dative

bonds).
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was dissolved in water it slowly reverted to 3, reaching a

constant molar ratio 3 : 4 E 10 : 1 within a few days at room

temperature. The same ratio was obtained when a pure sample

of 3 was dissolved in water, clearly demonstrating the existence

of equilibrium between 3 and 4 (Scheme 2), wherein 3 is

thermodynamically preferred. This establishes P4O12
�4 as a

hemilabile ligand that alternates between tri- and bidentate

binding modes. Such hemilability is highly desirable for

catalytic systems, in which reversible coordinative unsaturation

of the metal center is crucial.25

In conclusion, we have shown that precursor 1 reacts with

Na4P4O12 in water to afford the first reported complexes of

Co(III) with P4O12
�4. In contrast, complexes of P3O9

�3 could

not be obtained due to facile hydrolysis of the cyclo-

triphosphate ring. These results highlight the inadequacy of

P3O9
�3 as a ligand for Co(III) in aqueous media, while

demonstrating the potential of using P4O12
�4 under these

conditions, which are relevant to water oxidation chemistry.
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plate, 0.25�0.20�0.03 mm, monoclinic, space group P21/n, a =
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Scheme 2 Equilibrium between complexes 3 and 4 in water.

A preparative pathway for converting 3 to 4 is also shown.
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