Chez Pierre

Presents ...

Wednesday, March 2, 2016 11:00AM MIT Room 4-331

Special Chez Pierre Seminar Chen Fang

Institute of Physics, Chinese Academy of Sciences "Topological gapped and gapless phases protected by nonsymmorphic lattice symmetries"

In the first part of the talk, I will show that a nonsymmorphic glide reflection symmetry can protect a new Z2 topological gapped phase in three-dimensions. Unlike topological insulators, this new phase can be realized in either spinful or spinless (or having full spin rotation symmetry) systems. I will show one realization in photonic crystals in detail. In the second part, I will discuss how nonsymmorphic symmetries can protect topological gapless phases, or topological semimetals. A twofold screw axis can protect a double-nodal line in a system with strong spin-orbital coupling; and a glide plane can protect a new type of Dirac semimetal, which, unlike any Dirac semimetal so far proposed, has protected double "Fermi arcs" on the surface. A proposal of materials realization in iridates will be discussed. Finally, I will demonstrate that the surface states of topological semimetals that have protected Fermi arcs can be related to noncompact Riemann surfaces representing simple meromorphic functions.