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The superfluid weight, free carrier density, and specific heat of the three-dimensional tJ model
are calculated by renormalization-group theory. We find that optimal hole doping for superfluidity
occurs in the electron density range of 〈ni〉 ≈ 0.63–0.68, where the superfluid weight ns/m

∗ reaches
a local maximum. This density range is within the novel τ phase, where the electron hopping
strength renormalizes to infinity, the system remains partially filled at all length scales, and the
electron-hopping expectation value remains distinctively non-zero at all length scales. The calculated
superfluid weight drops off sharply in the overdoped region. Under hole doping, the calculated
density of free carriers increases until optimal doping and remains approximately constant in the
overdoped region, as seen experimentally in high-Tc materials. Furthermore, from calculation of the
specific heat coefficient γ, we see clear evidence of a gap in the excitation spectrum for the τ phase.

PACS numbers: 74.72.-h, 71.10.Fd, 05.30.Fk, 74.25.Dw

I. INTRODUCTION

The variation of the superfluid number density ns with
temperature and carrier doping is of fundamental im-
portance in describing the unique properties of the su-
perconducting state in high-Tc cuprates. Experimen-
tally, muon-spin-rotation techniques are used to deter-
mine the closely related quantity ns/m

∗ (also known as
the superfluid weight), where m∗ is the effective mass
of the carriers in the superfluid. In the underdoped re-
gion of high-Tc materials, ns/m

∗ increases with doping,
and the low-temperature superfluid weight is correlated
with Tc.[1, 2] As the materials are doped past the op-
timal value (where Tc is the highest), ns/m

∗ peaks and
rapidly decreases.[3, 4, 5] The decrease in ns/m

∗ is sur-
prising since the total density of free carriers saturates
at optimal doping and remains almost constant in the
overdoped region.[6] By contrast, in a conventional su-
perconductor, described by BCS theory, these two quan-
tities have the same doping dependence.

The tJ model is a promising starting point in un-
derstanding these properties of cuprate superconductors.
Mean-field U(1) and SU(2) slave-boson theories of the tJ
Hamiltonian have reproduced some aspects of the dop-
ing and temperature dependences of ns/m

∗.[7, 8] More
direct, unbiased numerical techniques applied to a 4 × 4
tJ cluster have observed a large peak in ns/m

∗ in the
same region where pairing correlations indicate a super-
conducting ground state.[9] A general limitation of these
types of studies is that no finite-cluster approach can
unambiguously identify phase transitions in the system,
or exhibit the non-analytic behavior of thermodynamic
quantities at these transitions.

Alternatively, the physics of the bulk model can
be studied through the position-space renormalization-
group method, which has been used to determine the
phase structure and thermodynamic properties of the
tJ and Hubbard models at finite temperatures.[10, 11,

12, 13] In particular, Falicov and Berker’s calculation
for the tJ model in d = 3 with the realistic coupling
J/t = 0.444 produced a rich, multicritical phase dia-
gram [10, 11], with a novel low-temperature phase (called
“τ”) for 30 − 40% hole doping where the electron hop-
ping strength in the Hamiltonian renormalizes to infinity
under repeated scale changes, while the system remains
partially filled. This is the possible signature of a super-
conducting phase, and it is notable that a similar phase
was also observed in the d = 3 Hubbard model.[12, 13]

Our present study further develops this
renormalization-group method, to yield the super-
fluid weight of the tJ model as a function of temperature
and hole doping. Our approach reproduces phenomeno-
logical features of high-Tc materials. In particular we
find that optimal doping is located in the vicinity of
the τ phase, where ns/m

∗ peaks and then is sharply
reduced with overdoping. Moreover, we also find that
the density of free carriers increases until optimal
doping, and saturates in overdoped region. These results
suggest that the τ phase might indeed correspond to the
superconducting phase in cuprates. Further supporting
this idea, we present specific heat calculations that show
clear evidence of a gap in the quasiparticle spectrum for
the τ phase.

II. THE tJ HAMILTONIAN

We consider a d-dimensional hypercubic lattice where
the tJ model for electron conduction is defined by the



2

Hamiltonian

H = P



t̃
∑

〈ij〉,σ

(

c†iσcjσ + c†jσciσ
)

+J̃
∑

〈ij〉
Si · Sj − Ṽ

∑

〈ij〉
ninj − µ̃

∑

i

ni



P , (1)

where c†iσ and ciσ are creation and annihilation operators,
obeying anticommutation rules, for an electron with spin

σ = ↑ or ↓ at lattice site i, niσ = c†iσciσ, ni = ni↑ + ni↓
are the number operators, and Si =

∑

σσ′ c
†
iσsσσ′ciσ′ is

the single-site spin operator, with s the vector of Pauli
spin matrices. The entire Hamiltonian is sandwiched be-
tween projection operators P =

∏

i(1 − ni↓ni↑), which
project out states with doubly-occupied sites. The inter-
action constants t̃, J̃ , Ṽ describe the following physical
features: electron hopping (t̃), a nearest-neighbor anti-

ferromagnetic coupling (J̃ > 0), and a nearest-neighbor

interaction (Ṽ ). The standard tJ Hamiltonian is a spe-

cial case of Eq. (1) with Ṽ /J̃ = 1/4. For convenience, we
introduce dimensionless interaction constants t, J, V, µ,
and rearrange the µ̃ chemical potential term to group
the Hamiltonian into a single lattice summation:

−βH =
∑

〈ij〉
P

[

−t
∑

σ

(

c†iσcjσ + c†jσciσ
)

− JSi · Sj + V ninj + µ(ni + nj)

]

P

≡
∑

〈ij〉
{−βH(i, j)} .

(2)

Here β = 1/kBT , so that the interaction constants are

related by t = βt̃, J = βJ̃ , V = βṼ , µ = βµ̃/2d. The
total Hamiltonian is now written as a sum of pair Hamil-
tonians −βH(i, j). The sum over nearest-neighbor sites
(i, j) is taken so that the position of site j is rj = ri+ak,
where ak is one of the d lattice vectors. Since changing
the sign of t is equivalent to redefining the phase at every
other site in the system, we shall choose t > 0 with no
loss of generality. The effective temperature variable will
be 1/t = kBT , where we have taken t̃ = 1 as the unit of
energy.

In order to study the superfluid weight, we introduce
periodic boundary conditions, by considering the system
as a ring in each axis direction threaded by a magnetic
flux. We choose the vector potential A associated with
the flux to have components A/

√
d along each axis, so

that the pair Hamiltonian becomes

− βH(i, j) = P

[

−t
∑

σ

(

eiφc†iσcjσ + e−iφc†jσciσ
)

− JSi · Sj + V ninj + µ(ni + nj)

]

P , (3)

where φ = aA/
√
d and a is the lattice spacing. For sim-

plicity, we have adopted units so that h̄ = c = e = 1. In
the presence of the applied phase twist φ, the superfluid
weight ns/m

∗ is related to the curvature of the total free
energy F near φ = 0,[14, 15]

ns
m∗ =

1

Na2
lim
A→0

∂2F

∂A2
=

1

Nd
lim
φ→0

∂2F

∂φ2
, (4)

where N → ∞ is the total number of lattice sites. In
Sec.IIIE we shall show how this quantity can be calcu-
lated from the renormalization-group transformation de-
veloped below.

III. RENORMALIZATION-GROUP

TRANSFORMATION

A. Recursion Relations

The position-space renormalization-group method
used here starts with an approximate decimation in
d = 1, which is then generalized to higher dimensions
by the Migdal-Kadanoff procedure [10, 11]. In d = 1, the
Hamiltonian of Eq. (2) takes the form:

−βH =
∑

i

{−βH(i, i+ 1)} , (5)

where i = 1, 2, 3, . . .. The decimation consists of finding a
thermodynamically equivalent system, described by the
Hamiltonian −β′H ′, which depends only on the states of
the odd-numbered sites. Since the quantum operators in
the Hamiltonian do not commute, an exact decimation
even in one dimension is not possible. We can carry out
an approximate decimation as follows [16, 17]:

Trevene
−βH =Tr evene

∑

i{−βH(i,i+1)}

=Trevene
∑

even

i
{−βH(i−1,i)−βH(i,i+1)}

≃
even
∏

i

Trie
{−βH(i−1,i)−βH(i,i+1)}

=

even
∏

i

e−β
′H′(i−1,i+1)

≃e
∑

even

i {−β′H′(i−1,i+1)} = e−β
′H′

.

(6)

Here −β′H ′ is the Hamiltonian for the renormalized
system, and Treven is a trace over the degrees of free-
dom at all even-numbered sites. In the two approxi-
mate steps, marked by ≃ in Eq. (6), we ignore the non-
commutation of operators separated beyond three con-
secutive sites of the unrenormalized system (conversely,
this means that anticommutation rules are taken into
account within three consecutive sites at all successive
length scales, as the renormalization-group procedure is
repeated). These two steps involve the same approxima-
tion but in opposite directions, which gives some mutual
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compensation. Earlier studies of quantum spin systems
have shown the success of this approximation at predict-
ing finite-temperature behavior.[16, 17]

The renormalization-group mapping can be extracted
from the third and fourth lines of Eq.(6):

e−β
′H′(i,k) = Trje

−βH(i,j)−βH(j,k), (7)

where i, j, k are three consecutive sites of the unrenormal-
ized system. The operators −β′H ′(i, k) and −βH(i, j)−
βH(j, k) act on the space of two-site and three-site states
respectively, so that, in terms of matrix elements,

〈uivk|e−β
′H′(i,k)|ūiv̄k〉 =
∑

wj

〈ui wj vk|e−βH(i,j)−βH(j,k)|ūiwj v̄k〉 , (8)

where ui, wj , vk, ūi, v̄k are single-site state variables.
Eq.(8) is the contraction of a 27× 27 matrix on the right
into a 9 × 9 matrix on the left. We block-diagonalize
the left and right sides of Eq.(8) by choosing basis states
which are the eigenstates of total particle number, total
spin magnitude, total spin z-component, and parity. We
denote the set of 9 two-site eigenstates by {|φp〉} and the
set of 27 three-site eigenstates by {|ψq〉}, and list them
in Tables I and II. Eq.(8) is rewritten as

〈φp|e−β
′H′(i,k)|φp̄〉 =

∑

u,v,ū,
v̄,w

∑

q,q̄

〈φp|uivk〉〈uiwjvk|ψq〉〈ψq |e−βH(i,j)−βH(j,k)|ψq̄〉·

〈ψq̄|ūiwj v̄k〉〈ūiv̄k|φp̄〉 . (9)

Eq. (9) yields six independent elements for the matrix

〈φp|e−β
′H′(i,k)|φp̄〉, which we label γp as follows:

γp ≡ 〈φp|e−β
′H′(i,k)|φp〉 for p = 1, 2, 4, 6, 7,

γ0 ≡ 〈φ2|e−β
′H′(i,k)|φ4〉 .

(10)

To calculate the γp, we determine the matrix elements
of −βH(i, j) − βH(j, k) in the three-site basis {ψq}, as
listed in Table III, and exponentiate the matrix blocks to
find the elements 〈ψq|e−βH(i,j)−βH(j,k)|ψq̄〉 which enter
on the right-hand side of Eq. (9). In this way the γp are
functions of the interaction constants in the unrenormal-
ized Hamiltonian, γp = γp(t, φ, J, V, µ).

Since the matrix 〈φp|e−β
′H′(i,k)|φp̄〉 is determined by

six independent elements γp, the renormalized pair
Hamiltonian −β′H ′(i, k) involves six interaction con-
stants, namely those of the original types of interactions
and an additive constant:

− β′H ′(i, k) = P

[

−t′
∑

σ

(

eiφ
′

c†iσcjσ + e−iφ
′

c†jσciσ
)

− J ′Si · Sj + V ′ninj + µ′(ni + nj) +G′
]

P , (11)

n p s ms Two-site basis states
0 + 0 0 |φ1〉 = | ◦ ◦〉
1 + 1/2 1/2 |φ2〉 = 1√

2
{| ↑ ◦〉 + |◦ ↑〉}

1 − 1/2 1/2 |φ4〉 = 1√
2
{| ↑ ◦〉 − |◦ ↑〉}

2 − 0 0 |φ6〉 = 1√
2
{| ↑↓〉 − | ↓↑〉}

2 + 1 1 |φ7〉 = | ↑↑〉
2 + 1 0 |φ9〉 = 1√

2
{| ↑↓〉 + | ↓↑〉}

TABLE I: The two-site basis states, with the corresponding
particle number (n), parity (p), total spin (s), and total spin
z-component (ms) quantum numbers. The states |φ3〉, |φ5〉,
and |φ8〉, are obtained by spin reversal from |φ2〉, |φ4〉, and
|φ7〉, respectively.

n p s ms Three-site basis states
0 + 0 0 |ψ1〉 = | ◦ ◦ ◦〉
1 + 1/2 1/2 |ψ2〉 = |◦ ↑ ◦〉, |ψ3〉 = 1√

2
{| ↑ ◦ ◦〉 + | ◦ ◦ ↑〉}

1 − 1/2 1/2 |ψ6〉 = 1√
2
{| ↑ ◦ ◦〉 − | ◦ ◦ ↑〉}

2 + 0 0 |ψ8〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 − |◦ ↑↓〉 + |◦ ↓↑〉}

2 − 0 0 |ψ9〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 + |◦ ↑↓〉 − |◦ ↓↑〉},

|ψ10〉 = 1√
2
{| ↑ ◦ ↓〉 − | ↓ ◦ ↑〉}

2 + 1 1 |ψ11〉 = | ↑ ◦ ↑〉, |ψ12〉 = 1√
2
{| ↑↑ ◦〉 + |◦ ↑↑〉}

2 + 1 0 |ψ13〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 + |◦ ↑↓〉 + |◦ ↓↑〉},

|ψ14〉 = 1√
2
{| ↑ ◦ ↓〉 + | ↓ ◦ ↑〉}

2 − 1 1 |ψ17〉 = 1√
2
{| ↑↑ ◦〉 − |◦ ↑↑〉}

2 − 1 0 |ψ18〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 − |◦ ↑↓〉 − |◦ ↓↑〉}

3 + 1/2 1/2 |ψ20〉 = 1√
6
{2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉}

3 − 1/2 1/2 |ψ22〉 = 1√
2
{| ↑↑↓〉 − | ↓↑↑〉}

3 + 3/2 3/2 |ψ24〉 = | ↑↑↑〉
3 + 3/2 1/2 |ψ25〉 = 1√

3
{| ↑↓↑〉 + | ↑↑↓〉 + | ↓↑↑〉}

TABLE II: The three-site basis states, with the correspond-
ing particle number (n), parity (p), total spin (s), and total
spin z-component (ms) quantum numbers. The states |φ4−5〉,
|φ7〉, |φ15−16〉, |φ19〉, |φ21〉, |φ23〉, |φ26−27〉, are obtained by
spin reversal from |φ2−3〉, |φ6〉, |φ11−12〉, |φ17〉, |φ20〉, |φ22〉,
|φ24−25〉, respectively.

The matrix elements of −β′H ′(i, k) in the {φp} ba-
sis are shown in Table IV. Exponentiating this matrix,
we can solve for the renormalized interaction constants
(t′, φ′, J ′, V ′, µ′, G′) in terms of the γp:

t′ = sign (γ4 − γ2) cosh−1

(

γ2 + γ4

2ev

)

,

φ′ = tan−1

(

2 Im γ0

γ4 − γ2

)

, J ′ = ln
γ7

γ6
,

V ′ =
1

4

{

ln(γ4
1γ6γ

3
7) − 8v

}

, µ′ = v − ln γ1,

G′ = ln γ1, (12)

where

v =
1

2
ln (γ2γ4 − γ∗0γ0) .

The approximate d = 1 decimation contained in
Eqs. (9)-(12) can be expressed as a mapping of a Hamil-
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ψ1

ψ1 0

ψ2 ψ3 ψ6

ψ2 2µ −
√

2t cosφ i
√

2t sinφ

ψ3 −
√

2t cosφ µ i∆1

ψ6 −i
√

2t sinφ −i∆1 µ

ψ8 ψ9 ψ10

ψ8 − 3

4
J + V + 3µ −i∆3 −i

√
2t sinφ

ψ9 i∆3 − 3

4
J + V + 3µ −

√
2t cosφ

ψ10 i
√

2t sinφ −
√

2t cosφ 2µ

ψ11 ψ12 ψ17

ψ11 2µ −
√

2t cosφ i
√

2t sin φ

ψ12 −
√

2t cosφ 1

4
J + V + 3µ i∆2

ψ17 −i
√

2t sinφ −i∆2
1

4
J + V + 3µ

ψ13 ψ14 ψ18

ψ13
1

4
J + V + 3µ −

√
2t cosφ i∆4

ψ14 −
√

2t cosφ 2µ i
√

2t sin φ

ψ18 −i∆4 −i
√

2t sinφ 1

4
J + V + 3µ

ψ20

ψ20 −J + 2V + 4µ

ψ22

ψ22 2V + 4µ

ψ24

ψ24
1

2
J + 2V + 4µ

ψ25

ψ25
1

2
J + 2V + 4µ

TABLE III: Diagonal matrix blocks of the unrenormalized
three-site Hamiltonian −βH(i, j) − βH(j, k). The Hamilto-
nian being invariant under spin-reversal, the spin-flipped ma-
trix elements are not shown. The additive constant contribu-
tion 2G, occurring at the diagonal terms, is also not shown.
The additional ∆i terms, which are not part of the original
three-site Hamiltonian, are explained in Sec.IIIC.

φ1 φ2 φ4 φ6 φ7 φ9

φ1 G′

φ2

−t′ cosφ′+
µ′ +G′

it′ sinφ′ 0

φ4 −it′ sinφ′ t′ cosφ′ +
µ′ + G′

φ6

− 3

4
J′+V ′

2
+

2µ′ +G′

φ7 0
1

4
J′+V ′

2
+

2µ′ +G′

φ9

1

4
J′+V ′

2
+

2µ′ +G′

TABLE IV: Block-diagonal matrix of the renormalized two-
site Hamiltonian −β′H ′(i, k). The Hamiltonian being invari-
ant under spin-reversal, the spin-flipped matrix elements are
not shown.

tonian with interaction constants K = {G, t, J, V, µ, φ}
onto another Hamiltonian with interactions constants

K′ = R(K) . (13)

The Migdal-Kadanoff procedure [18, 19] is used to con-
struct the renormalization-group transformation for d >
1. We ignore a subset of the nearest-neighbor interactions
in the d-dimensional hypercubic lattice, leaving behind a
new d-dimensional hypercubic lattice where each point
is connected to its neighbor by two consecutive nearest-
neighbor segments of the original lattice. We apply the

decimation described above to the middle site between
the two consecutive segments, giving the renormalized
nearest-neighbor couplings for the points in the new lat-
tice. We compensate for the interactions that are ignored
in the original lattice by multiplying by a factor of bd−1

the interactions after the decimation, b = 2 being the
length rescaling factor. Thus, the renormalization-group
transformation of Eq. (13) generalizes, for d > 1, to

K′ = bd−1R(K). (14)

B. Renormalization-Group Transformation in the

Presence of Magnetic Flux

In order to correctly model the response of the sys-
tem to an applied magnetic flux, the renormalization-
group approximation described in the last two sections
needs to be extended. To see this, we first review the
formalism for calculating thermodynamic densities from
the renormalization-group flows.[20] Conjugate to each
interaction Kα of K = {Kα}, there is a density Mα (e.g.,
kinetic energy, electron density),

Mα =
1

Nd

∂ lnZ

∂Kα

, (15)

where Z(K) is the partition function. We can re-
late the densities at the two consecutive points along a
renormalization-group trajectory by

Mα = b−dM ′
βTβα , where Tβα ≡

∂K ′
β

∂Kα

, (16)

with summation over repeated indices implied. At a fixed
point of the renormalization-group transformation, corre-
sponding to a phase transition or a phase sink, the densi-
ties Mα = M ′

α ≡M∗
α are the left eigenvector with eigen-

value bd of the recursion matrix T evaluated at the fixed
point. The densities at the starting point of the trajec-
tory (the actual physical system) are computed by iter-
ating Eq. (16) until a fixed point is effectively reached. If
T(k) is the recursion matrix of the (k)th renormalization-
group iteration, then for large k, we can express the den-
sities of the actual system M as

M ≃ b−kdM∗ · [T(k)] · [T(k−1)] · · · · · [T(1)]. (17)

The renormalization-group transformation incorpo-
rated in Eqs. (9)-(14) gives

∂t′

∂φ
=
∂J ′

∂φ
=
∂V ′

∂φ
=
∂G′

∂φ
= 0 ,

∂φ′

∂t
=
∂φ′

∂J
=
∂φ′

∂V
=
∂φ′

∂µ
= 0 ,

∂φ′

∂φ
= 2 , (18)

for all φ. The 6 × 6 recursion matrix T will then have
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the form

T =

















bd ∂G′

∂t
· · · ∂G′

∂µ

0 ∂t′

∂t
· · · ∂t′

∂µ
0

...
...

. . .
...

0 ∂µ′

∂t
· · · ∂µ′

∂µ

0 2

















(19)

at every step in the flow. This leads to

M∗
6 = 0 and

∂

∂φ
lnZ = M6 = 0 , (20)

for all points of the phase diagram. This superfluid
weight of zero for all temperatures and electronic den-
sities is clearly due to the oversimplification in our initial
approximation.

The source of the problem is the three-site cluster ap-
proximation used in deriving the recursion relations. In
modifying the original approximation scheme, we seek to
incorporate the effect of the non-commutations extending
beyond the three-site cluster. Turning to the matrix ele-
ments of −βH(i, j)−βH(j, k) listed in Table III, we note
the terms ∆i, i = 1, . . . , 4. Using the original Hamilto-
nian of Eq. (3) restricted to the three-cluster, the matrix
elements involving these terms are all zero. However,
non-commutativity extending beyond the three-cluster
makes, as we see below, these matrix elements non-zero.

We can estimate the magnitude of the matrix elements
∆i by considering a five-site cluster, described by Hamil-
tonian −βH(h, i)−βH(i, j)−βH(j, k)−βH(k, l), where
(h, i, j, k, l) are consecutive sites. In the spirit of Eq. (8),
we generate effective couplings for the three-cluster by
tracing over the degrees of freedom at the outside sites
in the five-cluster,

〈ui vj wk|e−β̃H̃(i,j,k)|ūi v̄j w̄k〉 =
∑

th,xl

〈th ui vj wk xl|e−βH(h,i)−βH(i,j)−βH(j,k)−βH(k,l)

· |th ūi v̄j w̄k xl〉 , (21)

where the subscripted variables refer to single-site states.
From the above equation, we can extract the ma-
trix elements of an effective three-cluster Hamiltonian
−β̃H̃(i, j, k). Eq. (21) is the contraction of a 243 × 243
matrix on the right-hand side into a 27 × 27 matrix on
the left. We simplify our task by using the {ψp} basis
on the left, and choosing an appropriate five-site basis to
block-diagonalize the 243 × 243 right-hand matrix.

Since −β̃H̃(i, j, k) is derived from the decimation of
a five-cluster, it will have a more general form than
−βH(i, j) − βH(j, k), and approximately reflect the ef-
fect of the three-cluster non-commutations with the ex-
ternal sites. However our approximation scheme must
also satisfy an important constraint: the φ → 0 limit
should yield the same renormalization-group transforma-
tion used in earlier studies of the tJ model [10, 11]. To

achieve this, we modify only a subset of the matrix ele-
ments of −βH(i, j) − βH(j, k), namely those which are
zero in the original scheme when φ 6= 0, but whose cor-
responding elements in −β̃H̃(i, j, k) are non-zero:

∆1 = sign(φt)|〈ψ3|β̃H̃(i, j, k)|ψ6〉|,
∆2 = sign(φt)|〈ψ12|β̃H̃(i, j, k)|ψ17〉|,
∆3 = sign(φt)|〈ψ8|β̃H̃(i, j, k)|ψ9〉|,
∆4 = sign(φt)|〈ψ13|β̃H̃(i, j, k)|ψ18〉|.

(22)

The sign(φt) prefactors guarantee that couplings between
the same types of three-cluster states have the same
sign. For example, |ψ2〉 and |ψ3〉 share the same n, p,
s, and ms quantum numbers, as can be seen from Ta-
ble II. A nonzero φ couples |ψ2〉 to |ψ6〉, a state with
the same n, s, and ms, but opposite parity. From the
second block in Table III, the associated matrix ele-
ment is 〈ψ2| · · · |ψ6〉 = i

√
2t sin(φ). The ∆1 elements in

that block have an analogous role, coupling |ψ3〉 to |ψ6〉.
The prefactor in the ∆1 expression of Eq. (22) sets the
sign of the element 〈ψ3| · · · |ψ6〉 = i∆1 to equal that of
〈ψ2| · · · |ψ6〉. Since our calculations are all done for small
φ, sign(sinφ) = sign(φ). Similar reasoning applies to the
prefactors of the other ∆i elements.

Through Eq. (21), the ∆i are functions of the in-
teractions strengths in the unrenormalized Hamiltonian,
∆i = ∆i(t, J, V, µ, φ). They scale like φ for small φ, and
duly vanish in the limit φ → 0. As will be explained
in Sec.IIIE, finding the superfluid weight involves calcu-
lating a thermodynamic density in the φ → 0 limit, so
we shall be working in the regime where the ∆i are van-
ishingly small. The result of the extended calculation,
taking into account the quantum mechanical backflow
into the three-cluster, is that Eqs. (18) no longer hold,
∂ lnZ/∂φ 6= 0 in general, and we obtain interesting non-
trivial results for ns/m

∗.

C. Calculation of the Superfluid Weight

The superfluid weight of Eq. (4) is expressed as a
derivative of the total free energy F = F (n, T, φ), where
n = 〈ni〉 is the electron density. In terms of the conjugate
current

j(n, T, φ) =
1

Nd

∂F

∂φ

∣

∣

∣

∣

n,T

, (23)

Eq. (4) becomes

ns
m∗ (n, T ) = lim

φ→0

∂j

∂φ

∣

∣

∣

∣

n,T

. (24)

In terms of the grand potential Ω(µ, T, φ) = −(1/β) lnZ,

j(µ, T, φ) =
1

Nd

∂Ω

∂φ

∣

∣

∣

∣

µ,T

, (25)
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and

n(µ, T, φ) = − β

2Nd

∂Ω

∂µ

∣

∣

∣

∣

T,φ

. (26)

Relating the partial derivatives of j with respect to φ
through

∂j

∂φ

∣

∣

∣

∣

µ,T

=
∂j

∂n

∣

∣

∣

∣

φ,T

∂n

∂φ

∣

∣

∣

∣

µ,T

+
∂j

∂φ

∣

∣

∣

∣

n,T

, (27)

and using the Maxwell relation ∂n
∂φ

∣

∣

∣

µ,T
= −β

2
∂j
∂µ

∣

∣

∣

φ,T
,

∂j

∂φ

∣

∣

∣

∣

µ,T

= −β
2

∂j

∂n

∣

∣

∣

∣

φ,T

∂j

∂µ

∣

∣

∣

∣

φ,T

+
∂j

∂φ

∣

∣

∣

∣

n,T

. (28)

The current j is zero when φ = 0, so that the first term on
the right-hand side above is also zero in the limit φ→ 0,

and we find that limφ→0
∂j
∂φ

∣

∣

∣

µ,T
= limφ→0

∂j
∂φ

∣

∣

∣

n,T
. Thus

Eq. (24) can be equivalently written as

ns
m∗ (µ, T ) = lim

φ→0

∂j

∂φ

∣

∣

∣

∣

µ,T

=
1

Nd
lim
φ→0

∂2Ω

∂φ2

∣

∣

∣

∣

µ,T

= − 1

βNd
lim
φ→0

∂2 lnZ

∂φ2

∣

∣

∣

∣

µ,T

. (29)

This is the form we shall use when calculating the super-
fluid weights.

IV. RESULTS

A. Global Phase Diagram for d = 3

Each sink, or completely stable fixed point of the
renormalization-group flows, corresponds to a thermo-
dynamic phase, and we find the global phase diagram by
determining the basin of attraction for every sink [21].
Flows that start at the boundaries between phases have
their own fixed points, distinguished from phase sinks by
having at least one unstable direction. Analysis of these
fixed points determines whether the phase transition is
first- or second-order. As explained in Sec.IIIC, the ther-
modynamic densities, which are the expectation values
of operators occurring in the Hamiltonian, can also be
calculated from the renormalization-group flows. In par-
ticular, we determine the single-site electron density 〈ni〉.
For the coupling J/t = 0.444 and φ = 0, the phase di-
agram in terms of 〈ni〉 and temperature 1/t is shown in
Fig. 1 [10, 11].

The nature of the various phases is epitomized by the
thermodynamic densities M∗ calculated at each phase
sink (Table V), which underpin the calculation of den-
sities throughout their respective phases (Eq. (17)). We
summarize the phase properties below (for a more de-
tailed discussion, see [10, 11]):

DA Ad �
A

A

0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

Electron density �ni
�

erutarep
me

T
1

� t

FIG. 1: Phase diagram for the d = 3 tJ model with J/t =
0.444, φ = 0, in temperature versus electron density.[10] The
antiferromagnetic (A), dense disordered (D), dilute disordered
(d), and τ phases are seen. The second-order phase bound-
aries are drawn with full curves. The coexistence boundaries
of first-order transitions are drawn with dotted curves, with
the unmarked areas inside corresponding to coexistence re-
gions of the two phases at either side. The dashed lines are
not phase transitions, but disorder lines between the dilute
disordered and dense disordered phases.

Phase sink Expectation values
∑

σ
〈c†iσcjσ + c†jσciσ〉 〈ni〉 〈Si · Sj〉 〈ninj〉

d 0 0 0 0

D 0 1 0 1

A 0 1 1

4
1

τ − 2

3

2

3
− 1

4

1

3

TABLE V: Expectation values at the phase-sink fixed points.

Dilute disordered phase (d): The electron density
〈ni〉 = 0 at the sink and, as a result, the 〈ni〉 calculated
inside this phase are low.

Dense disordered phase (D): The electron density
〈ni〉 = 1 at the sink and, as a result, the 〈ni〉 calculated
inside this phase are close to 1.

Antiferromagnetic phase (A): The electron den-
sity 〈ni〉 = 1 at the sink, so that this phase is also
densely filled. The nearest-neighbor spin-spin correla-
tion 〈Si · Sj〉 = 1/4 at the sink. Two spins that are
nearest neighbors at the sink are distant members of the
same sublattice in the original cubic lattice. The non-
zero value of the correlation function at the sink leads
to 〈Si · Sj〉 < 0 for nearest-neighbor sites of the original,
unrenormalized system.
τ phase: This is a novel phase, characterized by

partial-filling at the phase sink, 〈ni〉 = 2/3. It is the
only phase where the electron hopping strength t does
not renormalize to zero after repeated rescalings; instead,
t → ∞ at the sink. As a result, the expectation value
of the electron hopping operator at the sink is non-zero,
∑

σ〈c
†
iσcjσ + c†jσciσ〉 = −2/3. This property makes it a

possible tJ model analogue to the superconducting phase
in high-Tc materials. The superfluid weight and thermo-



7

dynamic results discussed below certainly support this
idea.

In the limit 〈ni〉 = 1, the system exhibits antiferro-
magnetic order at low temperatures, as expected from
the spin-spin coupling in the Hamiltonian. Upon hole
doping, there is a competition between the A and D
phases, which respectively minimize antiferromagnetic
potential energy and hole kinetic energy. Note the ex-
tent of the A phase near 〈ni〉 = 1, which persists only
up to a small amount of hole doping δ = 1 − 〈ni〉 <∼
0.05. This feature is directly reminiscent of the an-
tiferromagnetic phase in certain high-Tc materials, for
example La2−xSrxCuO4 [22]. At intermediate dopings
δ ≈ 0.32− 0.37, we have a low-temperature τ phase, sur-
rounded by islands of antiferromagnetism. (When the
hopping strength t increases under rescaling, this also
lowers the free energy of antiferromagnetically long-range
ordered states, which leads to these islands of A in the
vicinity of the τ phase.[10]) At hole dopings δ >∼ 0.37,
there is a transition to a dilute disordered phase, with a
narrow region of first-order coexistence at lower temper-
atures.

B. Superfluid Weight and Kinetic Energy

Using the method of calculating thermodynamic densi-
ties described in Sec.IIIE, we determine (1/Nd)∂ lnZ/∂φ
at small φ. Taking the numerical derivative of this quan-
tity at φ = 0, we find ns/m

∗ through Eq. (29). The su-
perfluid weight is plotted as a function of electron density
in Fig. 2, along four different constant temperature cross-
sections of the phase diagram. For comparison, we also
show in the same figure the calculated average kinetic en-

ergy per bond 〈K〉, where K = −∑

σ

(

c†iσcjσ + c†jσciσ
)

.

〈K〉 and the total weight of σ1(ω, T ), the real part of the
optical conductivity, are related by the sum rule [23],

∫ ∞

0

dω σ1(ω, T ) =
πe2

2
〈K〉 . (30)

In comparing the properties of the tJ model to those of
high-Tc materials, we keep in mind that the tJ Hamilto-
nian describes a one-band model, so cannot account for
interband transitions. For real materials, the full con-
ductivity sum rule has the form

∫ ∞

0

dω σ1(ω, T ) =
πe2n

2m
, (31)

where n is the total density of electrons and m is the free
electron mass. The right-hand side of Eq. (31) is inde-
pendent of electron-electron interactions, in contrast to
the right-hand side of Eq. (30), where 〈K〉 will vary with
the interaction strengths in the Hamiltonian. The optical
conductivity of actual materials incorporates both tran-
sitions within the conduction band and those to higher
bands, while the tJ model contains only the conduc-
tion band. We can look at Eq. (30) as a partial sum

rule [23, 24], which reflects the spectral weight of the free
carriers in the conduction band.

The experimental quantity we are interested in model-
ing is the effective density of free carriers, which in actual
materials is calculated from the low-frequency spectral
weight [25],

nfree(T ) =
2m

πe2

∫ ω0

0

dω σ1(ω, T ) . (32)

For high Tc materials, the cutoff frequency is typically
chosen around h̄ω0 ≈ 1 eV so as to include only intra-
band transitions. For comparison with the tJ model, we
identify the right-hand side of Eq. (30) with

πe2

2
〈K〉 =

πe2nfree(T )

2m
. (33)

The superfluid weight satisfies the inequality [26]

ns
m∗ ≤ 〈K〉 =

nfree

m
, (34)

which is obeyed in our results in Fig.2.
The superfluid weight graphs at the sampled temper-

atures show a clear bipartite structure, with a peak at
low 〈ni〉, and another peak at high 〈ni〉 (which develops
into two closely spaced peaks at lower temperatures). In
between these is a region of low superfluid weight, with
a minimum near 〈ni〉 ≃ 0.385, approximately indepen-
dent of temperature. Looking at the nearest-neighbor
density-density correlation 〈ninj〉 as shown in Fig. 3, we
see that 〈ni〉 ≃ 0.385 is also the electron density separat-
ing two different regimes of the system: an extremely di-
lute regime, where 〈ninj〉 ≃ 0, and a partially-to-densely
filled regime, where 〈ninj〉 > 0. It is therefore useful to
discuss the superfluid weight and kinetic energy results
in terms of these two regimes.

1. Extremely dilute regime, 〈ni〉 <∼ 0.385

The system in this regime is a dilute gas of electrons.
For low 〈ni〉, the kinetic energy per bond 〈K〉 ≃ 2〈ni〉,
which follows if the density of free carriers is just the den-
sity of electrons, nfree = 〈ni〉, and the mass of the carriers
m = 1/2. The interaction terms in the tJ Hamiltonian

create an attractive potential of strength −J̃ between
electrons in singlet-states on neighboring sites. For a
coupling J/t = 0.444, this attraction is too weak to form
two-body bound states, but since we are in three dimen-
sions, even a weak attractive potential is sufficient for
the formation of an electron superfluid at low tempera-
tures [27, 28]. In fact, we see a peak in ns/m

∗ develop
around 〈ni〉 ≈ 0.3–0.35, and this peak grows as the tem-
perature is lowered from 1/t = 0.315 to 0.1. For low
〈ni〉, the superfluid weight increases with electron den-
sity and 〈K〉. The location of the peak in ns/m

∗ is just
before 〈K〉 comes to its maximum and levels off. As the
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0.2
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0.3
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0.4

0

0

0

0
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0.75

0.75
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FIG. 2: The superfluid weight ns/m
∗ (solid line) and free

carrier density nfree/m (dotted line) as a function of elec-
tron density at four different values of temperature 1/t. The
corresponding phases are indicated above the plots, and the
location of phase boundaries marked by thin vertical lines.
The symbol p refers to a region of forbidden densities due
to the discontinuity at a first-order transition. The symbol
L refers to a “lamellar” region where narrow slivers of the A
and D phases alternate.

density of free carriers saturates near 〈ni〉 ≃ 0.385, there
is a sharp drop in ns/m

∗, and 〈ninj〉 begins to increase
from zero. At this density the physical characteristics of
the system abruptly change, without however inducing a
phase transition.

ADd tp, L
HbL 1êt = 0.100

ADAd p
HaL 1êt = 0.315

Electron density <ni>

0 0.2 0.4 0.6 0.8 1.0

Xn
in

j\

0

0

1.0

0.25

0.25

0.5

0.5

0.75

0.75

FIG. 3: The nearest-neighbor density-density correlation
〈ninj〉 as a function of electron density at two different values
of temperature 1/t. The corresponding phases are indicated
above the plots, and the location of phase boundaries marked
by thin vertical lines. The symbol p refers to a region of
forbidden densities due to the discontinuity at a first-order
transition. The symbol L refers to a “lamellar” region where
narrow slivers of the A and D phases alternate.

2. Partially-to-densely filled regime, 〈ni〉 >∼ 0.385

For intermediate densities 〈ni〉 ≈ 0.385–0.63, the ki-
netic energy 〈K〉 remains approximately constant. Near
〈ni〉 ≃ 0.63, there is a phase transition to a densely filled
phase (either D or A). We go from a physical picture
where the carriers are electrons in a mostly empty back-
ground to one where the carriers are holes moving in a
mostly filled background. These holes condense into a
superfluid at lower temperatures, and the peak in ns/m

∗

occurs in the vicinity of the dilute-dense narrow first-
order phase transition. For 1/t <∼ 0.16, the maximum
superfluid weight is reached inside the τ phase. In the
densely filled regime, 〈ni〉 >∼ 0.63, the kinetic energy goes
linearly as 〈K〉 ≃ 2(1−〈ni〉) = 2δ, as expected if the free
carriers are holes.

For hole-doped high-Tc materials, the density of free
carriers increases with δ until the doping level optimal
for superconductivity is reached, and remains approxi-
mately constant in the overdoped regime.[6] The super-
fluid weight, in contrast, peaks near optimal doping and
sharply decreases with overdoping. These trends are re-
produced in our numerical results, identifying, from our
calculated ns/m

∗ maxima, the optimal doping for the tJ
model as δ ≈ 0.32–0.37, the range of densities where the τ
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FIG. 4: The superfluid weight ns/m
∗ as a function of tem-

perature 1/t for various electron densities 〈ni〉 indicated in
the legends. Fig. 4(a) shows results in the range of small to
optimal hole doping, while Fig. 4(b) shows results for hole
overdoped systems.

phase occurs. Note that optimal doping for high-Tc ma-
terials is lower than this, typically around δ = 0.15, and
the closely spaced double-peak structure of ns/m

∗ at low
temperatures near optimal doping is not observed. On
the other hand, our approximation for the d = 3 tJ model
is closer to experiment in this respect than earlier nu-
merical studies of the tJ model, which focused mostly on
finite-cluster techniques applied to the d = 2 system [29].
In these earlier studies optimal doping is identified near
〈ni〉 = 0.5 on the basis of d-wave pairing correlations and
the peak in the superfluid weight [9]. Also in these earlier
studies, the kinetic energy has a maximum at 〈ni〉 = 0.5,
but, unlike experiments, does not saturate with overdop-
ing [30].

To complete the description of the superfluid weight
in this regime, in Fig. 4 we show ns/m

∗ as a func-
tion of temperature 1/t at various electron densities 〈ni〉.
For systems with small to optimal hole dopings, shown
in Fig. 4(a), there is a clear onset temperature near
1/t ≃ 0.2 below which the superfluid weight rises rapidly,
until it levels off near zero temperature. This behav-
ior is in good comparison with experimental results with
YBa2Cu3O6+x [31]. As we move past optimal doping
to the overdoped systems of Fig. 4(b), we see a marked
change in behavior, with the low temperature ns/m

∗ sup-
pressed.

0.400
0.550
0.600
0.655

0.670
0.700
0.750
0.950
0.980
0.9995

Temperature 1�t0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

cificep
S

taeh
rep

dnob
C

0

0

1.0

0.25

0.25

0.5

0.5

0.75

0.75

�
a�
�
b�

FIG. 5: The specific heat per bond C, in units of kB , as a
function of temperature 1/t for various electron densities 〈ni〉
(indicated in the legends). Fig. 5(a) shows results in the
range of small to optimal hole doping, while Fig. 5(b) shows
results for hole overdoped systems. The small discontinuities
in the plot for 〈ni〉 = 0.655 reflect temperature ranges where
that particular density does not appear because of the narrow
first-order phase transition.

C. Specific Heat

Since the superfluid weight peaks inside the τ phase
at low temperatures, it is interesting to check whether
the τ region has any other general characteristics of a
superconducting phase. We have added a magnetic field
spin coupling term to the tJ Hamiltonian and have shown
that the τ phase continues to exist when H 6= 0, up to
a critical field Hc(T ), which decreases with increasing
temperature and goes to zero at the temperature of the
τ phase boundary. In our present study, we look at the
spectrum of excitations of the system through the specific
heat per bond

C(n, T ) =
∂〈H(i, j)〉

∂T

∣

∣

∣

∣

n

, (35)

calculated for φ = 0. If the τ phase corresponds to the
superconducting phase in real materials, we should see
evidence of a gap in the excitation spectrum.

The results for C as a function of temperature 1/t are
plotted in Fig. 5 for a series of different electronic den-
sities 〈ni〉. Starting at 〈ni〉 = 0.9995, the smallest hole
doping shown in Fig. 5(a), we observe a broad peak

around 1/t ≃ 0.33, corresponding to kBT ≃ 0.75J̃ . We
can identify this peak with the thermal excitation of the
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FIG. 6: The specific heat coefficient γ = C/T , in units of
k2

B , as a function of electron density 〈ni〉 at temperature
1/t = 0.015. The corresponding phases are indicated above
the plot, and the location of phase boundaries marked by
thin vertical lines. The symbol p refers to a region of forbid-
den densities due to the narrow discontinuity at a first-order
transition. The symbol L refers to a “lamellar” region where
narrow slivers of the A and D phases alternate.

spin degrees of freedom. As we dope the system with
holes, the weight under the curve at lower temperatures
increases due to excitation of charge degrees of freedom.
As we approach optimal doping, a second peak develops
around 1/t ≃ 0.2. Note that this approximately coincides
with the onset temperature below which we see a dra-
matic increase in ns/m

∗ in Fig. 4. The spin-excitation
peak is also enhanced for 〈ni〉 ≈ 0.65–0.75, which is re-
lated to the appearance of an antiferromagnetic island
around 1/t ≃ 0.3 in that density range.

The peak at 1/t ≃ 0.2 grows rapidly near optimal dop-
ing, reminiscent of the specific heat anomaly of high-
Tc materials [32, 33]. For 〈ni〉 = 0.655 we see the ap-
pearance of two subsidiary peaks below the main one at
1/t ≃ 0.2. These smaller peaks may be related to the
complicated lamellar structure of A and D regions above
the τ phase boundary. For temperatures 1/t <∼ 0.16, in-
side the τ phase, the specific heat is strongly suppressed,
reflecting the opening up of a gap in the excitation spec-
trum. We can see this gap more directly by looking at
the low-temperature limit of the specific heat. Quasipar-
ticle excitations contribute a linear term to the specific

heat C ≃ γT for small T . In Fig. 6, we plot γ = C/T
as a function of electron density at a low temperature,
1/t = 0.015. The specific heat coefficient γ ≃ 0 in the
A phase near half-filling, but then grows with increasing
hole doping. At the onset of the τ phase a gap opens
in the quasiparticle spectrum, γ falls sharply, and stays
small until it rises again near the phase boundary. Qual-
itatively, this doping-dependence of the low-temperature
specific heat coefficient agrees well with the experimental
results for high-Tc superconducting materials [32].

V. CONCLUSIONS

We have developed a position-space renormalization-
group approximation to study the superfluid weight of
the three-dimensional tJ model. Our results indicate
that optimal hole doping for this system occurs in the
density range of the τ phase, 〈ni〉 ≈ 0.63–0.68, where
ns/m

∗ reaches a local maximum. While the superfluid
weight drops off sharply in the overdoped region, the den-
sity of free carriers, proportional to the kinetic energy,
remains approximately constant, as seen experimentally
in high-Tc materials. From calculations of the specific
heat coefficient γ, we see clear evidence of a gap in the
excitation spectrum for the τ phase. Earlier renormaliza-
tion group studies [10, 11] had suspected that the τ phase
corresponds to the superconducting phase of high-Tc ma-
terials, and this idea was reinforced when an analogous
phase was discovered in the Hubbard model [12, 13]. Our
present results justify this suspicion.
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