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The estimation of oceanic environmental and acoustical fields is considered as a single
coupled data assimilation problem. The four-dimensional data assimilation methodology
employed is Error Subspace Statistical Estimation. Environmental fields and their dom-
inant uncertainties are predicted by an ocean dynamical model and transferred to acous-
tical fields and uncertainties by an acoustic propagation model. The resulting coupled
dominant uncertainties define the error subspace. The available physical and acoustical
data are then assimilated into the predicted fields in accord with the error subspace and all
data uncertainties. The criterion for data assimilation is presently to correct the predicted
fields such that the total error variance in the error subspace is minimized. The approach
is exemplified for the New England continental shelfbreak region, using data collected
during the 1996 Shelfbreak Primer Experiment. The methodology is discussed, com-
putational issues are outlined and the assimilation of model-simulated acoustical data is
carried out. Results are encouraging and provide some insights into the dominant vari-
ability and uncertainty properties of acoustical fields.

1 Introduction

Ocean acousticians are mainly interested in the distribution and composition of sound pres-
sure fields in the ocean. Physical oceanographers are mainly interested in the oceanic mo-
tions and physical properties of the fluid ocean. In both disciplines, the estimation of the
variables of interest is challenging because oceanic variability occurs on multiple inter-
active scales and is difficult to observe. To our knowledge, even though both disciplines
employ sophisticated techniques for the estimation of their respective variables, few studies
have envisioned a truly coupled four-dimensional estimation, including both the acoustic
and oceanic variables in the state vector.

Ocean acoustic wavefields depend on the three-dimensional sound speed field whose
evolution is a function of the fluid ocean physics (temperature, salinity, ambient pressure,
etc.) and bottom attributes (reflectivity, attenuation, etc.). Due to these dynamical cou-
plings, a joint estimation of acoustical-physical fields is attractive. First, sound waves
propagate over long distances in the ocean and acoustic measurements can thus provide
valuable integrated oceanic data for physical studies. Similarly, by natural variability, spa-
tial and temporal correlations among environmental properties occur on multiple scales
and even sparse measurements of this variability thus provide valuable information for
acoustical studies. In fact, accurate physical inputs are necessary for successful acoustic
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simulations. Finally, even without natural data, acoustical and physical models are sources
of coupled data which can be shared to improve estimates.

Considering uncertainties, the mathematical equations used to describe the environ-
ment and acoustic properties are approximate, as well as their analytical or numerical so-
lutions. The natural physical and acoustical data are limited in accuracy and coverage.
Because of these uncertainties and because of the above dynamical couplings, carrying out
a joint estimation is likely to provide substantial advantages. In such an estimation, the
sources of information, environmental and acoustical data, and ocean dynamics and sound
propagation models, are combined by data assimilation. This combination is optimal in
the sense that each information is weighted in accord with its uncertainty. In principle,
this process provides better estimates of parameters and properties than can be obtained by
using only the observations or models alone. The acoustical data improve physical fields;
the physical data improve acoustical fields. Of course, should optimal estimates fail to be
accurate, a priori assumptions about uncertainties are revised, and models and data sets im-
proved. This manuscript outlines an approach for such four-dimensional (time and space)
physical-acoustical estimations via coupled data assimilation and carries out an illustrative
example based on data and simulations for the New England continental shelfbreak region.

2 Methodology

Data assimilation ���� combines dynamical models and data sets by quantitative minimiza-
tion of a criterion or cost function. The links between observational data and dynamical
model fields and parameters are provided by measurement models. Since dynamical mod-
els, data sets and measurement models are all approximate, they all involve an error compo-
nent, i.e. the error models. These error models are here stochastic. The dynamical models,
data sets and measurement models, and data assimilation scheme are now described.

2.1 Coupled dynamical models

Ocean Physics Model. The physical state variables are temperature � , salinity �, velocity
� and pressure ��. For this study, their mesoscale evolution is computed by the Primitive-
Equation model (Eqs. 1-7) of the numerical Harvard Ocean Prediction System, e.g. ����.
Atmospheric fluxes based on surface buoy time-series are imposed at the surface. Model
parameters and boundary conditions were calibrated based on data and sensitivity studies.

Momentum � ��

�� � � �� � � � ���� �� � �� � �� (1-3)

Thermal energy ���
��
�� � � � ���� � � �� (4)

Cons. of salt � ��
�� � � � ������ � ��� (5)

Cons. of mass � � � � � (6)

Eqn. of state ���� �� 	� � ���� �� ��� (7)

Sound speed eqn. 
��� �� 	� � ���� �� ��� (8)

Wave eqn. ������� �� 	� �
�

���	
	��
������	
	��

���
(9)

Acoustic Model. The acoustic coupled normal mode model ��� �� 	� solves a linearized
wave equation (Eq. 9) governing sound pressure � � whose water-column parameter is the
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4D sound-speed field 
 (Eq. 8). The acoustic pressure is decomposed in the frequency
domain into slowly-varying complex envelopes that modulate (mode by mode) analytic,
rapidly-varying, adiabatic-mode solutions. Given sound speed, density, attenuation rate
and bathymetry vertical cross-sections, the acoustic state is obtained by integrating differ-
ential equations governing the complex modal envelopes. Model output contains sound
pressure, transmission loss, and travel time, phase and amplitude of the individual modes.

With model errors, a stochastic extension of Eqs. 1-9 is solved. Presently, only physical
model errors are employed: they represent uncertainties due to sub-mesoscales and internal
tides not accounted for in the deterministic mesoscale simulations (Eqs. 1-7).

2.2 Data sets and measurement models

Presently, in situ physical data include profiles of temperature, salinity and velocities.
Remotely-sensed data include satellite data (SSH, SST). Before being utilized, the raw
measurements from XBTs, CTDs, ADCPs, current meters and satellites are processed via
averaging, filtering, de-aliasing and calibration. Acoustic sensor observations are also pro-
cessed to lead acoustic data such as sound pressure, travel time and transmission loss (TL).
These coupled data are linked to the dynamics (Eqs. 1-9) by measurement models. Note
that in general such models can be sophisticated so as to efficiently link the non-observed
state variables in Eqs. (1-9) to the observed data and so as to account for all uncertainties,
including these that occur in the processing.

2.3 Data assimilation approaches: discrete equations and computations

In discrete terms, the physical-acoustical state is represented by a coupled state vector, �,
which is evolved from��	�� � ��� based on, �� � ���� �	���, where� is the coupled
model operator and �� are stochastic uncertainties. At time 	�, measurement models are
of the form, �� � �

�
��

�
� ��, where �� is the observed data,� the measurement model

operator and �� the stochastic uncertainties. The goal of the present four-dimensional data
assimilation is to minimize the trace of the a posteriori error covariance of the coupled
state, ��

����, i.e. find �� such that 
� � 
� ���
����� is minimized using ���� �������.

One, several or all of the acoustic variables can be included in the joint ocean-acoustic
state space. Similarly, oceanic and acoustic fields can each be defined on both the physical
and acoustical grids. This importantly extends the approach where acoustic computations
are restricted to a high-resolution vertical plane while ocean computations are restricted to
a lower-resolution volume grid. Solving for the physics and acoustics on both grids by data
assimilation then provides internal wave physical resolution along the acoustic paths and
range-averaged acoustical resolution on the whole ocean volume. Even though this is an
ultimate goal, presently, our new coupled estimation is only illustrated for the ocean and
acoustic states on their respective grids.

2.4 Data assimilation scheme

The coupled data assimilation methodology for field and uncertainty estimations is Error
Subspace Statistical Estimation ��� 
� ��. ESSE is based on evolving an error subspace, of
variable size, that spans and tracks the scales and processes where dominant errors occur.
With ESSE, the sub-optimal reduction of errors is itself optimal. Presently (Fig. 1), the
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Figure 1. Five main components of the present ESSE system.

error subspace is initialized by decomposition on multiple scales ��� and the resulting es-
timate of the initial error eigendecomposition or error pdf (Fig. 1, blue oval) is used to
perturb the initial state ��. To evolve the physical fields and uncertainties (Fig. 1, light
green oval), an ensemble of stochastic ocean model integrations (Eqs. 1-7) are carried out
in parallel. The ensemble size is controlled by convergence criteria; when satisfied, the
ensemble of ocean states leads to the physical forecast of nature ����� and to its error
estimate, e.g. the error eigenvectors ����� and eigenvalues ����� obtained by normal-
ized SVD. With these physical fields and uncertainties, one computes an ensemble of 3D
sound-speed fields. Each sound-speed realization then enters as a 3D parameter (Eq. 8) in
an integration of the acoustic propagation model (Eq. 9). The acoustical ensemble is com-
puted and, as for the physics, its size is controlled by convergence criteria. When satisfied,
the acoustical and physical ensembles are concatenated to provide the coupled predicted
fields and uncertainties. At this stage, the data and their error estimates (Fig. 1, dark green
oval) are employed. Data-forecast misfits are computed and used to correct the predicted
fields by minimum error variance estimation in the predicted physical-acoustical error sub-
space (Fig. 1, red oval). During this melding, acoustical data influence the physical state
and vice-versa. The outputs are the a posteriori coupled fields ����� and a posteriori cou-
pled errors, e.g. �����������. A posteriori data misfits are then calculated and used for
adaptive learning of the dominant errors, e.g. �
�. This learning of errors from misfits can
be necessary because error estimates are themselves uncertain. Ultimately, the smoothing
via ESSE ��� can be carried out to correct, based on the data at times 	�, the initial coupled
fields and uncertainties at 	�: this leads to ��
� and e.g., ��
� ���
� .

3 Illustrative example

The physics considered are the mesoscale dynamics of the Middle Atlantic Bight shelf-
break front, including remote influences from the shelf, slope and deep ocean. The acous-
tics is the transmission of low-frequency sound from the continental slope, through the
shelfbreak front, onto the shelf. These dynamics, and also the model parameters, data as-
similated in the physical model, and acoustical-physical uncertainties are described in ���.

The coupled assimilation via ESSE is illustrated for the 3D physical fields and 2D trans-
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Figure 2. Acoustic paths considered (as in Shelfbreak-PRIMER), overlaid on bathymetry.

mission loss along an actual Shelfbreak-PRIMER ��� acoustic path (Fig. 2). The 224 Hz
source is at 300 m depth. The acoustical data assimilated are simulated towed-array TL
data along path 1, i.e. TL1 (the assimilation of simulated VLA’s data at receiver 1 was also
successful but is not shown). These model data were extracted from a physical-acoustical
realization that is independent from the ensemble of 79 simulations carried out during the
ESSE computations (Sect. 2.4). This independent realization is called the “true” ocean and
such an assimilation exercise is called an “identical twin experiment”. Goals in such an
experiment are to study the assimilation in an ideal situation and to find out if the a poste-
riori fields become close to the known “true” fields. Presently, TL observations are made
at constant 70 m depth, every 50 m from � �150 m to almost receiver 1. These are very
sub-sampled data since the (�� �) grid resolution is 5 m by 5 m.

Figure 3. TL error statistics: sample skewness, kurtosis and zoom on a covariance/correlation field.

Figures 3 and 4 illustrate the predicted (a priori) TL uncertainties computed by ESSE.
Except in the near field (where numerical errors in the acoustical model, Sect. 2.1, are the
largest), the skewness and kurtosis (Figs. 3a-b) of the error pdf are patchy on small scales
but relatively uniform at larger scales (around 1 and 5, respectively). The sensitivities
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of this pdf result to the size of the ensemble and to the properties of physical error pdf
estimates need to be investigated. A sample estimate of error covariance and correlation
functions between TL at (� �3 km, � �6 m) with other TLs (Figs. 3c-d) clearly shows the
influence of acoustic wave patterns as they propagate through the shelfbreak front.

Figure 4 shows the four dominant singular vectors of the 79 TL deviations from the
mean (a priori) TL. These ESSE estimates of the non-dimensional error eigenvectors ac-
count for 12.4, 6.0, 4.2 and 3.6 percent of the 2D acoustic error variance, respectively. They
indicate the directions of the acoustic state space with the largest uncertainty. Presently,
since we are just before the first assimilation of acoustic data, they also relate to the domi-
nant acoustic variability. The first vector is linked to sub-thermocline propagation of sound
onto the shelf, the second to uncertainties at the front due to the locally higher physical
variability and the third and fourth (eigenvectors of similar eigenvalues) to successive re-
flections of sound waves between the thermocline and the bottom/surface.

Figure 4. First four ESSE error eigenvectors for TL along section 1.

Figures 5 and 6 illustrate the data assimilation in the predicted error subspace (Figs. 3-
4). The simulated true TL, a priori (i.e. the mean) TL, a posteriori TL and the TL realiza-
tion closest to the a posteriori TL are shown on Fig. 5. Even though the true TL (Fig. 5a) is
challenging to retrieve (TL of high-order modal interactions) and the sub-sampled data are
limited, the a posteriori TL (Fig. 5c) is substantially closer to the true TL than the mean
TL (Fig. 5b). From the ensemble of 79 TLs, one can select for best estimate the TL the
closest (in some metric sense, here the RMS measure over the �� � grid) to the a posteriori
TL. This realization (Fig. 5d) is even a bit closer to the true TL than the a posteriori TL.

The differences between the a priori and true TLs, and between the a posteriori and
true TLs, are shown on Figs. 6a–b. The a posteriori residuals (Fig. 6b) are much smaller
than the a priori ones (Fig. 6a) at most locations, except above the thermocline near the
surface on the shelf. This is due to the refractive effects of the thermocline (data are below
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Figure 5. “True” TL, a priori TL, a posteriori TL and TL realization closest to a posteriori TL.

at 70 m) and to the error subspace size (79) which is, based on convergence criteria, too
small for accurate correlations everywhere in the large acoustic state (�4 �� �). With ESSE,
error covariances are also estimated: the diagonals of the a priori and a posteriori error

Figure 6. A posteriori residuals and a posteriori error St.Dv. for TL along section 1.
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covariances are illustrated on Fig. 6c-d. Overall, these standard deviations agree with the
averages of the residuals (note that their accuracy increases with the subspace size). In
particular, the expected error along the simulated towed-array at 70 m has been reduced.

4 Conclusions

Coupled four-dimensional data assimilation for physical-acoustical field estimates was car-
ried successfully via Error Subspace Statistical Estimation in the context of an identical
twin experiment. Physical uncertainties were transferred to acoustical uncertainties and
the dominant acoustical error statistics were decomposed and their properties examined.
Results are encouraging and such coupled four-dimensional data assimilations have the
potential to provide significant advances in physical and acoustical ocean science.
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