Massachusetts Institute of Technology

Electromechanical Systems Group

Electronics First: PSoC PRACTICE

PSoC Creator Schematic and Pins:

Pseudo-Random LED Selector Game_Clock[TUi} Game Logic Display
BasicCounter LUT "
2-bit Counter | LUT
[}en cnt[1:0] in0 out0 : —t ql- - o
[0 }{reset [?] in1 out1 TFF Qﬁ |LEDB_1
(1 out2 1| ® —>clk
Randomizer_Clock[Ji}—{> clock out3
12 MHz SPST 1 |a}+—
t ql-e -
TFF “D ——f=| LEDB_2
o—clk
SPST_2 [} -
t g]—e
o T D_-wLEDB_B
o—clk
SPST_3 [z}~ '
Name | Port[Pin] Name | Port[Pin] -
LEDB1 | 15)0] SPST1 | 23] ta-e »_I}m LEDB_4
LED B2 15[1] SPST 2 2(4] . clk
LED B3 15[5] SPST 3 2(5]
SPST_4
LED B4 0[0] SPST 4 2(0]
LED B5 0[1] SPST 5 12[5] | LEDB_5
LED Bé6 0[5] SPST 6 12[4] J
LED B7 0[6] SPST 7 12(3] s q ~=| LEDB_6
r
LED B8 07 SPST 8 12[2
7] 2] SRFF DB 7
clk
] LEDB_8
The Build:

The PSoC microcontroller is a playground for building all sorts of circuits. A single
PSoC chip gives us access to a suite of components without needing an extensive col-
lection of integrated circuits or a complex PCB. In the previous lab, we only scratched
the surface of the PSoC’s capabilities by connecting input and output pins together in
Creator. In this lab, you will learn how to use and configure some of the PSoC’s more
complicated (and very useful) programmable hardware components, such as logic
gates, clocks, counters, and flip flops. You will use these components to recreate the
egg timer from the COUNTERS lab as well as to build the Switch Game, a “whack-a-
mole” clone where a player has to turn on/off DIP switches to match LEDs that the
PSoC activates randomly.

THIS LAB CONTAINS A FEW DIFFERENT EXERCISES TO GIVE YOU PRACTICE
WORKING WITH PSOC cOMPONENTS. You will organize your work inside a single
Creator Workspace that contains several Projects, one for each exercise. Before
proceeding to the exercises, open Creator and go to File — New — Project... as
you did in the previous lab. When prompted to select the project type, choose
"Workpsace." Call it "PSoC Practice," save it to your desired location, and press
"Finish" to open Creator into the new (empty) workspace.

Exercise 1: Logic Gates

Before you start this exercise, create a new project in the workspace you just
made by going to File — Add — New Project.... Call it "Logic Gates". Start by
recreating the SPST input pins and LEDB output pins from the previous lab;
see the table on the front page for the pin assignments to use in the . cydwr file.
Remember to configure your Digital Input Pin drive modes to "Resistive pull
down'.

Theory of Operation

Digital circuits operate at two states, LOW and HIGH. Logic gates, a fundamen-
tal component in digital circuits, allow us to compare and perform functions on
digital signals. They take an input/set of inputs and produce an output based
on them. The rules for the output depend on the type of logic gate used.

We'll explore four of the most basic logic gates first: NOT, AND, OR, and
XOR. The function of each gate generally correlates with its name:

e NOT: HIGH if the input is LOW, LOW otherwise.

e AND: HIGH if both inputs are HIGH, LOW otherwise.

¢ OR: HIGH if at least one input is HIGH, LOW otherwise.
¢ XOR: HIGH if exactly one input is HIGH, LOW otherwise.

You can see images of each gate below. Each gate has a truth table, which lists
the gate’s output for each possible combination of inputs (0 being LOW, 1 being
HIGH). Based on the descriptions of the gates above, fill in what you would
expect the outputs to be.

NOT Gate AND Gate OR Gate XOR Gate
: - ‘ﬁ\\ out ﬂu \)_\\\ Out

N

l
N
[l
\\

Output

R|lRr|lo|o|m
Rr|lo|lRr|Oo|>
Rlr|lo|lo|m
R|lRr|lo|o|m

Select project type

PSOC PRACTICE 1

Choose the type of project - design, library, or workspace.

Design project:

(O Target hardware:
O Target device:

O Library project

Creating a new workspace.

SPST_1 (v}
SPST_2 [0}
SPST 3 [0}~
SPST 4 (o}
SPST_5 o}
SPST 6 [+
SPST 7 (v}
SPST_8 o}

[+| LEDB_1
-+ LEDB_2
{+/ LEDB_3
[+« LEDB_4
[+« LEDB_5
»| LEDB_6
[+ LEDB_7
-« LEDB_8

Where you left off in the last lab...

2 ELECTROMECHANICAL SYSTEMS GROUP

SPST_1 i —D@

s LEDB_1

T2 | e
SPTAT) mieoess
SPeT 7 %Hj\j w LEDB_4

SPST_8 e+ ——m| LEDB_5
o LEDB_6

—os) LEDB_7

— o7 LEDB_S

Adding in logic gate components.
Unused outputs are connected to

Logic Low.

A
Bi,

C

0

D L

0

Out

Clock

wave

produces square wave
oscillating pulses and
square produces a

Counter keeps
count of

4-Bit binary
output

Y

Decoder

display

translates LED display
binary signal shows the
for LED number of

7-Segment

the count

The egg timer operation from the

COUNTERS lab.

Clock [}

2Hz

The Clock component.

Assembly

We can use the PSoC’s logic gate components to test your predictions about how
they function. In the last lab, you connected the PSoC to the DIP switches and
LEDs on your board. Instead of connecting the switches directly to the LEDs,
connect the switches to the inputs of the logic gates, and the gate outputs to the
LEDs. You can find the gate components under Digital — Logic in the Compo-
nent Catalog. Connect any unused output pins to Logic Low ‘0" components to
turn off their corresponding LEDs and prevent Creator errors.

Using the DIP switches, test the various combinations of inputs from the
truth tables. Do your observations match your predictions?

Logic gates can be combined to produce more interesting behavior. Consider
the following situation: we have 4 inputs (A, B, C, and D), and one output. We
only want the output to be 1 when just one of A and B are 1 and at least one
of C and D are 1. Fill in the diagram on the left with the gates that model this
behavior, then test out your prediction on the PSoC.

Exercise 2: PSoC Egg Timer

The PSoC, in addition to simple logic gates, offers much more powerful compo-
nents that we can leverage to build equally powerful circuits. You will use some
of these components to rebuild the egg timer from the COUNTERS lab entirely
with the PSoC.

The egg timer has three main parts: an oscillator, a counter, and a display
decoder. The oscillator generates a square wave; the counter keeps track of how
many oscillations have occurred so far and outputs a count of them in binary;
and the display decoder takes the binary signals from the counter and translates
it into signals that can drive a 7-segment display to show the numbers 0-9. The
PSoC has its own components that allow us to implement these three functions.
In this exercise, you will use these components to build a timer that counts 0-7
on the LED bar display.

Before you start this exercise, create a new project in the same Creator
workspace by going to File — Add — New Project.... Call it "Egg Timer"; put
all your work for the next exercise into this project.

Clock (Component Catalog: System — Clock)

For the counter’s oscillator, we’ll use the PSoC’s Clock component, which gen-
erates a square wave at a desired frequency. To change the frequency, go to the
clock’s configuration menu and change "Frequency" to the desired value.

Test it out yourself: drag in a clock component, set it’s frequency to some
value of your choosing (try 2Hz to start with). You will also need to change the
"Source" for the clock to "ILO", which stands for Internal Low Speed Oscillator.
The frequency of Clock components in the PSoC is generated by starting with
a higher frequency source clock and dividing it down to the desired frequency.

The PSoC has several source clocks to choose from, but since 2Hz is a low
frequency, we want to select the ILO as its source, since it is designed for lower
frequency oscillation.

With the clock set up, connect it to one of your LED outputs and program
the PSoC. You should see the LED begin to flash on and off. Make sure your
observations line up with the frequency of your clock!

Basic Counter (Component Catalog : Digital — Ultility — Basic Counter)

In the Counter lab egg timer, you used a counter IC to count the number of
pulses generated by the oscillator. The PSoC has a nearly identical component,
the Basic Counter. Drag one of these components into your design. The counter
has what appears to be 4 "pins", but it’s unclear what they do just by looking at
the component. This is where the component’s datasheet will come in handy.

Go to the configuration menu of the component and click the "Datasheet"
button. You should see a Cypress datasheet for the Basic Counter component
appear in your PDF viewer. Every component has a datasheet, and it’s a good
idea to familiarize yourself with it before using a component for the first time.
This will be especially important once components start requiring software to
operate. For now, skip to the "Input/Output Connections" section. You should

find definitions for each of the inputs/outputs visible on the counter component.

Familiarize yourself with them, and ensure each pin’s function makes sense.
Now you can start using your Basic Counter component. First, we need to
change the size of the counter. A 4-bit binary counter can count 0-15, but we
only want to count 0-7, requiring only 3 bits. Double click the counter and
change the "Width" parameter to 3. Now the component should show 3-bit
Counter at the top.
With the Basic Counter size fixed, connect your Clock from before to the
counter’s clock input. Connect two of the DIP switch input pins to the en
and reset inputs on the counter. Now the outputs: the 3-bit counter’s outputs
are grouped together into a single output, labeled cnt[2:0]. This single output

contains all three counter bits, represented as a bus (a grouping of related wires).

Each of cnt 0, 1, and 2 represent one output bit of the counter. We can access
each individual wire by breaking them out in the schematic.

Start by drawing some extra wire outward from the bus output (this wire
will appear thicker than a normal wire). Draw three more wires out from this
wire, until you have something resesmbling a dinner fork. Starting from the top
wire segment, double-click each wire segment to pull up a configuration menu
for that wire segment. For each of the three wires, uncheck "Use computed
name and width", uncheck "Specify Full Name", and then under "Indices", select
"Bit", and then select the desired index (a number between 0 and 2). The index
corresponds to the wire in the cnt bus you want to select.

Now you can connect each individual wire from the bus to an LED output
in your schematic! Use 3 Digital Output Pins next to each other, and remem-

PSOC PRACTICE 3
/" Basic | Advanced | Built-n
Clock type: ® New (O Bxisting
Source: HILD (1 kHz) I
Specify: |© Frequency: ‘2 ‘ Hz VI
O Divider:

Changing a clock’s source and
frequency.

BasicCounter
4-bit Counter

en cnt[3:0]
reset

T

D> clock

The Basic Counter component.

Width |4
Parameter Information

Width: Width of the counter. Must be between 2 and

Value:
Type: uint8

Datasheet 0K

App

Accessing a component’s datasheet.

] Use computed name and width

Signal Name

] Specify Full Name

Indices

(@ Bit Index 0
() Bus Left Index 0
Preview: [0]

Editing a wire’s properties.

BasicCounter

[2]

3-bit Counter
en cnt[2:0] 0] —eol LEDB_1
reset
[]] LEDB_2
> clock (1]
& = LEDB_3

The end result of "breaking out" the

wires from a bus.

4 ELECTROMECHANICAL SYSTEMS GROUP

7

i

i

i

i

i

!

i

The desired display output. Note
that the lower two LEDs on the
board are not connected.

inl

0
0
1
1

LUT
LUT
in0 outOf-
in1 outl

The LUT component.

(=
=

1 .|1

0

An example LUT configuration

where each unique combination of
inputs sets a single a single output

to 1.

ber to connect them to the proper pins in the .cydwr file (see the table on the
front page for pin assignments). After programming the PSoC, use the counter
datasheet and your DIP switches to control the counter. You should be able to
see a 3-bit binary count happening in your LED bank.

Lookup Table (Component Catalog : Digital — Logic — Lookup Table)

The final piece of the egg timer was the display decoder, which translates the
counter binary output to a seven-segment display. On the PSoC board, we have
a multi-segment bar display instead of a numeric display. A sensible way to
count using this is to fill up the bar as the count advances: at 0, the bar is empty,
while at 7, the bar has 7 segments lit up. We’ll have to whip up our own decoder
to display the count this way.

Luckily, the PSoC has a handy component for situations like this called a
Lookup Table, or LUT. A lookup table is capable of outputting a desired value
based on the set of inputs it receives, something like a customizable logic gate.
This is essentially the function of a decoder: it reads a set of inputs (a binary
count in our case) and "looks up" what value it should output. The LUT compo-
nent allows us to configure what output values we can get.

Drag a Lookup Table into your design. You will notice it starts off with two
inputs and two outputs. In the configuration menu, change the number of
inputs/outputs to suit our counter. Remember that our counter outputs three
bits total, and our LED bar display has eight total LEDs to use. Connect the
Basic Counter outputs to the LUT inputs, and the LUT outputs to the LED output
pins.

The configuration menu allows you to change the output signals for a given
set of inputs. If, for instance, the inputs are all o, or logic LOW (the first row
in the table), and we set out0 to one, or logic HIGH, then an LED connected to
out® will turn on when all inputs to the LUT are LOW. We can similarly con-
figure every combination of inputs to output a value of our choosing. Use the
LUT to create a sensible way to display a binary count on the LEDs (something
like the output shown at the beginning of this section). You may find that one of
the LEDs goes unused. Once you think you've got a good pattern, program the
PSoC with your design and test it out!

Conclusion

On the next page is the completed build, which mimics the egg timer hardware!
This should start to give you an idea of the PSoC’s power. This is where we’ll
stop with the egg timer for now; there are, however, a few improvements you
can make to the project if you are interested in experimenting. These are listed
on the next page.

PSOC PRACTICE 5

BasicCounter LUT
3-bit Counter LUT

SPST_1 [ss——Ien cnt[2:0] 0] in0 outQf——=| LEDB_1
SPST_2 [asl+——reset] in1 out1}——ss1 LEDB_2
.W in2 out2|———=s LEDB_3
Clock [JiL]—{>clock out3|—m LEDB_4
2t out4| = m| LEDB_5
outs|——+uws| LEDB_6
out6 | LEDB_7
out?7 —| LEDB_8

¢ The LED bar has one more LED you can use. Make the egg timer cycle from 0 to 8§ and then wrap around. To do
this, you'll need to use increase the counter size by an extra bit, and then use the counter’s output to trigger the

counter’s reset pin.

* The previous extension removes the manual reset switch from the counter, since you need the reset pin to wrap
around. Try re-adding the DIP switch to enable a manual reset while also automatically wrapping around at 8. You
might find an OR gate useful to trigger the reset from both a switch and the wrap-around signal.

In the next exercise, we’ll repurpose the egg timer to help power a much more interesting game.

Exercise 3: The Switch Game

In this exercise, you will build the Switch Game. The game is simple: every
second, a random LED on the PSoC board’s bar display toggles on/off. When
that happens, the player must flip the corresponding DIP switch to match. If the
next LED toggles before the player has matched the switches, the game ends
and all LEDs turn on. The goal is to survive for as long as possible. See the
figures to the right for an example game sequence. After the game ends, you can
press the RST button on the PSoC stick to play again.

You will be building the Switch Game entirely using PSoC hardware compo-
nents like the ones from previous exercises! This may seem like a complicated
task, but you will divide up the task into four components: randomly select-
ing/toggling LEDs, remembering the current LED values, detecting mismatches
between LEDs and switches, and ending the game. We will only build the
Switch Game with four LEDs to keep your schematic from getting too cluttered,
but it can easily be extended to use all eight.

Before you start this exercise, create a new project in your Creator workspace
called "Switch Game". Put all your work for the next exercise into this project.

Theory of Operation - "Random" LED Selector

First, we need to select an LED to toggle on/off at a regular interval. The se-
lection must be close to random (i.e. unable to be consistently predicted by the
player). There are several possible ways of doing this with the PSoC, but this
build uses a creative application of the egg timer from the previous exercise to
do it.

LED 3 lights up, so the player flips
Switch 3.

Now LED 1 lights up, but the
player fails to react.

Since the player didn’t flip on
Switch 1, the game ends.

6 ELECTROMECHANICAL SYSTEMS GROUP

Counter
Output 0 l 2 3 0 1 2 3
1 1 1 1 1 1 1
Time I 1 1 I 1 1 1 1
(sec) ©.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75

t

If the counter increments every
% second, and we sample once
per second (the red arrows), we

observe the same value each time!

BasicCounter

2-bit Counter
e L m
SPST_2 [a1——reset
Clock[[UL]—[>clock
12 MHz
LUT
LUT
in0 out0 —tsol LEDB_1
in1 out1 sl LEDB_2
out2 s LEDB_3
out3 oo LEDB_4

We can configure our counter to be only two bits wide, so that it repeatedly
counts 0-3. We can then set the counter’s clock to a very high frequency so
that it cycles through the count fast. Finally, once per second, we "sample"
the counter’s current output (we store the output of the counter at the exact
moment we choose to observe it). Given the counter’s high frequency, it seems
virtually impossible to predict which of the four values we’ll observe when we
sample. If we assign an LED to each of the counter’s four possible outputs, the
counter acts as a mechanism for randomly selecting LEDs.

However, is it actually impossible to predict which values we’ll observe?
Consider the following scenario: you set the counter clock’s frequency to be 4
Hz and you observe the counter’s output every second. Can you predict what
sequence you would observe? Now think about the case with a counter clock
frequency of 4 MHz (4,000,000 Hz), a relatively high frequency. Does the output
sequence change? What sequences would you observe with a counter clock
frequency of 6Hz or 6MHz?

It turns out that any pairing of counter/observation frequencies will cause
issues like this. Each time the game is played, the same LED/sequence of LEDs
will be picked over and over again. However, we benefit from an accidental
property that clocks on the PSoC (and clocks in general) are not perfect, and
will sometimes oscillate at ever so slightly the wrong times. When we build the
randomizer sampling circuit, we’ll use a separate clock to trigger the sampling;
the inaccuracy of this clock is what creates this circuit’s "randomness". It is
helpful to know such properties of components you use, mostly so you can
watch out for them, but also so that you can take advantage of them if needed.

Assembly:

Begin by copying the egg timer from the previous exercise’s project to this new
project. To copy over the egg timer, select all the components from the project,
right click them and press "Copy", then right click your new project’s schematic
and press "Paste". The Basic Counter we used has three bits of output, meaning
it can count values 0-7. Since we only need four possible values, we can change
this to a 2-bit counter. Double click the counter and change "Width" to 2. Now
the output of the counter should show cnt[1:0], signifying only 2 bits.

Now we need to change our lookup table to match the new timer and display
format. Update the LUT to only use 2 inputs and 4 outputs, one for each of the
selectable LEDs. For each possible counter output, we only want 1 LED to be
activated; choose a sensible LUT configuration that fulfills this requirement. At
this point, your schematic should look like the one to the left.

Test this setup by connecting the LUT to 4 LEDs and connecting the counter’s
en pin to a DIP switch. Set the clock component to a high frequency such as 12
MHz. Program the PSoC, and then use the switch to pause the randomizer and
"sample" its output. At such a high frequency, you should be unable to stop the
counter at a predictable value.

Theory of Operation - Remembering Values

We have a way to generate somewhat random values; now we need a mecha-
nism to sample the randomizer at a fixed interval. This presents a new problem:
we want to remember the previously sampled value from the randomizer while
also running the randomizer to generate the next value. How can we use a
circuit to "remember" a value?

The answer lies in a new type of logic component: the flip flop. There are
many different kinds of flip flops, but the general principle is the same: they
take a set of inputs and generate a single output that persists even after the
inputs have changed. This is different from the logic gates we began with in
this lab, which have outputs that are completely dependent on the state of their
inputs at any given time. A flip flop is thus useful for storing values!

To get a feel for how a flip flop works, we will start with a toggle (or T) flip
flop (Digital — Logic — Toggle Flip Flop). It has two inputs (clk and t) and an
output g. The output begins at 0. To change the output, the t input must be 1,
and then the clk input must experience a "rising edge", or a transition from 0
to 1. This cues the flip flop to toggle it’s output: if it was 0, it is now 1, and vice
versa. The key observation is that the flip flop samples t and updates q only
on a clk rising edge; at any other time, it simply stores and outputs the current
value of q. For our game, we need to store the value of an LED and toggle it at a
regular frequency, which means a T flip flop is exactly what we need!

Assembly

Disconnect the LEDs from the outputs of your LUT. For each output of the LUT,
drag in a single T Flip Flop. Connect each output of the LUT to each t input of
the flip flops. Connect your LEDs to the q outputs.

Now, grab a new Clock component and set it’s frequency to 1 Hz. Because
this clock operates at a low frequency, change its "Source” to be the "ILO" like
you did in the last exercise. Recall that the inaccuracy of this clock causes the
pseudo-randomness of this system. Connect this clock to each of the clk inputs
on the T Flip Flops. At this point, your schematic should look something like the
figure on the right.

Before you program the PSoC, try to figure out what is going on in this setup.

Each second, the clock will transition from 0 to 1, creating a rising edge. This
signals the T Flip Flops should sample their t input and alter their g output.
Given what you know about the LUT’s outputs, what will happen every second
to the LEDs?

Now program the PSoC. You should see that every second, a random LED
is chosen, and if it was off, it turns on, and vice versa. We are now randomly
selecting and toggling LEDs!

PSOC PRACTICE 7

TFF
+>clk

The T Flip Flop component.

1 _

clk ‘ ‘ ‘
0 —
1

0 —

The T flip flop’s clock diagram.
Note how g only changes on clk’s
rising edges (marked by the dotted
lines).

Clock2 [fim|
1Hz
LUT TTFFq —15i0] LEDB_1
LUT
e clk
out0
out1 t q —si LEDB_2
out2 TFF
out3 clk
t q —ss] LEDB_3
TFF
clk
t q ~w) LEDB_4
TFF
clk

8 ELECTROMECHANICAL SYSTEMS GROUP

LED | Switch | Mismatch?
(C] 0]
1 0]
(C] 1
1 1
t q —aof LEDB_1
TFF
clk
LED Mismatch
State Detected
SPST_1 [z~] LEDB_S
T oip
Switch

A single mismat

Single
Mismatches

ch detector.

Any
Mismatch

—on LEDB_5

The global mismatch detector.

HSs qltd
CHr
SRFF
—>clk
1 | | |
s | | |
r | | |
0] | i
1
clk ‘
— —
q Prévious
state
0] | |

The SR Flip Flop and its clock

diagram.

Theory of Operation - Mismatch Detector

Next, we need to compare the DIP switches with the current state of the LEDs
and detect whether or not there’s a mismatch. This sounds like a job for a logic
gate: we have two inputs (an LED’s state and the DIP switch) and an output (1 if
they don’t match, 0 otherwise). Use the truth table on the left to help determine
what logic gate fits this purpose.

Once we can detect a mismatch at each individual LED, we will want to use
them to create a single signal that is 1 when any of the mismatch detectors are
on, and 0 otherwise. When this signal is 1, we know we should end the game.
We can use an OR gate with 4 inputs to create this signal: the output of the OR
gate will be 1 if any of its inputs are 1.

Assembly

Repeat the following steps for each LED: using the mismatch detecting gate you
selected, connect one of its inputs to the T Flip Flop output (the LED’s current
state) and the other to its corresponding DIP switch. Connect the output of the
mismatch detector to one of the four unused LEDs on the LED array; this way
you can see the mismatch detectors at work while the game is played. Program
the PSoC; you should see that for each LED whose state doesn’t match its DIP
switch, the corresponding mismatch detector turns on!

Once you're satisfied with the individual detectors, connect each one to an
OR gate to create a single global detector. To change the number of inputs on
the OR gate, double-click the component and change "NumTerminals" to 4.
Disconnect the individual detectors from their LEDs and instead connect the
OR gate’s output to one of the free LEDs. After programming the PSoC, global
detector should light up whenever there’s a mismatch at any of the LEDs.

Theory of Operation - Ending the Game

Two problems remain. First, mismatches need to end the game; currently a
player is allowed to continue the game no matter how many mismatches have
happened. Second, mismatches are detected the instant they occur; if we ended
the game as soon as the detector fired, the player wouldn’t stand a chance. We
need to give the player some reaction time.

We'll use a single component to solve both of these problems: the set-reset (or
SR) flip flop (Digital — Logic — SR Flip Flop). Similar to the T flip flop, the SR
flip flop has a clk input and an output q. When clk sees a rising edge, the flip
flop reads its s and r inputs: if r (or "reset") is 1, the output is reset to 0, while if
s (or "set") is 1, the output is set to 1. If s and r are both 0, the output retains its
previous state. In the PSoC, the output is 0 when both s and r are 1, but this is
not true of all SR flip flops.

The SR flip flop is perfect for keeping track of whether our game has ended.
If we always keep the r pin at 0 and feed our mismatch detector into the s pin,

an uncaught mismatch will set the output to 1, and the output will be unable
to change back to 0 from then on. The fact that the output only changes on a
rising clock edge also gives the player a single clock cycle to react, since when a
mismatch first occurs, the SR flip flop won’t register it until the next clock cycle
after. If the player fixes the mismatch in time, the s input will be 0 on the rising
edge, and the game can continue!

Assembly

Drag in a single SR Flip Flop and connect its clk pin to the same clock used on
the T Flip Flops. Connect the output of the global mismatch detector to the s
input, and connect a Logic Low component to the r input to prevent the flip flop
from ever resetting. Finally, connect the q output to an LED you haven’t used
yet. Program the PSoC; you should have a single clock cycle to flip each DIP
switch, and if you don’t switch it in time, the test LED should turn on. Even if
you correct all mismatches, the LED will remain on.

Now we need to use the SR Flip Flop output to turn on all the LEDs when
the game is over. We can use logic gates to accomplish this. Each LED involved
in the game should be on if the corresponding T Flip Flop is on, or if the game
over signal is on. For each LED, connect its T Flip Flop output and the game over
signal to the inputs of a logic gate that models this behavior. Connect the output
of this gate to the LED.

Program the PSoC. If you let a mismatch occur, the LEDs should all light up.
If you fix the mismatch, the LEDs will remain lit up. Congratulations, you now
have a working Switch Game!

Wrapup

Clock2 [JuL

1Hz

Mismatch
Detector

PSOC PRACTICE 9

(0]

s q
;
SRFF

clk

Game Has
Ended
—on| LEDB_5

Creating the game over signal with
an SR Flip Flop.

—Is q
(O }—r

SRFF

—FF— clk

T Flip Flop #1 7

Game LEDs

== LEDB_1

T Flip Flop #2

—sif LEDB_2

Using the game over signal to
toggle the LEDs on.

Now that you've built the egg timer and the Switch Game in the PSoC, you should have a lot of experience working

with the PSoC’s programmable hardware components. We’ve still used very little of what the PSoC is capable of;

for now, however, you have enough tools to start experimenting on your own. You can start by attempting some

extensions of the Switch Game:

® Increase the amount of reaction time the player has by allowing them to make three consecutive errors without the

game ending. This will involve increasing the delay between a detected mismatch and the game ending. Look into

using the D Flip Flop component to accomplish this.

* Add a fifth selectable state in the randomizer that inverts all the LEDs at once. Then use the push-button on the

PSoC to invert the function of all the DIP switches at once in response. The push-button on the PSoC is connected

to Pin 2.2; note that the button connects the pin to ground, so you'll need to set the pin’s drive mode to "Resistive

pull up".

* Count the number of cycles a player survives. Then, when the game ends, display the count in binary on the

LEDs. You'll need some way to choose between displaying the LED state and the cycle count; look into using the

Multiplexer component for this.

Some of these features may involve components that we haven’t talked about yet. If you need to use something

new, you can always look at the datasheet of any Creator component to understand how it functions.

	Exercise 1: Logic Gates
	Exercise 2: PSoC Egg Timer
	Exercise 3: The Switch Game

