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The ferromagnetic phase of an Ising model in d = 3, with any amount of quenched antiferro-
magnetic bond randomness, is shown to undergo a transition to a spin-glass phase under suffi-
cient quenched bond dilution. This general result, demonstrated here with the numerically exact
renormalization-group solution of a d = 3 hierarchical lattice, is expected to hold true generally,
for the cubic lattice and for quenched site dilution. Conversely, in the ferromagnetic-spinglass-
antiferromagnetic phase diagram, the spin-glass phase expands under quenched dilution at the
expense of the ferromagnetic and antiferromagnetic phases. In the ferro-spinglass phase transition
induced by quenched dilution reentrance is seen, as previously found for the ferro-spinglass transition
induced by increasing the antiferromagnetic bond concentration.

PACS numbers: 75.10.Nr, 64.60.ah, 75.50.Lk, 05.10.Cc

The spin-glass phase [1] is much studied due to its
proeminent role in complex systems, as an example of
random order. In its simplest realization in the Ising
model, the underlying system has randomly distributed
ferromagnetic and antiferromagnetic bonds. In spatial
dimension d = 3, at low temperatures, ferromagnetic or
antiferromagnetic ordered phases occur when the system
has predominantly (e.g., more than 77% [2]) ferromag-
netic or antiferromagnetic bonds, respectively. In be-
tween, the spin-glass phase occurs. The occurrence of
the spin-glass phase, in which the local degrees of freedom
are frozen in random directions, has strong implications
in physical systems that are realizations of the spin-glass
system, spanning from materials science to information
theory and neural networks.

We have studied possibly the simplest modification of
the spin-glass system, to be commonly expected or real-
ized in physical systems, namely, the removal of bonds.
We find important qualitative and quantitative effects.
This Ising spin-glass system with quenched bond vacan-
cies has the Hamiltonian

− βH =
∑

〈ij〉

Kijsisj , (1)

where si = ±1 at each site i and 〈ij〉 indicates sum-
mation over nearest-neighbor pairs of sites. The local
bond strengths are Kij = K > 0 with probability p+,
Kij = −K with probability p−, or Kij = 0 with proba-
bility q = 1 − p+ − p−, respectively corresponding to a
ferromagnetic interaction, an antiferromagnetic interac-
tion, or a bond vacancy. We have performed the numeri-
cally exact renormalization-group solution of this system
on a d = 3 hierarchical lattice [3, 4, 5], to be given be-
low. Exact solutions on hierarchical lattices constitute
very good approximate solutions for physical lattices.[6]

Our results are most strikingly seen in Fig.1. The top
curve in Fig.1(a) corresponds to the quenched dilution of
the system with no antiferromagnetic bonds (p− = 0).
As the system is quenched diluted, by increasing the

missing-bond concentration q, the transition tempera-
ture to the ferromagnetic phase is lowered from its value
with no missing bonds at q = 0, until it reaches zero
temperature and the ferromagnetic phase disappears at
the percolation threshold of q = 0.789 (to be compared
with the value of 0.753 in the simple cubic lattice [7]).
However, with the inclusion of even the smallest amount
of antiferromagnetic bonds (lower curves), a spin-glass
phase always appears before percolation. The phase
boundary between this vacancy-induced ferromagnetic-
spinglass phase transition shows reentrance, as also seen
[8, 9, 10] in conventional spin-glass phase diagrams where
the antiferromagnetic bond concentration is scanned. In
Fig.1(b), where the curves correspond to higher percent-
ages of antiferromagnetic interactions among the bonds
present, starting with p−/(p+ + p−) = 0.25 in the top
curve, the ferromagnetic phase has disappeared and only
spin-glass ordering occurs. As seen from Fig.1(a), the
percolation threshold of the spin-glass phase is slightly
lower than that of the pure ferromagnetic phase and, be-
fore the disappearance of the ferromagnetic phase, the
percolation threshold of the spin-glass phase has a slight
dependence on p−/(p+ + p−).

Fig.2 shows the conventional phase diagrams of tem-
perature the versus the fraction p−/(p++p−) of antiferro-
magnetic bonds in the non-missing bonds, at fixed values
of the dilution q. As the dilution is increased, the phases
are depressed in temperature, as can be expected. How-
ever, simultaneously, it seen that the spin-glass phase ex-
pands along the p−/(p+ +p−) axis, at the expense of the
ferromagnetic and antiferromagnetic phases, eventually
dominating the entire low-temperature region. It is also
seen, for q = 0.764 and higher, that the spin-glass phase
occurs in the phase diagrams as two disconnected regions,
near the ferromagnetic and antiferromagnetic phases. A
similar disconnected topology has recently been seen in
the Blume-Emery-Griffiths spin glass.[11]

The dashed lines in Figs.1 and 2 are the Nishimori
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FIG. 1: (Color on-line) Calculated phase diagrams at constant
p
−

/(p+ +p
−
). All phase transitions (full lines) are second or-

der. The dashed horizontal lines (shown only partly in (a))
are not phase boundaries, but the Nishimori symmetry lines,
given by Eq.(2), for each value of p

−
/(p+ + p

−
). The multi-

critical points in (a), mediating the ferromagnetic, spin-glass,
and paramagnetic phases, occur on the Nishimori symmetry
lines. These lines do not cross the phase boundaries at any
other type of point. Thus, the Nishimori symmetry lines in
(b) are at temperatures above the phase boundaries.

symmetry lines [12, 13],

e±2K =
p+

p−
. (2)

All multicritical points occurring in the currently stud-
ied system are on the Nishimori symmetry lines.[14, 15]
Thus, as seen in Fig.2, it is possible to continuously pop-
ulate, with multicritical points, the low-temperature seg-
ment of the Nishimori line, by gradually changing the
quenched dilution q. The Nishimori symmetry condition
appears in Fig.1 as a horizontal line for each value of
p−/(p+ + p−). This horizontal line intersects the up-
per curve in Fig.1(a) at zero temperature, thereby im-
plying the occurrence of a zero-temperature multicritical
point at the percolation threshold, as also deduced from
the sequence of phase diagrams in Fig.2. The horizontal
lines of the Nishimori condition intersect the two other
phase diagrams in Fig.1(a) at their multicritical point. In
Fig.1(b), multicritical points do not occur and the hor-
izontal lines of the Nishimori condition do not intersect
the phase boundaries, occurring at higher temperatures
than the phase boundaries.
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FIG. 2: (Color on-line) Calculated phase diagrams at con-
stant quenched dilution q = 1−p+ +p

−
. The phase diagrams

being symmetric about p
−

/(p+ + p
−
) = 0.5, with the anti-

ferromagnetic phase replacing the ferromagnetic phase, only
the p

−
/(p+ + p

−
) < 0.5 halves are show. All phase transi-

tions (full lines) are second order. The dashed curve is the
Nishimori symmetry line given by Eq.(2). All multicritical
points, mediating the ferromagnetic, spin-glass, and param-
agnetic phases, lie on the Nishimori symmetry line.

Fig.3 shows the zero-temperature phase diagram of
the currently studied system. In this phase diagram,
it is again seen that a spin-glass phase intervenes, with
smallest amount of quenched antiferromagnetic bonds,
between the ferromagnetic phase and percolation, caus-
ing a direct ferromagnetic-spinglass phase transition.

Our method, detailed in other works [11, 16, 17, 18],
will be briefly described now. We use the d = 3 hi-
erarchical lattice whose construction is given in Fig.4.
This hierarchical lattice has the odd rescaling factor of
b = 3, for the a priori equivalent treatment of ferro-
magnetism and antiferromagnetism, necessary for spin-
glass problems. Hierarchical lattices admit exact solu-
tions, by a renormalization-group transformation that re-
verses the construction steps.[3, 4, 5] Thus, hierarchical
lattices have become the testing grounds for a large va-
riety of cooperative phenomena, as also seen in recent
works.[6, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. The
hierarchical lattice of Fig.4 has been used in this work,
because it gives accurate results for the critical tempera-
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FIG. 3: (Color on-line) Calculated zero-temperature, 1/K =
0, phase diagram. All phase transitions are second order.

.

FIG. 4: The d = 3 hierarchical lattice for which our calcula-
tion is exact is constructed by the repeated imbedding of the
graph as shown in this figure. This hierarchical lattice gives
accurate results for the critical temperatures of the d = 3
isotropic and anisotropic Ising models on the cubic lattice [6].

tures of the d = 3 isotropic and anisotropic Ising models
on the cubic lattice. [6]

In systems with quenched randomness, the
renormalization-group transformation determines
the mapping of the quenched probability distribution
P(K). At each step, the innermost unit of the lattice
as pictured on the right side of Fig.4 is replaced by
a single bond. This is effected by a series of pairwise

convolutions of the quenched probability distributions,

P̃(K̃) =

∫
dKIdKIIPI(K

I)PII(K
II)δ(K̃−R(KI , KII)) ,

(3)
where R(KI , KII) is

R(KI
ij , K

II
ij ) = KI

ij + KII
ij (4)

for replacing two in-parallel random bonds with distribu-

tions PI(K
I) and PII(K

II) by a single bond with P̃(K̃),
or

R(KI
ij , K

II
jk ) =

1

2
ln

[
cosh(KI

ij + KII
jk )

cosh(KI
ij − KII

jk )

]
(5)

for replacing two in-series random bonds by a single
bond. The probability distributions are in the form of
probabilities assigned to interaction values, namely his-
tograms. Starting with the three histograms described
after Eq.(1), the number of histograms quickly increases
under the convolutions described above. At a computa-
tional limit, a binning procedure is used before each con-
volution to combine nearby histograms [11, 16, 17, 18],
so that 160,000 histograms are kept to describe the prob-
ability distributions. The flows of these probability dis-
tributions, under iterated renormalization-group trans-
formations, determine the global phase diagram of the
system.
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