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The observation, computation and study of “Lagrangian Coherent Structures”
(LCS) in turbulent geophysical flows have been active areas of research in fluid
mechanics for the last 30 years. Growing evidence for the existence of LCSs in
geophysical flows (e.g., eddies, oscillating jets, chaotic mixing) and other fluid flows
(e.g., separation profile at the surface of an airfoil, entrainment and detrainment
by a vortex) generates an increasing interest for the extraction and understanding
of these structures as well as their properties.

In parallel, realistic ocean modeling with dense data assimilation has developed
in the past decades and is now able to provide accurate nowcasts and predic-
tions of ocean flow fields to study coherent structures. Robust numerical methods
and sufficiently fast hardware are now available to compute real-time forecasts of
oceanographic states and render associated coherent structures. It is therefore
natural to expect the direct predictions of LCSs based on these advanced models.

The impact of uncertainties on the coherent structures is becoming an increas-
ingly important question for practical applications. The transfer of these uncer-
tainties from the ocean state to the LCSs is an unexplored but intriguing scientific
problem. These two questions are the motivation and focus of this presentation.

Using the classic formalism of continuous-discrete estimation [1], the spatially
discretized dynamics of the ocean state vector x and observations are described
by

dx = M(x, t) + dη(1a)

yo
k = H(xk , tk) + εk(1b)

where M and H are the model and measurement model operator, respectively.
The stochastic forcings dη and εk are Wiener/Brownian motion processes, η ∼
N (0,Q(t)), and white Gaussian sequences, εk ∼ N (0,Rk), respectively. In other
words, E{dη(t)dηT

(t)} .
= Q(t) dt. The initial conditions are also uncertain and

x(t0) is random with a prior PDF, p(x(t0)), i.e. x(t0) = x̂0 + n(0) with n(0)
random. Of course, vectors and operators in Eqs. (1a-b) are multivariate which
impacts the PDFs: e.g. their moments are also multivariate.

The estimation problem at time t consists of combining all available information
on x(t), the dynamics and data (Eqs. 1a-b), their prior distributions and the initial
conditions p(x(t0)). Defining the set of all observations prior to time t by yt−,
the conditional PDF of x(t), p(x, t |yt−), contains all of this information and is
the solution for the prediction to time t. For the filtering problem at tk, it is
p(x, tk |yo

0, ...,y
o
k). Under classic hypotheses of differentiability and continuity,

p(x, t |yt−) is governed between observations by the Fokker-Planck equation or
Kolmogorov’s forward equation (Eq. 2a). At measurement times tk, one can simply
apply Bayes’ rule and use the assumed white property of εk to obtain the update
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Eq. 2b.

∂p(x, t |yt−)

∂t
= −

n∑

i=1

∂ ( p(x, t |yt−)Mi(x, t) )

∂xi
+

1

2

n∑

i,j=1

∂2 ( p(x, t |yt−)Qij )

∂xi∂xj

(2a)

p(x, tk |yo
0, ...,y

o
k) =

p(yo
k |x) p(x, tk |yo

0, ...,y
o
k−1)∫

p(yo
k |χ) p(χ, tk |yo

0, ...,y
o
k−1) dχ

(2b)

Equations for governing the moments, modes, etc of the PDF can be obtained
from Eqs. 2a-b. When data are assumed to be continuous in time, Eqs. 2a-b are
replaced by the Kushner equation if PDFs are retained or by the Zakai equation if a
non-normalized form is employed Both explicitly depend on data value increments.

Approximations of these equations were solved using the Error Subspace Statis-
tical Estimation (ESSE, [2]) for the estimation of uncertainties associated to LCSs
in Monterey Bay. The Harvard Ocean Prediction System (HOPS) and ESSE
provide ocean modeling, data assimilation and uncertainty estimates for the flow
fields. These estimates are input to MANGEN [5, 3, 4] to generate the correspond-
ing uncertainties attached to the LCSs in the region. The HOPS-ESSE-MANGEN
combination leads to a useful nonlinear scheme for the estimation of oceanic LCSs
and their uncertainties via multivariate data assimilation.

The transfer of uncertainties from ensembles of ocean fields to ensembles of
coherent structures is studied for three specific regimes in the Monterey Bay area:
two upwelling events and one relaxation event. It is shown that such estimates
can discriminate the least robust LCS and identify highly certain structures. The
Lagrangian uncertainty varies strongly from one regime to the other. However,
numerical studies reveal that the more intense DLE ridges are usually more certain.

Future work includes the investigation of higher momenta of the LCS distri-
bution as well as a larger range of oceanographic regime. In addition, LCS and
uncertainties in coupled acoustic and biological systems are of major interest for
practical applications.

Acknowledgments. We thank J.E. Marsden and J. Scheurle for the invitation
to a great workshop. We are grateful to S.C. Shadden, J.E. Marsden and N.E.
Leonard for enlightening discussions, as well as the Office of Naval Research for
their continuous support.

References

[1] Jazwinski, A.H., 1970. Stochastic Processes and Filtering Theory , Academic Press.
[2] Lermusiaux, P.F.J. Uncertainty Estimation and Prediction for the Interdisciplinary Ocean.

Invited manuscript, Special Issue. J. Comp. Phys., Submitted.
[3] Lekien F., Coulliette C., Mariano A.J., Ryan E.H., Shay, L.K., Haller, G. and Marsden

J., Pollution Release Tied to Invariant Manifolds: A Case Study for the Coast of Florida,
Physica D, 210 (1–2), 1–20, 2005.

[4] S.C. Shadden, F. Lekien, J.E. Marsden, Definition and Properties of Lagrangian Coher-
ent Structures: Mixing and Transport in Two-Dimensional Aperiodic Flows, Physica D,
(submitted), 2005.

[5] http://www.mangen.info


