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The spin-1/2 quantum Heisenberg model is studied in all spatial dimensions d by renormalization-
group theory. Strongly asymmetric phase diagrams in temperature and antiferromagnetic bond
probability p are obtained in dimensions d ≥ 3. The asymmetry at high temperatures approaching
the pure ferromagnetic and antiferromagnetic systems disappears as d is increased. However, the
asymmetry at low but finite temperatures remains in all dimensions, with the antiferromagnetic
phase receding to the ferromagnetic phase. A finite-temperature second-order phase boundary
directly between the ferromagnetic and antiferromagnetic phases occurs in d ≥ 6, resulting in a new
multicritical point at its meeting with the boundaries to the paramagnetic phase. In d = 3, 4, 5, a
paramagnetic phase reaching zero temperature intervenes asymmetrically between the ferromagnetic
and reentrant antiferromagnetic phases. There is no spin-glass phase in any dimension.
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A conspicuous finite-temperature effect of quantum
mechanics is the critical temperature differentiation be-
tween ferromagnetic and antiferromagnetic systems.[1, 2,
3, 4] This is a contrast to classical systems where, e.g.,
on loose-packed lattices ferromagnetic and antiferromag-
netic systems are mapped onto each other and there-
fore have the same critical temperature. We find that
this quantum effect is compounded and even more ro-
bust in spin-glass systems, which incorporate the pas-
sage from ferromagnetism and antiferromagnetism via
quenched disorder.

Thus, in the present work, the phase diagrams of the
spin-1/2 quantum Heisenberg spin-glass systems are cal-
culated in all dimensions d ≥ 3. In the space of temper-
ature T and concentration p of antiferromagnetic bonds,
remarkably asymmetric phase diagrams are obtained, in
very strong contrast to the corresponding classical sys-
tems. Whereas, in the limit of d → ∞, the differ-
entiation of the critical temperatures of the ferromag-
netic and antiferromagnetic pure systems disappears, the
Tp phase diagrams remain strongly asymmetric at low
but finite temperatures, where quantum fluctuations re-
main dominant independent of dimensionality. A di-
rect second-order phase boundary between ferromagnetic
and antiferromagnetic phases, also not seen in isotropic
classical systems, is found in d > 5. In lower d, a
paramagnetic phase intervenes between the ferromag-
netic and antiferromagnetic systems. Our calculation is
an approximation for hypercubic lattices and, simulta-
neously, a lesser approximation for hierarchical lattices
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The spin-1/2 quantum Heisenberg spin-glass systems
have the Hamiltonian

− βH =
∑

〈ij〉

Jijsi · sj ≡
∑

〈ij〉

−βH(i, j) , (1)

where 〈ij〉 denotes a sum over pairs of nearest-neighbor
sites. Jij is equal to the ferromagnetic value of J > 0
with probability 1−p and to the antiferromagnetic value

of −J < 0 with probability p. We solve this model by
extending the Suzuki-Takano rescaling [3, 4, 16, 17, 18,
19, 20, 21, 22, 23, 24] to non-uniform systems and to
length-rescaling factor b = 3, necessary for the a pri-

ori equivalent treatment of ferromagnetism and antifer-
romagnetism, followed by the essentially exact treatment
[25, 26] of the quenched randomness giving the non-
uniformity. In one dimension,

Tr(j,k)e
−βH = Tr(j,k)e

P

4n

i
{−βH(i,j)−βH(j,k)−βH(k,l)}

≃

4n
∏

i

tr(j,k)e
{−βH(i,j)−βH(j,k)−βH(k,l)}

=

4n
∏

i

e−β
′H′(i,l) ≃ e

P

4n

i {−β′H′(i,l)} = e−β
′H′

,

(2)

where the sums and products i are over every fourth spin
along the chain, the traces are over all other spins, and
−β′H′ is the renormalized Hamiltonian. Thus, the com-
mutation rules are correctly accounted for within four-
site segments, at all successive length scales in the itera-
tions of the renormalization-group transformation. The
trace tr is performed by quantum algebra, as given in the
Appendix.

The rescaling is extended to dimensions d > 1 by bond-
moving, namely by adding bd−1 interactions resulting
from the decimation of Eq.(2), to obtain the renormal-
ized interaction strength J ′

i′j′ = R({Jij}), where {Jij} in-

cludes bd interactions of the unrenormalized system. The
interaction constant values {Jij} are distributed with a
quenched probability distribution P(Jij) [25, 26], which
starts out as a double-delta function as described af-
ter Eq.(1) but quickly becomes complicated under its
renormalization-group transformation, given by the con-
volution
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FIG. 1: Phase diagrams of the quantum Heisenberg spin-glass systems in temperature 1/J versus antiferromagnetic bond
concentration p for d = 3 to 10. All transitions are second-order, between the ferromagnetic (F), antiferromagnetic(AF), and
paramagnetic (P) phases.
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FIG. 2: Unstable fixed distributions that control the finite-
temperature phase boundary between the ferromagnetic and
antiferromagnetic phases. For the purpose of this figure, an
equal-interval binning of 40,000 histograms has been done.

P ′(J ′
i′j′ ) =

∫





i′j′
∏

ij

dJij P(Jij)



 δ
(

J ′
i′j′ −R({Jij})

)

.

(3)
This equation actually involves bd convolutions (for ex-
ample, 729 convolutions for the d = 6 system discussed
below), which are constituted of triplet convolutions of
interactions in series (decimation) and pairwise convo-
lutions of interactions in parallel (bond-moving). The
quenched probability distribution P(Jij) is kept numeri-
cally in terms of histograms. The number of histograms
multiplicatively increases under rescaling, until a calcu-
lationally acceptable maximum is reached. After this
point, the number of histograms is kept constant by im-
plementing a binning procedure before each pairwise or

triplet convolution. We employ a new binning proce-
dure, in which bins are demarked so as to contain equal
probabilities, as opposed to equal interaction intervals as
done previously. Starting from the lowest J value and
moving to greater ones, histograms in each consecutive
bin are combined, to interaction value J = ΣpiJi/Σpi
and imposed equal probability p = Σpi = 1/nbin. In
this process, histograms at the boundaries of bins are
apportioned between the consecutive bins. This binning
method is clearly independent of direction, that is, start-
ing from the greatest J value and moving to lower ones
results in the same binned probability distribution. Thus,
our calculation has 125,000 histograms after each decima-
tion and 40,000 histograms after each pairwise bond mov-
ing. The global flows of the quenched probability distri-
butions yield the phase diagrams. Analysis of the unsta-
ble fixed points and unstable fixed distributions attract-
ing the phase boundaries yields the order of the phase
transitions.

Calculations are done for the quantum Heisenberg
spin-glass systems in integer dimensions. No finite-
temperature phase transition occurs in d = 1, 2. The
phase diagrams for d = 3, 4, 5, 6, 8, 10 are shown in Fig.1.
They are all strikingly asymmetric, especially in the mid-
dle p and low-temperature (would-be spin-glass phase)
region. In d = 3, our calculated ratio of the critical
temperatures of the pure antiferromagnetic and ferro-
magnetic systems is TAFC /TFC = 1.48. This value is to
be compared with the values of 1.13 found in the cubic
lattice [1, 2] and 1.22 found in the b = 2, d = 3 hierar-
chical lattice [3, 4]. This critical temperature difference
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is consistent with the lower ground-state energy of the
antiferromagnetic system, as calculated [27] in d = 3.
Our calculated ratios of the antiferromagnetic and ferro-
magnetic critical temperatures, for d = 4, 5, 6, 8, 10, de-
crease as 1.22, 1.12, 1.07, 1.02, 1.01 respectively. On the
other hand, it is seen that although the phase bound-
aries leading to the pure ferromagnetic and antiferromag-
netic critical points regain symmetry as d is increased,
the low-temperature phase diagrams remain asymmet-
ric. The ferromagnetic phase penetrates the antiferro-
magnetic region at low temperatures. Thus, quantum
fluctuations present at low temperatures favor the fer-
romagnetic phase over the antiferromagnetic phase. In
d ≥ 6, a second-order phase boundary occurs directly
between the ferromagnetic and antiferromagnetic phases,
as is not seen in isotropic classical spin-glass systems.
This phase boundary is controlled by the unstable fixed
distributions shown in Fig.2. A new multicritical point
occurs where all three second-order boundaries meet. In
d = 3, 4, 5, the paramagnetic phase reaching zero tem-
perature (as an extremely narrow sliver in d = 5) inter-
venes between the ferromagnetic and antiferromagnetic
phases. In all cases, the ferromagnetic phase penetrates,
reaching the high p values of 0.63 and 0.83 respectively in
d = 3, where there is a zero-temperature paramagnetic
interval, and d ≥ 4, where there is no zero-temperature
paramagnetic interval. The antiferromagnetic phase re-
cedes at low temperatures, thereby showing a reentrant
phase boundary [26].

There is no spin-glass phase, in the quantum system, in
any dimension. The quantum version of the Sherrington-
Kirkpatrick model [28], namely the spin-1/2 quantum
Heisenberg model with equivalent-neighbor interactions,
with a symmetric gaussian distribution, studied from the
high-temperature side, yields a finite-temperature phase
transition, which has been interpreted as a transition to a
low-temperature spin-glass phase [29]. This model should
be similar to our studied models at p = 0.5 in the large d
limit. Thus, we also find a finite-temperature phase tran-
sition (Fig.1), but the low-temperature phase is explicitly
a ferromagnetic phase with quenched bond randomness.
The latter phase has considerable amount of short-range
antiferromagnetic correlations, as seen in Ref.[30].
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APPENDIX A: QUANTUM RECURSION

RELATIONS

The operators −β′H′(i, l) and −βH(i, j) − βH(j, k) −
βH(k, l) of Eq. (2) act on two-site and four-site states,

p s ms Two-site eigenstates
+ 1 1 |φ1〉 = | ↑↑〉
+ 1 0 |φ2〉 = 1√

2
{| ↑↓〉 + | ↓↑〉}

− 0 0 |φ4〉 = 1√
2
{| ↑↓〉 − | ↓↑〉}

TABLE I: The two-site basis states, with the corresponding
parity (p), total spin (s), and total spin z-component (ms)
quantum numbers. The state |φ3〉 is obtained by spin reversal
from |φ1〉.

p s ms Four-site eigenstates
+ 2 2 |ψ1〉 = | ↑↑↑↑〉

+ 2 1 |ψ2〉 = 1

2
{| ↑↑↑↓〉 + | ↑↑↓↑〉 + | ↑↓↑↑〉 + | ↓↑↑↑〉}

+ 2 0 |ψ3〉 = 1√
6
{| ↑↑↓↓〉 + | ↑↓↑↓〉 + | ↑↓↓↑〉

+| ↓↑↑↓〉 + | ↓↑↓↑〉 + | ↓↓↑↑〉}
+ 1 1 |ψ6〉 = 1

2
{| ↑↑↑↓〉 − | ↑↑↓↑〉 − | ↑↓↑↑〉 + | ↓↑↑↑〉}

+ 1 0 |ψ7〉 = 1√
2
{| ↓↑↑↓〉 − | ↑↓↓↑〉

− 1 1 |ψ9〉 = 1

2
{| ↑↑↑↓〉 − | ↑↑↓↑〉 + | ↑↓↑↑〉 − | ↓↑↑↑〉}

|ψ10〉 = 1

2
{| ↑↑↑↓〉 + | ↑↑↓↑〉 − | ↑↓↑↑〉 − | ↓↑↑↑〉}

− 1 0 |ψ11〉 = 1√
2
{| ↑↓↑↓〉 − | ↓↑↓↑〉

|ψ12〉 = 1√
2
{| ↑↑↓↓〉 − | ↓↓↑↑〉

+ 0 0 |ψ15〉 = 1

2
{| ↑↑↓↓〉 − | ↑↓↑↓〉 − | ↓↑↓↑〉 + | ↓↓↑↑〉}

|ψ16〉 = 1√
12

{| ↑↑↓↓〉 + | ↑↓↑↓〉 − 2| ↑↓↓↑〉

−2| ↓↑↑↓〉 + | ↓↑↓↑〉 + | ↓↓↑↑〉}

TABLE II: The four-site basis states, with the corresponding
parity (p), total spin (s), and total spin z-component (ms)
quantum numbers. The states |ψ4,5〉, |ψ8〉, |ψ13,14〉 are ob-
tained by spin reversal from |ψ2,1〉, |ψ6〉, |ψ9,10〉, respectively.

respectively, where at each site the spin is in quantum
state σ =↑ or ↓. The trace tr in Eq. (2) is, in terms of
matrix elements [3],

〈uizl|e
−β′H′(i,l)|ūiz̄l〉 =

∑

vj ,wk

〈ui vj wkzl|e
−βH(i,j)−βH(j,k)−βH(k,l)|ūi vj wkz̄l〉 ,

(A1)

where ui, vj , wk, zl, ūi, z̄l are single-site state variables.
Thus, Eq. (A1) is the contraction of a 16 × 16 matrix
into a 4 × 4 matrix. Basis states that are simultaneous
eigenstates of parity (p), total spin magnitude (s), and
total spin z-component (ms) block-diagonalize these ma-
trices and thereby make Eq. (A1) manageable. These
sets of 4 two-site and 16 four-site eigenstates, denoted
by {|φp〉} and {|ψq〉} respectively, are given in Tables I
and II. The diagonal blocks are given in Tables III and
IV. Due to the microscopic randomness of the spin-glass
problem, the four-site Hamiltonian mixes states of differ-

φ1 φ4

φ1
1

4
J′ +G′

φ4 − 3

4
J′+G′

TABLE III: Block-diagonal matrix of the renormalized two-
site Hamiltonian −β′H ′(i, l). The diagonal elements of |φ2〉
and |φ3〉 are equal to that of |φ1〉.
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ψ1 ψ2 ψ3

ψ1
1

4
(J1 + J2 + J3) 0 0

ψ2 0 1

4
(J1 + J2 + J3) 0

ψ3 0 0 1

4
(J1 + J2 + J3)

ψ6 ψ9 ψ10

ψ6
1

4
(−J1 + J2 − J3)

1

2
(J1 − J3) 0

ψ9
1

2
(J1 − J3) − 1

4
(J1 + J2 + J3)

1

2
J2

ψ10 0 1

2
J2

1

4
(J1 − J2 + J3)

ψ7 ψ11 ψ12

ψ7
1

4
(−J1 + J2 − J3)

1

2
(J1 − J3) 0

ψ11
1

2
(J1 − J3) − 1

4
(J1 + J2 + J3)

1

2
J2

ψ12 0 1

2
J2

1

4
(J1 − J2 + J3)

ψ15 ψ16

ψ15 − 3

4
J2

√
3

4
(J1 + J3)

ψ16

√
3

4
(J1 + J3) 1

4
(−2J1 + J2 − 2J3)

TABLE IV: Diagonal matrix blocks of the unrenormalized
three-site Hamiltonian −βH(i, j) − βH(j, k) − βH(k, l). The
Hamiltonian being invariant under spin-reversal, the spin-
flipped matrix elements are not shown. The interaction con-
stants J1, J2, J3, which are in general unequal due to quenched
randomness, are from −βH(i, j),−βH(j, k),−βH(k, l) re-
spectively.

ent parity, as seen in Table IV. Eq. (A1) is thus rewritten
as

〈φp|e
−β′H′(i,k)|φp̄〉 =

∑

u,z,ū,
z̄,v,w

∑

q,q̄

〈φp|uizl〉〈uivjwkzl|ψq〉

〈ψq|e
−βH(i,j)−βH(j,k)−βH(k,l)|ψq̄〉〈ψq̄|ūivjwkz̄l〉〈ūiz̄l|φp̄〉.

(A2)

There are only two rotation-symmetry independent ele-
ments of 〈φp|e

−β′H′(i,l)|φp̄〉 ≡ 〈φp||φp̄〉 in Eq.(A2), which
have p = p̄ = 1, 4 (thereby leading to one renormalized
interaction constant J ′ and the additive constant G′).
From Eq. (A2),

〈φ1||φ1〉 = 〈ψ1||ψ1〉 +
1

2
〈ψ2||ψ2〉 +

1

6
〈ψ3||ψ3〉+

1

2
〈ψ6||ψ6〉 +

1

2
〈ψ7||ψ7〉 +

1

2
〈ψ9||ψ9〉 − 〈ψ9||ψ10〉+

1

2
〈ψ10||ψ10〉 +

1

3
〈ψ16||ψ16〉 ,

〈φ4||φ4〉 = 〈ψ9||ψ9〉 + 2〈ψ9||ψ10〉 + 〈ψ10||ψ10〉+

1

2
〈ψ11||ψ11〉 + 〈ψ11||ψ12〉 +

1

2
〈ψ12||ψ12〉 + 〈ψ15||ψ15〉 ,

where 〈ψq ||ψq̄〉 ≡ 〈ψq|e
−βH(i,j)−βH(j,k)−βH(k,l)|ψq̄〉.

From Table III, the renormalized interaction constant is
given by J ′ = ln(〈φ1||φ1〉/〈φ4||φ4〉).
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