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We have obtained exact results for the Ising model on a hierarchical lattice incorporating three key
features characterizing many real-world networks—a scale-free degree distribution, a high clustering
coefficient, and the small-world effect. By varying the probability p of long-range bonds, the entire
spectrum from an unclustered, non-small-world network to a highly-clustered, small-world system
is studied. Using the self-similar structure of the network, we obtain analytical expressions for the
degree distribution P (k) and clustering coefficient C for all p, as well as the average path length
ℓ for p = 0 and 1. The ferromagnetic Ising model on this network is studied through an exact
renormalization-group transformation of the quenched bond probability distribution, using up to
562,500 renormalized probability bins to represent the distribution. For p < 0.494, we find power-
law critical behavior of the magnetization and susceptibility, with critical exponents continuously
varying with p, and exponential decay of correlations away from Tc. For p ≥ 0.494, in fact where
the network exhibits small-world character, the critical behavior radically changes: We find a highly
unusual phase transition, namely an inverted Berezinskii-Kosterlitz-Thouless singularity, between
a low-temperature phase with non-zero magnetization and finite correlation length and a high-
temperature phase with zero magnetization and infinite correlation length, with power-law decay
of correlations throughout the phase. Approaching Tc from below, the magnetization and the
susceptibility respectively exhibit the singularities of exp(−C/

√
Tc − T ) and exp(D/

√
Tc − T ), with

C and D positive constants. With long-range bond strengths decaying with distance, we see a phase
transition with power-law critical singularities for all p, and evaluate an unusually narrow critical
region and important corrections to power-law behavior that depend on the exponent characterizing
the decay of long-range interactions.

PACS numbers: 89.75.Hc, 64.60.Ak, 75.10.Nr, 05.45.Df

I. INTRODUCTION

Complex networks provide an intriguing avenue for
tackling one of the long-standing questions in statisti-
cal physics: how the collective behavior of interacting
objects is influenced by the topology of those interac-
tions. Inspired by the diversity of network structures
found in nature, researchers in recent years have investi-
gated a variety of statistical models on networks with
real-world characteristics [1, 2, 3]. Three empirically
common network types have been the focus of atten-
tion: networks with large clustering coefficients, where
all neighbors of a node are likely to be neighbors of each
other; networks with “small-world” behavior in the av-
erage shortest-path length, ℓ ∼ log(N), where N is the
number of nodes; and those with a power-law (scale-free)
distribution of degrees. Since the pioneering network
models of Watts-Strogatz [4], which exemplified the first
two properties, and Barabási-Albert [5], which showed
how the third could arise from particular mechanisms of
network growth, significant advances have taken place in
understanding how these properties affect statistical sys-
tems. The Ising model has been studied on small-world
networks [6, 7, 8, 9, 10], along with the XY model [11],
and on Barabási-Albert scale-free networks [12, 13]. On
random graphs with arbitrary degree distributions, the
Ising model shows a range of possible critical behaviors
depending on the moments of the distribution (or in the

specific case of scale-free distributions, the exponent de-
scribing the power-law tail) [14, 15], a fact which is ac-
counted for by a phenomenological theory of critical phe-
nomena on these types of networks [16].

In the current work we introduce a novel network struc-
ture based on a hierarchical lattice [17, 18, 19] augmented
by long-range bonds. By changing the probability p of
the long-range bonds, we observe an entire spectrum
of network properties, from an unclustered network for
p = 0 with ℓ ∼ N1/2, to a highly-clustered small-world
network for p = 1 with ℓ ∼ log N . In addition, the net-
work has a scale-free degree distribution for all p. Due
to the hierarchical construction of the network, together
with the stochastic element introduced through the at-
tachment of the long-range bonds, this network combines
features of deterministic and random scale-free growing
networks [20, 21, 22, 23, 24, 25, 26, 27, 28], and in the
p = 1 limit its geometrical properties are similar to the
pseudofractal graph studied in Ref. [22]. The self-similar
structure of the network allows us to calculate analyti-
cal expressions for the degree distribution and clustering
coefficient for all p, as well as the average shortest-path
length ℓ in the limiting cases p = 0 and 1.

A renormalization-group transformation is formulated
for the Ising model on the network, yielding a variety
critical behaviors of thermodynamic densities and re-
sponse functions. For the quenched disordered system
at intermediate p, we study the Ising model through
an exact renormalization-group transformation of the
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quenched bond probability distribution, implemented nu-
merically using up to 562,500 renormalized probabil-
ity bins to represent the distribution. We find a finite
critical temperature at all p, with two distinct regimes
for the critical behavior. When p < 0.494, the mag-
netization and susceptibility show power-law scaling,
and away from Tc correlations decay exponentially, as
in a typical second-order phase transition. The mag-
nitudes of the critical exponents, which continuously
vary with p, become infinite as p → 0.494 from be-
low. For p ≥ 0.494, in fact coinciding with the on-
set of the small-world behavior of the underlying net-
work, we find a highly unusual infinite-order phase tran-
sition: an inverted Berezinskii-Kosterlitz-Thouless sin-
gularity [29, 30], between a low-temperature phase with
non-zero magnetization and finite correlation length, and
a high-temperature phase with zero magnetization and
infinite correlation length, exhibiting power-law decay
of correlations (in contrast to the typical Berezinskii-
Kosterlitz-Thouless phase transition, where the alge-
braic order is in the low-temperature phase). Approach-
ing Tc from below, the magnetization and the suscep-
tibility respectively behave as exp(−C/

√
Tc − T ) and

exp(D/
√

Tc − T ), with C and D calculated positive con-
stants.

Infinite-order phase transitions have been observed for
the Ising model on random graphs with degree distribu-
tions P (k) that have a diverging second moment 〈k2〉 [14,
15], but for these systems Tc =∞ on an infinite network.
An infinite-order percolation transition has been seen in
models of growing networks [31, 32, 33, 34, 35, 36, 37, 38],
with exponential scaling in the size of the giant compo-
nent above the percolation threshold. A prior observation
of a finite-temperature, inverted Berezinskii-Kosterlitz-
Thouless singularity similar to the one described above
has been in a recent study of a ferromagnetic Ising model
on an inhomogeneous growing network [39].

The final aspect of our network we investigated was
the effect of adding distance-dependence to the interac-
tion strengths of the long-range bonds, along the lines
of Ref. [10], where distance-dependent interactions were
considered in a small-world Ising system. With decaying
interactions, the second-order phase transition for all p
has a strongly curtailed critical region and corrections to
power-law behavior that vary with the exponent σ de-
scribing the decay of interactions.

II. HIERARCHICAL-LATTICE SMALL-WORLD

NETWORK

A. Construction of the Lattice

We construct a hierarchical lattice [17, 18, 19] as shown
in Fig. 1. The lattice has two types of bonds: nearest-
neighbor bonds (depicted as solid lines) and long-range
bonds (depicted as dashed lines). In each step of the
construction, every nearest-neighbor bond is replaced ei-

ther by the connected cluster of bonds on the top right of
Fig. 1 with probability p, or by the connected cluster on
the bottom right with probability 1− p. This procedure
is repeated n times, with the infinite lattice obtained in
the limit n → ∞. The initial (n = 0) lattice is two sites
connected by a single nearest-neighbor bond. An exam-
ple of the lattice at n = 4 for an arbitrary p 6= 0, 1 is
shown in Fig. 2.

The p = 0 case, with no long-range bond, is the hierar-
chical lattice [17] on which the Migdal-Kadanoff [40, 41]
recursion relations with dimension d = 2 and length
rescaling factor b = 2 are exact. As will be seen be-
low, the network in this case exhibits no small-world fea-
ture, with a clustering coefficient C = 0 and an average
shortest-path length ℓ that scales like N1/2, where N is
the number of sites in the lattice. The p = 1 case, on the
other hand, shows typical small-world properties, with
the presence of long-range bonds giving the high clus-
tering coefficient C = 0.820 and an average path length
which scales more slowly with system size, ℓ ∼ lnN . By
varying the parameter p from 0 to 1, we continuously
move between the two limits. These and other network
characteristics of our hierarchical lattice are discussed in
detail in the next section.

FIG. 1: Construction of the hierarchical lattice. The solid
lines correspond to nearest-neighbor bonds, while the dashed
lines are long-range bonds, which occur with probability p.

B. Network Characteristics

1. Degree Distribution

After the nth step of the construction, there are a total
of Nn = 2

3 (2+4n) sites in the lattice. We categorize these
sites by the number of nearest-neighbor bonds attached
to the site, knn, and the maximum possible number of
long-range bonds attached to the site, kld, of which on
average only pkld actually exist. At the mth level there
are 4n−m+1/2 sites with knn = 2m, kld = 2m−2, for m =
1, . . . , n. In addition, there are two sites with knn = 2n,
kld = 2n − 1. Thus, the non-zero probabilities that a
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FIG. 2: An example of the hierarchical lattice after n = 4
steps in the construction, for p = 0.6.

randomly chosen site has degree k are

Pn(k) =



















4n−m+1/2

Nn

(

2m−2
r

)

pr(1− p)2
m−2−r,

2
Nn

(

2n−2
r

)

pr(1− p)2
n−2−r

+ 2
Nn

(

2n−1
r

)

pr(1− p)2
n−1−r,

2
Nn

p2n−1,

(1)

respectively for

k =2m + r, 0 ≤ r ≤ 2m − 2, 1 ≤ m ≤ n− 1,

k =2n + r, 0 ≤ r ≤ 2n − 2,

k =2n+1 − 1. (2)

Since the degree distribution is not continuous, the
exponent describing the power-law decay of degrees is
extracted from the cumulative distribution function [2]
in the n → ∞ limit, Pcum(k) =

∑∞
k′=k P (k′), where

P (k) = limn→∞ Pn(k). For a scale-free network of ex-
ponent α, Pcum(k) ∼ k1−α. In our case Pcum(k) ∼ k−2

for large k, giving α = 3, a value comparable to the ex-
ponents of many real-world scale-free networks [1]. The
maximum degree kmax in the scale-free network should

scale as kmax ∼ N
1/(α−1)
n [2], which is indeed satisfied,

for large n, in our network. The average degree 〈k〉n after
n construction steps is

〈k〉n =

∞
∑

k=1

kPn(k) = 3 + p− 3(2 + p)

2 + 4n
, (3)

which goes to 〈k〉 = 3 + p in the infinite lattice limit.

FIG. 3: Clustering coefficient C for the infinite lattice as a
function of the probability of long-range bonds p.

2. Clustering Coefficient Cm

If a given site in the network is connected to k sites,
defined as the neighbors of the given site, the ratio be-
tween the number of bonds among the neighbors and
the maximum possible number of such bonds k(k − 1)/2
is the clustering coefficient of the given site [4]. The
clustering coefficient C of the network is the average of
this coefficient over all the sites, and can take on values
between 0 and 1, the latter corresponding to a maxi-
mally clustered network where all neighbors of a site are
also neighbors of each other. For our network in the
n → ∞ limit, C can be evaluated exactly: The frac-
tion limn→∞ 4n−m+1/2/Nn = 3 · 4−m of the sites, with
knn = 2m and kld = 2m − 2, have the average clustering
coefficient Cm, where C1 = p and Cm for m > 1 is, as
derived in Appendix A.1,

Cm =

2m−1
∑

r=0

2m−1−2
∑

r′=0

(

2m−1

r

)(

2m−1 − 2

r′

)

·

2pr+r′
(1 − p)2

m−2−r−r′
{

2r + p
(

r+r′

2

)

2m−3

(2m−2
2 )

}

(2m + r + r′)(2m + r + r′ − 1)
. (4)

We plot the clustering coefficient C

C =
∞
∑

m=1

3 · 4−mCm . (5)

as a function of p in Fig. 3. Note that C increases almost
linearly from 0 at p = 0 to 0.820 at p = 1, as can also be
seen from the expansion of Eq. (5) to second order in p,

C = 0.837p− 0.0378p2 + O(p3) . (6)
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3. Average Shortest-Path Length ℓn

Let dij be the shortest-path length between two sites i
and j in the network, measured in terms of the number of
bonds along the path. The average shortest-path length
ℓn is the average of dij over all pairs of sites i,j at the
nth level. For general p we have evaluated this quantity
numerically. For p = 0 and p = 1 we have obtained
exact analytical expressions (Appendix A.2), revealing
qualitatively distinct behaviors: For p = 0 we find

ℓn =
2n(98 + 27 · 2n + 42 · 4n + 22 · 16n + 21n · 4n)

21(2 + 5 · 4n + 2 · 16n)

−−−−→
n→∞

11

21
2n , (7)

and since Nn ∼ 4n for large n, we have ℓn ∼ N
1/2
n . Com-

paring this result to that of a hypercubic lattice of di-
mension d, where the average shortest-path length scales
as N1/d [1], we see that ℓn for the p = 0 network has
the power-law scaling behavior of the square lattice. For
p = 1, on the other hand, we find

ℓn =

23 + 4 · (−2)n + 44 · 4n + 10 · 16n + 6n · 4n + 12n · 16n

9(2 + 5 · 4n + 2 · 16n)

−−−−→
n→∞

2n/3 , (8)

which means that ℓn ∼ ln(Nn) for large n. This much
slower, logarithmic scaling of ℓn with lattice size, together
with the high clustering coefficient, are the defining fea-
tures of a small-world network.

In Fig. 4 we show ℓn calculated for for the full range
of p between 0 and 1, for n up to 6. It is evident that
even a small percentage of long-range bonds drastically
reduces the average shortest-path length, and that ℓn

shows small-world characteristics, scaling nearly linearly
with n, for p & 0.5. We shall see below that the small-
world structure at larger p translates into a distinctive
critical behavior for the Ising model on this network.

III. ISING MODEL ON THE NETWORK

We study the Ising model on the network introduced
in the previous section, with Hamiltonian

−βH =J
∑

〈ij〉nn

sisj +
∑

〈ij〉ld

Kijsisj

+ HB

∑

〈ij〉nn

(si + sj) + HS

∑

i

si , (9)

where J, Kij > 0, 〈ij〉nn denotes summation over nearest-
neighbor bonds, and 〈ij〉ld denotes summation over long-
range bonds. We generalize the above, by introducing a
distance dependence in the interaction constants Kij,

Kij = Jm−σ
ij . (10)

FIG. 4: Average shortest-path length ℓn for level n, shown
for various values of p between 0 and 1. For p = 0 and p = 1,
ℓn is given exactly by Eqs. (7) and (8). For other p, we have
calculated ℓn numerically, with an accuracy of ±0.3%.

Here the exponent σ ≥ 0, and mij measures the range
of the long-range bond between sites i and j: For a lat-
tice constructed in n steps, those long-range bonds that
appear at the nth step have mij = 1, those that appear
at the (n − 1)th step have mij = 2, and so on until the
long-range bond that appears at the first step, which has
mij = n. The long-range term in the Hamiltonian can
be rewritten as

∑

〈ij〉ld

Kijsisj = K1

∑

〈ij〉ld,1

sisj+K2

∑

〈ij〉ld,2

sisj+· · · , (11)

where Kq ≡ Jq−σ and 〈ij〉ld,q denotes summation over
long-range bonds with mij = q.

The Hamiltonian of Eq. (9) includes two types of mag-
netic field terms, one counted with bonds (HB) and the
other counted with sites (HS). We shall calculate the as-
sociated spontaneous magnetizations at HB = HS = 0,

MB =
1

Nnn

∑

〈ij〉nn

〈si + sj〉 , MS =
1

Nn

∑

i

〈si〉 , (12)

where Nnn = 4n is the number of nearest-neighbor bonds
after the nth construction stage, so that Nnn/Nn = 3/2 in
the limit n→ ∞. For a translationally invariant lattice,
where each site has the same degree, MB and MS would
be simply related by MB = 2MS, but for the hierarchical
lattice this is no longer true due to the different degrees
of the sites.

Before turning to the phase diagram and critical prop-
erties of the system for general p, which require formu-
lating a renormalization-group transformation in terms
of quenched probability distributions, we present the dis-
tinct critical behaviors of the limiting cases of p = 0 and
p = 1.
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Property p = 0
0 < p < 0.494,

σ = 0
0.494 ≤ p ≤ 1,

σ = 0
0 < p < 1,
0 < σ < 1

p = 1,
0 < σ < 1

0 < p ≤ 1,
σ ≥ 1

Tc 1.641

varies with p
(see Fig. 12);
reaches 3.592
at p = 0.494

varies with p
(see Fig. 12);
reaches 7.645

at p = 1

varies with σ
and p

(see Fig. 8)

varies with σ
(see Fig. 8);
reaches 3.485

at σ = 1

varies with σ
and p

(see Fig. 8)

yT 0.747 vary with p 0 0.747 0.747 0.747

yH 1.879 (see Fig. 14) 1.585 1.879 1.879 1.879

ξ |t|−1/yT |t|−1/yT eA/
√

|t| (t < 0) |t|−
1

yT
+f1(p,σ,t) |t|−

1
yT

−C1(− ln |t|)−σ

|t|−1/yT

∞ (t > 0)

C sing |t|−
2yT −2

yT |t|−2yT −2yT |t|−3/2e−2A/
√

|t| |t|−
2yT −2

yT
+f2(p,σ,t) |t|−

2yT −2

yT
+2C1(− ln |t|)−σ

|t|−
2yT −2

yT

MB , MS (t < 0) |t|
2−yH

yT |t|
2−yH

yT e−A(2−yH)/
√

|t| |t|
2−yH

yT
+f3(p,σ,t) |t|

2−yH
yT

+C2(− ln |t|)−σ

|t|
2−yH

yT

χBB , χBS ,
χSS

(t < 0) |t|−
2yH−2

yT |t|−
2yH−2

yT eA(2yH−2)/
√

|t| |t|−
2yH−2

yT
+f4(p,σ,t) |t|−

2yH−2

yT
+C3(− ln |t|)−σ

|t|−
2yH−2

yT

TABLE I: Critical properties of the hierarchical-lattice network for all cases of long-range bond probabilities p and long-range
bond decay exponents σ. The functions fi(p, σ, t) are corrections to the p = 0 scaling behavior, which are significant at larger
p. The factor A is defined below Eq. (37), and C1, C2, C3 are given as functions of yT , yH , σ in Eqs. (62).

A. Critical Properties at p = 0

The d = 2, b = 2 Migdal-Kadanoff recursion rela-
tions are exact [17] on the p = 0 lattice, and the
renormalization-group transformation consists of deci-
mating the two center sites in the cluster shown on the
bottom right of Fig. 1. The renormalized Hamiltonian of
the two remaining sites i′, j′ is

−βH′ =
∑

〈i′j′〉
[J ′si′sj′ + H ′

B(si′ + sj′) + G′]+H ′
S

∑

i′

si′ ,

(13)
where the renormalized interaction constants are [42]:

J ′ =
1

2
ln
(

R++R−−/R2
+−
)

,

H ′
B =

1

2
ln (R++/R−−) , H ′

S = HS ,

G′ = 4G +
1

2
ln
(

R++R−−R2
+−
)

, (14)

with

R++ = xy2z + x−1z−1 , R−− = x−1z + xy−2z−1 ,

R+− = yz + y−1z−1 , x = e2J , y = e2HB , z = eHS .
(15)

Here G is an additive constant per bond, equal to zero
in the original Hamiltonian, but always generated by the
transformation and necessary for the calculation of den-
sities and response functions. From the transformation
in Eqs. (14),(15) we see that an initial Hamiltonian with
only an HS magnetic field term will invariably generate
an HB term upon renormalization.

The subspace HB = HS = 0 is up-down symmetric in
spin space and closed under the transformation. Within

this subspace, there is one unstable fixed point at

Jc = ln

[

1

3

(

1 + (19− 3
√

33)1/3 + (19 + 3
√

33)1/3
)

]

,

(16)
corresponding to a temperature Tc = 1/Jc = 1.641. Un-
der renormalization-group transformations, the system
renormalizes at high temperatures J < Jc to the sink at
J∗ = 0 of the disordered phase and at low temperatures
J > Jc to the sink at J∗ =∞ of the ordered phase. The
critical behavior at Tc is obtained from the eigenvalues
of the recursion matrix at the critical fixed point,







∂J′

∂J
∂J′

∂HB

∂J′

∂HS
∂H′

B

∂J
∂H′

B

∂HB

∂H′
B

∂HS
∂H′

S

∂J
∂H′

S

∂HB

∂H′
S

∂HS






=





2u 0 0
0 2 + 2u u
0 0 1



 , (17)

where u = tanh 2Jc. This recursion matrix has eigenval-
ues 2u ≡ byT , 2+2u ≡ byH , and 1, with eigenvalue expo-
nents yT = 0.747, yH = 1.879. Along the corresponding
eigendirections are one thermal and two magnetic scaling
fields: t = Jc−J

Jc
= T−Tc

Tc
, h1 = (2 + coth 2Jc)HB + HS ,

and h2 = HS , with linearized recursion relations t′ =
byT t, h′

1 = byH h1, and h′
2 = h2. Standard eigenvalue

analysis at the fixed point yields the critical behaviors
for the internal energy U = 1

Nnn

∑

〈ij〉nn
〈sisj〉, the mag-

netizations MB, MS , and the correlation length ξ:

U − Uc ∼ |t|1−α , α =
2yT − d

yT
= −0.677 ,

MS , MB ∼ |t|β (t < 0) , β =
d− yH

yT
= 0.162 ,

ξ ∼ |t|−ν , ν =
1

yT
= 1.338 . (18)

MB and MS have the same critical exponent β, because
the dominant magnetic scaling field h1 mixes HB and



6

HS . Similarly, the susceptibility critical exponent is γ =
(2yH − d)/yT = 2.353. Approaching criticality in the
ordered phase, all three susceptibilities one can define,

χBB = ∂MB

∂HB
, χBS =

√

Nnn

Nn

∂MB

∂HS
, and χSS = ∂MS

∂HS
, have

the critical behavior |t|−γ . The zero-field susceptibilities
are infinite throughout the disordered phase. To recall
this, we briefly review the calculation of thermodynamic
densities and response functions by multiplications along
the renormalization-group trajectory.

Let K = (G, J, HB, HS) be the vector of interaction
constants in the Hamiltonian, and K

′ = (G′, J ′, H ′
B, H ′

S)
the analoguous vector for the renormalized system. Cor-
responding to each component Kα of K is a thermo-
dynamic density Mα = 1

Nα

∂ ln Z
∂Kα

, where Z is the par-
tition function, and Nα is a component of the vector
N = (Nnn, Nnn, Nnn, Nn). Thus, the density vector
M = (1, U, MB, MS) is related to the density vector of
the renormalized system M

′ by the conjugate recursion
relations [43]:

Mα = b−d
∑

β

M ′
βTβα , Tβα =

Nβ

Nα

∂K ′
β

∂Kα
. (19)

An analogous recursion relation for response func-

tions χαβ =
√

Nα

Nβ

∂Mα

∂Kβ
has been derived by McKay and

Berker [42]:

χαβ =b−d





∑

λ,µ

√

NλNµ

NαNβ
χ′

λµ

∂K ′
λ

∂Kα

∂K ′
µ

∂Kβ

+
∑

λ

Nλ
√

NαNβ

M ′
λ

∂2K ′
λ

∂Kα∂Kβ

]

. (20)

Using the density-response vector V = (1, U, MB, MS,
χBB, χBS , χSS), Eqs. (19) and (20) are combined into a
single recursion relation,

Vα = b−d
∑

β

V ′
βWβα . (21)

The extended recursion matrix
←→
W for the subspace HB =

HS = 0 is
































bd ∂G′
∂J

0 0 ∂2G′

∂H2
B

µ ∂2G′
∂HB∂HS

µ2 ∂2G′

∂H2
S

0 ∂J′
∂J

0 0 ∂2J′

∂H2
B

µ ∂2J′
∂HB∂HS

µ2 ∂2J′

∂H2
S

0 0
∂H′

B
∂HB

µ2 ∂H′
B

∂HS
0 0 0

0 0 0
∂H′

S
∂HS

0 0 0

0 0 0 0
(

∂H′
B

∂HB

)2

µ
∂H′

B
∂HB

∂H′
B

∂HS
µ2
(

∂H′
B

∂HS

)2

0 0 0 0 0
∂H′

B
∂HB

∂H′
S

∂HS
µ

∂H′
B

∂HS

∂H′
S

∂HS

0 0 0 0 0 0
(

∂H′
S

∂HS

)2

































(22)

where µ =
√

Nnn/Nn. At a fixed point, V = V
′ ≡ V

∗,
so that V

∗ is the left eigenvector with eigenvalue bd of the
extended recursion matrix evaluated at the fixed point,

←→
W

∗. To evaluate V for an initial system away from the
fixed pont, Eq. (21) is iterated along the renormalization-
group trajectory,

V = b−nd
V

(n) · ←→W(n) · ←→W(n−1) · · ·←→W(1) , (23)

where V
(n) is evaluated in the system reached after the

nth renormalization-group step, at which
←→
W

(n) is evalu-
ated. When the total number of renormalization-group
steps n is large enough so that the neighborhood of a
fixed point is reached, V(n) ≃ V

∗, so that V is evaluated
to a desired accuracy, by adjusting n.

From the recursion relations in Eqs. (14),(15), the ex-

tended recursion matrix
←→
W is

←→
W =



















4 2u 0 0 4v
√

6v
3v
2

0 2u 0 0 −4u2
√

6u2 − 3u2

2
0 0 2 + 2u

3u
2

0 0 0
0 0 0 1 0 0 0

0 0 0 0 (2 + 2u)2
√

6u (1 + u) 3u2

2

0 0 0 0 0 2 + 2u

√

3
2
u

0 0 0 0 0 0 1



















,

(24)
where u = tanh2J , v = 1 + sech2 2J . At the sink of the
disordered phase, u = 0, v = 2, and the left eigenvector

of
←→
W

∗ with eigenvalue bd is

V
∗ =(1, U = 0, MB = 0, MS = 0,

χBB =∞, χBS =
√

6, χSS = 1) . (25)

The matrix multiplication of Eq. (23) mixes χBB, χBS ,
and χSS . Since χBB = ∞ at the sink, all three sus-
ceptibilities are infinite within the disordered phase. In
contrast, at the sink of the ordered phase, u = 2, v = 1,

and the two left eigenvectors of
←→
W

∗ with eigenvalue bd

are

V
∗
± =(1, U = 1, MB = ±2, MS = ±1,

χBB = 0, χBS = 0, χSS = 0) . (26)

Consequently, the susceptibilities from Eq. (23) are finite
within the ordered phase, decreasing to zero as zero tem-
perature is approached and increasing as |t|−γ as Tc is
approached from below. The double value in Eq. (26) re-
flects the first-order phase transition along the magnetic
field direction.

The infinite susceptibility in the disordered phase is di-
rectly related to the presence of sites with arbitrarily high
degree numbers in the scale-free network, because these
sites feel a very large applied field, channeled through
their many neighbors. Except for this feature, the critical
behavior for the p = 0 case is similar to that of a regular
lattice, which is unsurprising since the Migdal-Kadanoff
recursion relations that are exact on the hierarchical lat-
tice can be derived from a bond-moving approximation
applied to the square lattice.

The p = 0 results are in Fig. 5, where the specific
heat, magnetizations, and zero-field susceptibilities are
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FIG. 5: Specific heat, magnetizations, and zero-field magnetic
susceptibilities for p = 0, as functions of temperature 1/J .
The dotted vertical line marks the critical temperature Tc =
1.641. As insets to the magnetizations and susceptibilities, we
show ln M and ln χ with respect to ln |t|, where t = T−Tc

Tc
<

0. The linear behavior in the insets agrees with the power-
law predictions of MB , MS ∼ |t|0.162 and χBB , χBS , χSS ∼
|t|−2.353.

plotted as a function of temperature. Since the specific
heat exponent is α = −0.677, the specific heat has a finite
cusp singularity at Tc.

B. Critical Properties at p = 1

For the p = 1 lattice, the renormalization-group trans-
formation consists of decimating the two center sites in
each connected cluster of the type shown on the top
right of Fig. 1. The Hamiltonian now includes long-range

bonds, Eq. (11), and the transformation is a mapping of
the Hamiltonian −βH(J, HB, HS , {Kq}, G) onto a renor-
malized Hamiltonian−β′H′(J ′, H ′

B, H ′
S , {K ′

q}, G′)). The
recursion relations are

J ′ =
1

2
ln
(

R++R−−/R2
+−
)

+ K1 ,

H ′
B =

1

2
ln (R++/R−−) , H ′

S = HS ,

G′ = 4G +
1

2
ln
(

R++R−−R2
+−
)

,

K ′
q = Kq+1 , q = 1, 2, . . . , (27)

where R++, R−−, and R+− are as given in Eq. (15).
Long-range bonds as well as nearest-neighbor bonds

now contribute to the internal energy U ,

U =
NnnUnn +

∑∞
q=1 q−σNld,qUld,q

Nnn +
∑∞

q=1 Nld,q
, (28)

where

Unn =
1

Nnn

∑

〈ij〉nn

〈sisj〉 =
1

Nnn

∂

∂J
lnZ ,

Uld,q =
1

Nld,q

∑

〈ij〉ld,q

〈sisj〉 =
1

Nld,q

∂

∂Kq
lnZ . (29)

Here Nld,q = 4−qNnn is the number of long-range bonds
with mij = q. Since K ′

q does not depend on J , HB, or
HS , the thermodynamic densities and response functions
in V = (1, Unn, MB, MS , χBB, χBS , χSS) still obey the

recursion relation in Eq. (21) with a matrix
←→
W of the

same form as in Eq. (22). The densities Uld,q, on the
other hand, have the recursion relation

Uld,1 = b−dU ′
nn

Nnn

Nld,1

∂J ′

∂K1
= U ′

nn ,

Uld,q = b−dU ′
ld,q−1

Nld,q−1

Nld,q

∂K ′
q−1

∂Kq
= U ′

ld,q−1 (q > 1) .

(30)

Thus Uld,q = U
(q)
nn , where U

(q)
nn is the nearest-neighor den-

sity Unn in the system reached after q renormalization-
group transformations. Thus all the long-range bond
densities Uld,q are found by evaluating Unn along the
renormalization-group trajectory. Eq. (28) can be rewrit-
ten as

U =
3

4

(

Unn +
∞
∑

q=1

q−σ4−qU (q)
nn

)

, (31)

where we have also used Nnn+
∑∞

q=1 Nld,q = 4
3Nnn. From

Eq. (31) and the recursion relation for Unn, the leading
singularity in Unn is also the leading singularity in U . It
is sufficient to calculate the singular behavior of Unn to
obtain the critical properties of U and of the specific heat
C.
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FIG. 6: Three possible behaviors of the renormalization-group flows of the p = 1 network with uniform long-range bonds. The
curve in each diagram is the recursion J ′(J) from Eq. (32), with the straight line J ′ = J also drawn for reference. Intersections
of the curve with the straight line are fixed points. The flows are given by the staggered line, with successive values of J ′

corresponding to where the staggered line touches the curve. Only the dotted fixed points are physically accessible. The inset
on the right shows the continuous line of fixed points J∗(J0) as a function of J0.

1. Long-distance bonds with uniform interaction strengths

We first consider the case with no distance depen-
dence in the strengths of the long-range bonds, σ =
0. Here Kq = J0 for all q and after any number of
renormalization-group transformations, where J0 is the
value of J in the original system. The recursion relation
for J in the closed subspace HB = HS = 0 is

J ′ = J0 + ln(cosh 2J) . (32)

There are three types of behavior possible for the
renormalization-group flows, as illustrated in Fig. 6. For
J0 greater than a critical value Jc (Fig. 6(a)), the flows
go to the ordered phase sink J∗ = ∞. For J0 ≤ Jc

(Fig. 6(b,c)) the flows go to a continuous line of fixed
points J∗(J0), with a distinct fixed point for each start-
ing interaction J0. When J0 = Jc exactly, the J ′(J) curve
touches tangentially the straight line J ′ = J at J∗(Jc),
as shown in Fig. 6(b). This fact allows us to solve for
J∗(Jc) and Jc exactly:

J∗(Jc) =
1

4
ln 3 , Jc = ln

33/4

2
. (33)

Thus the system is conventionally ordered below the
critical temperature Tc = 1/Jc = 7.645. To under-
stand the novel high-temperature phase above Tc, we

look at the recursion matrix
←→
W

∗ evaluated along the
line of fixed points, J∗(J0) for J0 ≤ Jc. The form of
the matrix is as in Eq. (24), with u = tanh 2J∗(J0) and
v = 1 + sech2 2J∗(J0). Since J∗(J0) has the maximum
value of (ln 3)/4 = 0.275 for J0 = Jc and tends to zero
as J0 increases, 0 ≤ u ≤ 1/2, 7/4 ≤ v ≤ 2. The left

eigenvector of
←→
W

∗ with eigenvalue bd is

V
∗ =(1, Unn =

u

2− u
, MB = 0, MS = 0,

χBB =∞, χBS =∞, χSS =∞) . (34)

It follows that, in the high-temperature phase, MB =
MS = 0 and that the susceptibilities χBB , χBS , χSS are
infinite. Because the renormalization-group flows go to
a line of fixed points ending at the critical point J∗(Jc),
the correlation length is infinite throughout the phase
and the correlations have power-law decay, characteris-
tics which are typically seen just at T = Tc. (In contrast,
the low-temperature ordered phase has the usual expo-
nential decay of correlations.) This type of behavior, with
a transition between phases with finite and infinite corre-
lation lengths, was first seen in the Berezinskii-Kosterlitz-
Thouless phase transition [29, 30], though with an impor-
tant difference: There the algebraic order was in the low-
temperature phase, while here it is the high-temperature
phase that has this feature.

We now turn to the critical behavior of the system in
the ordered phase, as T → Tc from below. For small
negative t = (T − Tc)/Tc = (Jc − J0)/J0, we have J0 =
Jc + δ, where δ = Jc|t|. As can be seen from Fig.(6a), a
renormalization-group flow starting at J0 spends a large
number of iterations in the vicinity of J∗(Jc) = (ln 3)/4,
before escaping to the ordered phase sink at J∗ =∞. If
n0 is the number of iterations initially required to get J
close to J∗(Jc) and n∗ is the number of iterations where
J ≈ J∗(Jc), then as δ → 0, n0 remains constant, while
n∗ → ∞. The dependence of n∗ on δ (and hence on
|t|) determines the critical singularities. For a typical
critical point, n∗ ∼ (ln δ)/(yT ln b). However, in our case,
at J∗(Jc) the eigenvalue exponent yT = 0, and it turns
out that n∗ ∼ δ−1/2. We show this as follows: After n0

iterations, the flow is at J near J∗(Jc), with J < J∗(Jc).
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It then takes n∗/2 iterations to get J almost exactly at
J∗(Jc), and another n∗/2 iterations to get J a significant
distance away from J∗(Jc), namely to J − Jc ∼ O(1).
Considering the latter half of this flow, we expand the
recursion relation for J , Eq. (32), around J∗(Jc),

J ′ − J∗(Jc) = δ + (J − J∗(Jc)) +
3

2
(J − J∗(Jc))

2

− (J − J∗(Jc))
3 + · · · . (35)

Starting with J = J∗(Jc), from Eq. (35), we ob-
tain series expressions for J (i), the interaction after i
renormalization-group steps:

J (1) − J∗(Jc) = δ

J (2) − J∗(Jc) = 2δ +
3

2
δ2 − δ3 + · · ·

. . .

J (n) − J∗(Jc) = nδ +
1

4
(n− 1)n(2n− 1)δ2

+
1

80
(n− 3)(n− 1)n(24n2 − 29n + 2)δ3 + · · ·

(36)

For n ≪ δ−1/2, the first term in the series for J (n) −
J∗(Jc) is dominant, and the distance increases very
slowly as J (n)−J∗(Jc) ≃ nδ. For large n, the kth term in
the series ∼ n2k−1δk. Thus, when n is of the order δ−1/2,
J (n) − J∗(Jc) begins to increase significantly. From this
we can deduce that n∗ scales like δ−1/2.

We can now proceed to find the critical behaviors for
the correlation length, thermodynamic densities, and re-
sponse functions. By iterating the recursion relation for
the correlation length, ξ = bξ′, ξ = bn∗+n0ξ(n+n0), where
ξ(n) is the correlation length after n renormalization-
group steps. The singularity in ξ as δ → 0 comes from
the bn∗

factor,

ξ ∼ bn∗ ∼ e
C ln 2√

δ = e
A√
|t| , (37)

where n∗ ≈ Cδ−1/2 for some constant C, and A =
C/
√

Jc.
From Eqs. (22),(23), we extract the critical behaviors

of the internal energy, magnetizations, and susceptibil-
ities: The nearest-neighbor contribution to the internal
energy Unn transforms as

Unn = b−d ∂G′

∂J
+ b−dU ′

nn

∂J ′

∂J
. (38)

Since ∂G′/∂J is analytic, the singularity of Unn must
reside in Unnsing

= b−dU ′
nn∂J ′/∂J . Iterating over n0 +n∗

renormalization-group steps,

Unnsing
= b−(n0+n∗)dU (n0+n∗)

nn

n0+n∗
∏

i=1

∂J ′

∂J

∣

∣

∣

∣

J=J(i)

≃ b−n∗d

[

b−n0dU (n0+n∗)
nn

n0
∏

i=1

∂J ′

∂J

∣

∣

∣

∣

J=J(i)

]

, (39)

where we have used the fact that ∂J ′/∂J ≃ 1 for the
n∗ iterations during which J (i) ≃ J∗(Jc). After n + n∗

iterations the system has flowed away from criticality.
The singular dependence comes from the b−n∗d factor,

Unnsing
∼ b−n∗d ∼ e

− dA√
|t| . (40)

Thus the singular part of the specific heat is

Csing ∼ |t|−3/2e
− dA√

|t| . (41)

The magnetizations MB and MS recur as

(MB, MS) = b−d(M ′
B, M ′

S)

(

2 + 2u 3
2u

0 1

)

, (42)

where u = tanh 2J . Iterating over n0 + n∗

renormalization-group steps,

(MB, MS)

≃ b−(n0+n∗)d
(

(M
(n0+n∗)
B , M

(n0+n∗)
S ) · v

)

bn∗yH v ·R .

(43)

Here byH = 2 + 2 tanh2J∗(Jc) = 3 is the largest eigen-
value of the 2×2 derivative matrix in Eq. (42) evaluated
at J∗(Jc), v is the corresponding normalized (to unity)
eigenvector, and R is the product of the derivative ma-
trices of the first n0 iterations. The singular behavior
comes from the factor b−n∗(d−yH),

MB, MS ∼ b−n∗(d−yH) ∼ e
− (d−yH )A√

|t| . (44)

Since yH = 1.585, the magnetizations decrease exponen-
tially to zero as |t| → 0.

The susceptibilities χBB, χBS , and χSS recur as

(χBB , χBS , χSS)

= b−d(χ′
BB, χ′

BS , χ′
SS)





(2 + 2u)2
√

6u(1 + u) 3u2

2

0 2 + 2u
√

3
2
u

0 0 1





+b−d(G′, U ′
nn)

(

4v
√

6v 3v
2

−4u2
√

6u2 − 3u2

2

)

, (45)

where v = 1+sech2 2J . Since there is no singular behav-
ior in G′ and U ′

nnsing
→ 0 as |t| → 0, only the first term

in Eq. (45) contributes to the divergent singularity of the
susceptibilities. Iterating over n0 + n∗ steps,

(χBB , χBS , χSS)sing ∼ b−(n0+n∗)d

(

(χ
(n0+n∗)
BB , χ

(n0+n∗)
BS , χ

(n0+n∗)
SS ) · v

)

b2n∗yHv ·R , (46)

where b2yH = (2 + 2 tanh2J∗(Jc))
2 is the largest eigen-

value of the 3×3 derivative matrix in Eq. (45) evaluated
at J∗(Jc), v the corresponding normalized eigenvector,
and R the product of the derivative matrices for the first
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n0 steps. The singularity in the susceptibilities is given
by

χBBsing, χBSsing, χSSsing ∼ bn∗(2yH−d) ∼ e
(2yH−d)A√

|t| .
(47)

We illustrate these results in Fig. 7, plotting the spe-
cific heat, magnetizations, and zero-field susceptibilities
as a function of temperature. The essential singularity
in the specific heat (Eq. (41)) is invisible in the plot, the
function and all its derivatives being continuous at Tc,
with the rounded analytic peak occurring in the phase
opposite to the algebraic phase, namely in the ordered
phase at lower temperature. This behavior of the spe-
cific heat also occurs in the XY model undergoing a
Berezinskii-Kosterlitz-Thouless phase transition, as seen
in Fig. 5 of Ref.[44]. In the latter case, opposite to the
algebraic phase, the phase in which the rounded analytic
peak occurs is the disordered phase at higher tempera-
ture. In the XY model, the physical meaning of the high-
temperature rounded peak is the onset of short-range or-
der within the disordered phase. In our current system,
the physical meaning of the low-temperature rounded
peak is the saturation of long-range order that occurs
unusually away from criticality, due to the essential crit-
ical singularity of the magnetization, which corresponds
to a critical exponent β =∞ and the unusual flat onset
of the magnetization, as seen in Fig. 7.

2. Long-distance bonds with decaying interaction strengths

For σ > 0, the long-range bond strengths Kq = J0q
−σ

and thus at the nth renormalization-group step K
(n)
1 =

J0(n + 1)−σ. The interaction strength J (n) in the closed
subspace HB = HS = 0 is given by the recursion relation

J (n) = J0n
−σ + ln(cosh 2J (n−1)) , (48)

where J (0) = J0. The critical temperature Tc now de-
pends on the exponent σ, as shown in top curve of Fig. 8,
having the maximum value of Tc = 7.645 at σ = 0 and
decreasing with increasing σ (to Tc = 2.744 at σ = ∞,
where the system reduces to a nearest-neighbor, next-
nearest-neighbor model).

When the number of renormalization-group steps n→
∞, the J0n

−σ term in Eq. (48) goes to zero, so that the
fixed points of the renormalization-group transformation
are those of the p = 0 case analyzed in Sec. III.A. Thus
for temperatures close enough to Tc, satisfying |t| ≪ τ for
some crossover value τ , we expect to observe the p = 0
critical behavior. However, the width τ of the critical
region varies with σ, becoming extremely narrow as σ →
0. For a thermodynamic quantity scaling as |t|x inside
the critical region (x being one of the p = 0 exponents),
the general scaling behavior for small |t| not necessarily
in the critical region is |t|x+fx(t), where |fx(t)| ≪ |x|
when |t| ≪ τ , and the form of fx(t) may depend on σ.

FIG. 7: Specific heat, magnetizations, and magnetic suscep-
tibilities for p = 1 long-range bonds with uniform interaction
strengths (σ = 0), as a function of temperature 1/J . The dot-
ted vertical line marks the critical temperature Tc = 7.645.
The insets to the magnetization and susceptibility graphs
show ln | ln M | and ln(lnχ) versus ln |t|, where t = T−Tc

Tc
< 0.

The linear behavior in the insets agrees with the exponential

scaling predictions of MB, MS ∼ e−C/
√

|t| and χBB , χBS ,

χSS ∼ eD/
√

|t| with positive constants C and D .

In the following, we derive the leading order contribution
to fx(t) for the various physical properties of the system,
also determining the size of the critical region τ .

If the system is at its critical temperature, J0 = Jc,
the interaction strength under repeated renormalization-
group iterations, J (n) for n→∞, goes to the p = 0 crit-
ical fixed point, which we will label Jc0 and whose value
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FIG. 8: Critical temperature Tc = 1/Jc for various p as a
function of the exponent σ describing the decay of the long-
range bond interaction strengths. The curves for 0 < p < 1
were calculated using the techniques in Section III.C.

is given by Eq. (16). Let us denote this renormalization-

group flow as J
(n)
c , so that J

(0)
c = Jc and limn→∞ J

(n)
c =

Jc0. Now if we start instead at a temperature very close

to critical, J0 = Jc−Jct for small |t|, J (n) stays near J
(n)
c

for a large number of iterations n∗, before veering off to
either the ordered or disordered sink. The dependence
of n∗ on |t| is the key to the crossover behavior of the

system. The difference J (n)− J
(n)
c satisfies the recursion

relation

J (n+1) − J (n+1)
c = byT (n)(J (n) − J (n)

c ) , (49)

where

byT (n) =
∂J (n+1)

∂J (n)

∣

∣

∣

∣

J(n)=J
(n)
c

= 2 tanh2J (n)
c . (50)

Iterating Eq. (49),

J (n+1) − J (n+1)
c = b

∑n
k=0 yT (k)(J0 − Jc)

= b
∑n

k=0 yT (k)(−Jct) . (51)

Since J (n∗) − J
(n∗)
c ∼ O(1),

b
∑n∗

k=0 yT (k) ∼ |t|−1 and

n∗
∑

k=0

yT (k) ∼ − ln |t|
ln b

. (52)

In order to find n∗, we need to determine yT (n). From the

fact that limn→∞ J
(n)
c = Jc0 and the recursion relation

in Eq. (48), we consider for J
(n)
c the large n form of

J (n)
c = Jc0 −Bn−σ + · · · . (53)

Substitution into Eq. (48) yields

B =
J0

2 tanh 2Jc0 − 1
. (54)

Eqs. (53),(54) can also be obtained by expanding the
recursion relation around Jc0,

J (n)
c − Jc0 = J0n

−σ + 2 tanh2Jc0(J
(n−1)
c − Jc0) , (55)

and summing the series derived from iterating Eq. (55).
Substituting into Eq. (50),

yT (n) = yT0 − Cn−σ + · · · , (56)

where yT0 = ln(2 tanh 2Jc0)/ ln b = 0.747 is the p = 0
thermal eigenvalue exponent and C = 1.498J0. For use
below, we also deduce the magnetic exponents yH(n),

byH(n) =
∂H

(n+1)
B

H
(n)
B

∣

∣

∣

∣

∣

J(n)=J
(n)
c ,H

(n)
B =H

(n)
S =0

= 2 + 2 tanh2J (n)
c ,

yH(n) = yH0 −Dn−σ + · · · . (57)

where yH0 = ln(2+2 tanh2Jc0)/ ln b = 1.879 is the p = 0
magnetic eigenvalue exponent and D = 0.683J0.

From Eq. (56), we evaluate
∑n∗

k=0 yT (k) for large n∗,

n∗
∑

k=0

yT (k) ≃











n∗yT0 − Cn∗1−σ

1−σ , 0 < σ < 1 ,

n∗yT0 − C lnn∗, σ = 1 ,

n∗yT0 − Cζ(σ) , σ > 1 .

(58)

For σ ≥ 1, the n∗yT0 term is clearly dominant for large
n∗, so that, from Eq. (52),

n∗ ≃ − 1

yT0

ln |t|
ln b

≡ n∗
0 (σ ≥ 1) . (59)

This expression for n∗ leads to the same critical expo-
nents we found in the p = 0 case. On the other hand, for
the slow decay of 0 < σ < 1, Eq. (52) becomes

n∗yT0 −
Cn∗1−σ

1− σ
≃ − ln |t|

ln b
. (60)

Writing n∗ = n∗
0 + δn, the leading order contribution to

δn is found,

n∗ = n∗
0 +

Cn∗
0
1−σ

(1− σ)yT0
+ · · · (0 < σ < 1) . (61)

This expression for n∗ when 0 < σ < 1 yields the
leading-order corrections to p = 0 in the critical behav-
iors of the correlation length, internal energy, specific
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heat, magnetizations, and susceptibilities:

ξ ∼ bn∗ ∼ |t|
− 1

yT0
− C

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

,

Using ∼ b−n∗d+
∑n∗

k=0 yT (k)

∼ |t|
d−yT0

yT0
+ dC

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

,

Csing ∼ |t|
d−2yT0

yT0
+ dC

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

,

MB, MS ∼ b−n∗d+
∑n∗

k=0 yH(k)

∼ |t|
d−yH0

yT0
+

(d−yH0)C+yT 0D

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

,

χBB, χBS , χSS ∼ b−n∗d+2
∑n∗

k=0 yH(k)

∼ |t|
d−2yH0

yT0
+

(d−2yH0)C+2yT 0D

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

.
(62)

All the critical behavior expressions in Eqs. (62) have

the form |t|
x+ E

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

, where x is the appro-
priate p = 0 exponent and E is a non-universal (i.e., J0-
dependent) constant ∼ O(1). For temperatures |t| < τ ,
the leading-order correction term in the exponent should
be negligible,

1

(1− σ)y2−σ
T0

(

− ln |t|
ln b

)−σ

. ǫ , (63)

for some small quantity ǫ, giving an estimate for τ as
σ → 0,

τ ≈ b−(ǫ(1−σ)y2−σ
T0 )−1/σ

. (64)

With decreasing σ the critical region τ becomes rapidly
infinitesimal. For example, with σ = 1/2 and ǫ = 10−1,
τ ≈ 10−289.

The above corrections to critical behavior are illus-
trated in Fig. 9, where we plot numerically calculated
effective exponents ln MBB/ ln |t| and lnχBB/ ln |t| as a
function of |t| for several values of σ. It is clear that
for σ ≥ 1, the effective exponents quickly converge to
the horizontal lines showing the actual asymptotic expo-
nents. The convergence when σ < 1 is much slower, due

to the |t|
E

(1−σ)y
2−σ
T 0

(− ln |t|
ln b )

−σ

correction to asymptotic uni-
versal critical behavior. In Fig. 10 we explicitly show for
the case σ = 0.6 the magnetizations and susceptibilities
asymptotically approaching the scaling forms of Eq. (62)
for small |t|.

C. Critical Properties of the System with

Long-Range Quenched Randomness, 0 < p < 1

1. Exact renormalization-group transformation for

quenched probability distributions

When 0 < p < 1, there is long-range quenched random-
ness in the network, and the renormalized system will

FIG. 9: The calculated effective exponent of the magnetiza-
tion MB and magnetic susceptibility χBB , as a function of |t|
for t = T−Tc

Tc
< 0 and p = 1. Curves for several values of σ,

the exponent for the decay of the long-range bond strengths,
are shown. The horizontal dashed line in the upper graph
corresponds to the actual critical exponent for the suscepti-
bility, −γ = −(2yH0−d)/yT0 = −2.353, while the dashed line
in the lower graph corresponds to the actual magnetization
exponent, β = (d − yT0)/yT0 = 0.162.

have an inhomogenous distribution of all interaction con-
stants. The renormalization-group transformation needs
be formulated in terms of quenched probability distribu-
tions [45]. First consider the decimation transformation
effected on the cluster of Fig. 11, with nonuniform in-
teraction constants. The recursion relations for J ′

i′j′ ,
H ′

Bi′j′ , H ′
S , and G′

i′j′ are the locally differentiated ver-

sions of Eq. (27),

J ′(i′j′) = J ′(i′k1j
′) + J ′(i′k2j

′) + K1(i
′j′) ,

J ′(i′k1j
′) =

1

4
ln
(

R++R−−/R2
+−
)

(i′k1j′)
,

H ′
B(i′j′) = H ′

B(i′k1j
′) + H ′

B(i′k2j
′), H ′

S(i′) = HS(i′) ,

H ′
B(i′k1j

′) =
1

4
ln (R++/R−−)(i′k1j′) ,

G′(i′j′) = G′(i′k1j
′) + G′(i′k2j

′) ,

G′(i′k1j
′) =

1

4
ln
(

R++R−−R2
+−
)

(i′k1j′)
,

K ′
q = Kq+1 , q = 1, 2, . . . , (65)
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FIG. 10: The effective exponents of the magnetizations MB

and MS , and susceptibilities χBB , χBS, and χSS, for p = 1,
σ = 0.6, plotted as a function of |t| for t = T−Tc

Tc
< 0.

The dotted curves in the figures are the first-correction-to-
scaling predictions for the magnetization and susceptibility
from Eq. (62). The horizontal dashed line in the upper graph
corresponds to the p = 0 critical exponent for the susceptibil-
ity, −γ = −(2yH0 − d)/yT0 = −2.353, while the dashed line
in the lower graph corresponds to the p = 0 magnetization
exponent, β = (d − yT0)/yT0 = 0.162.

where R++, R−−, and R+− along path (i′kj′) are given
by the locally differentiated versions of Eq. (15),

R++ = x1x2y1y2z + x−1
1 x−1

2 z−1 ,

R−− = x−1
1 x−1

2 z + x1x2y
−1
1 y−1

2 z−1 ,

R+− = x1x
−1
2 y1z + x−1

1 x2y
−1
2 z−1 ,

x1 = eJ(i′k), x2 = eJ(kj′) ,

y1 = e2HB(i′k), y2 = e2HB(kj′), z = eHS(k). (66)

If there is no long-range bond connecting i′ and j′, the
equations above hold with K1(i

′j′) = 0. We shall work
in the closed subspace HB(ij) = HS(i) = 0 for all i,j,
where the recursion relation for J ′(i′j′) is a function

J ′(i′j′) = R({J(ij)}; K1(i
′j′)) , (67)

with {J(ij)} = {J(i′k1), J(k1j
′), J(i′k2), J(k2j

′)} being
the set of interaction constants in the cluster, and R given
in Eqs. (65) and (66).

FIG. 11: Cluster with quenched randomness on which the
decimation transformation of Eq. (65) is applied.

If the interaction constants J(ij) have a quenched
probability distribution P(J(ij)), and the long-range
bonds Kq(ij) have a quenched probability distribution

Q(q)(Kq(ij)), the distribution P(n)(J ′
i′j′) for the rescaled

system after n renormalization-group transformations is
given by the convolution

P(n)(J ′(i′j′)) =

∫

[

i′j′
∏

ij

dJ(ij)P(n−1)(J(ij))
]

dK1(i
′j′)Q(n−1)(K1(i

′j′))

δ (J ′(i′j′)−R({Jij}; K1(i
′j′)) , (68)

where the product runs over the nearest-neighbor bonds
ij in the cluster between i′ and j′. The long-range bond
distributionQ(n)(K ′

1(i
′j′)) after n renormalization-group

transformations is

Q(n)(K ′
1(i

′j′)) = p δ
(

K ′
1(i

′j′)− J0(n + 1)−σ
)

+ (1− p)δ (K ′
1(i

′j′)) . (69)

The convolution in Eq. (68) is implemented numer-
ically, with the probability distribution P(n)(Jij) rep-
resented by histograms, each histogram consisting of a
bond strength and its associated probability. The initial
distribution P(0)(Jij) is a single histogram at J0 with
probability 1. Since Eq. (68) is a convolution of five prob-
ability distributions, computational storage limits can be
used most effectively by factoring it into an equivalent
series of three pairwise convolutions, each of which in-
volves only two distributions convoluted with an appro-
priate R function. Two types of pairwise convolutions
are required, a “bond-moving” convolution with

Rbm(J(i1j1), J(i2j2)) = J(i1j1) + J(i2j2) , (70)

and a decimation convolution with

Rdc(J(i1j1), J(i2j2)) =
1

2
ln

(

cosh(J(i1j1) + J(i2j2))

cosh(J(i1j1)− J(i2j2))

)

.

(71)
Starting with the probability distribution P(n−1), the
following series of pairwise convolutions gives the total
convolution of Eq. (68): (i) a decimation convolution of
P(n−1) with itself, yielding PA; (ii) a bond-moving convo-
lution of PA with itself, yielding PB; (iii) a bond-moving
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convolution of PB with Q(n−1), yielding the final result
P(n).

Because the number of histograms representing the
probability distribution increases rapidly with each
renormalization-group step, we use a binning proce-
dure [46]: before every pairwise convolution, the his-
tograms are placed on a grid, and all histograms falling
into the same grid cell are combined into a single his-
togram in such a way that the average and the standard
deviation of the probability distribution are preserved.
Histograms falling outside the grid, representing a neg-
ligible part of the total probability, are similarly com-
bined into a single histogram. Any histogram within a
small neighborhood of a cell boundary is proportionately
shared between the adjacent cells. After the convolu-
tion, the original number of histograms is reattained. For
the results presented below we used 562,500 bins, requir-
ing the calculation of 562,500 local renormalization-group
transformations at every iteration.

For the thermodynamic densites Mα, given by

Mα =
1

Nα

∑

ij

∂ lnZ

∂Kα(ij)
, (72)

the chain rule yields conjugate recursion relations for the
quenched random system,

Mα = b−d
∑

β

1

N ′
β

∑

i′j′

∂ lnZ

∂K ′
β(i′j′)

i′j′
∑

ij

Nβ

Nα

∂K ′
β(i′j′)

∂Kα(ij)
,

(73)
where the rightmost sum runs over nearest-neighbor
bonds ij in the cluster between sites i′ and j′. As an
approximation, this sum is replaced by its average value,
so that

Mα ≈ b−d
∑

β

M ′
βT βα with T βα ≡

i′j′
∑

ij

Nβ

Nα

∂K ′
β(i′j′)

∂Kα(ij)
,

(74)
Here the overbar denotes averaging over the probabil-
ity distributions of the interaction constants in the clus-
ter shown in Fig. 11. Using the recursion relations in
Eq. (65), in the subspace HBij = HS = 0,

T =













4
∑i′j′

ij
∂G′(i′j′)

∂J(ij) 0 0

0
∑i′j′

ij
∂J′(i′j′)
∂J(ij) 0 0

0 0
∑i′j′

ij
∂H′

B(i′j′)
∂HB(ij)

∑i′j′

i
∂H′

B(i′j′)
∂HS(i)

0 0 0
∑i′

i
∂H′

S(i′)
∂HS(i)













=







4 2u 0 0
0 2u 0 0
0 0 2 + 2u 3w

2
0 0 0 1






, (75)

FIG. 12: Critical temperature Tc as a function of the proba-
bility of long-range bonds p, plotted for several values of the
exponent σ characterizing the decay of the long-range bond
strengths.

where

u =
1

2
(tanh(J(i′k1) + J(k1j

′))

+ tanh(J(i′k2) + J(k2j
′))),

w =
sinh(J(i′k1) + J(k1j

′) + J(i′k2) + J(k2j
′))

2 cosh(J(i′k1) + J(k1j′)) cosh(J(i′k2) + J(k2j′))
.

(76)

For a fixed probability distribution of the
renormalization-group transformation (e.g., Fig. 13), the
thermal and magnetic eigenvalues exponents yT and yH

are obtained as

byT =

i′j′
∑

ij

∂J ′(i′j′)

∂J(ij)
= 2u ,

byH =

i′j′
∑

ij

∂H ′
B(i′j′)

∂HB(ij)
= 2 + 2u . (77)

2. Results

The quenched random system critical temperatures
Tc(p) = J−1

c (p) are shown as a function of p, in Fig. 12,
for several values of the decay exponent σ. For any σ > 0,
in renormalization-group trajectories starting near Tc,
the probability distribution P(J(ij)) spends many itera-
tions in the vicinity of the unstable critical fixed distri-
bution which is a delta function at Jc(p = 0), the p = 0
critical interaction strength given by Eq. (16). Similarly
to the results of the p = 1 case given above, when σ > 0,
the critical behavior for all p is that of p = 0, though
with a rapidly decreasing critical region as p → 1 and
σ → 0.

On the other hand, for σ = 0, a variety of critical be-
haviors occurs as p ranges from 0 to 1. The unstable crit-
ical fixed distribution has a non-trivial structure which
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FIG. 13: Histograms of the unstable critical fixed probability
distributions for p = 0.2, σ = 0 (left column) and p = 0.7,
σ = 0 (right column). The bottom panels show the actual
histograms (numbering 1,128,002 in each case), while in the
top panels the histograms are combined in order to clearly see
the outlines of the probability distributions.

depends on p, two examples of which are shown in Fig. 13.
The eigenvalue exponents yT and yH from the critical
fixed distributions change continuously with p (Fig. 14),
and with them the critical exponents characterizing the
phase transition. As p is increased from zero, both yT

and yH decrease from their p = 0 values, attaining their
p = 1 values of yT = 0 and yH = ln 3/ ln 2 at p = 0.494.
Thus, the system has two distinct regimes of criticali-
ties. For p < 0.494 the critical behavior is described by
power laws with exponents ν = 1/yT , α = (2yT − d)/yT ,
β = (d−yH)/yT , and γ = (2yH−d)/yT . As yT → 0 with
p → 0.494, the exponents blow up as ν → ∞, α→ −∞,
β →∞, and γ →∞. For p ≥ 0.494 the critical behavior
is that of the p = 1, σ = 0 case given above, with expo-
nentiated power laws of the thermodynamic quantities,
and the high-temperature phase has infinite correlation
length. The onset of exponentiated power-law critical be-
havior at p = 0.494, due to the influence of the long-range
bonds, in fact corresponds to a change in the geometri-
cal features of the network. As we have noted in Fig. 4,
for p & 0.5 the average path length ℓ has a small world
character, ℓ ∼ lnNn, while for smaller p it increases more

rapidly like N
1/d
n , as in a regular lattice.

The spectrum of critical behaviors for varying p at

FIG. 14: The thermal and magnetic eigenvalues yT and yH ,
and the corresponding specific heat and magnetic exponents
α and β, as a function of p, for σ = 0. The probability p =
0.494, marking the onset of exponentiated power-law critical
behavior, is shown with a dotted line.

FIG. 15: Specific heat calculated for various probabilities
p, plotted with respect to the normalized temperature (T −
Tc)/Tc, with σ = 0. The vertical dotted line corresponds to
the critical temperature T = Tc. The inset shows a close-up
of the specific heat near Tc for p = 0.06, showing both the
infinite-slope singularity at T = Tc, and the analytic peak
that appears for T < Tc when p & 0.053.
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FIG. 16: Magnetization calculated for various probabilities p,
plotted with respect to the normalized temperature variable
(Tc −T )/Tc, with σ = 0. For p > 0.363, note the unusual flat
onset at Tc.

σ = 0 is illustrated in Figs. 15 and 16 for the specific
heat and magnetization versus temperature for different
values of p. With increasing p from p = 0, the low-
temperature analytic peak, due to the saturation of long-
range order, as mentioned above, appears at p ≈ 0.053,
as the low-temperature amplitude of the critical cusp
changes sign, and shifts to lower temperatures as p fur-
ther increases. At the critical-point singularity, with in-
creasing p from p = 0, the specific heat exponent α con-
tinuously decreases from its p = 0 value of −0.677: The
cusp disappears at p = 0.105 as α crosses −1, so that
the specific heat acquires a continuous slope at critical-
ity, but all higher derivatives remain divergent. The sec-
ond derivative at criticality also becomes continuous, all
higher derivatives remaining divergent, at p = 0.249 as
α crosses −2. Thus, as α crosses the consecutive nega-
tive integers at at p = 0.105, 0.249, 0.312, 0.349, . . ., the
divergence begins at a higher derivative, until the accu-
mulation point at p = 0.494, where α reaches −∞, and
the essential singularity occurs for the higher values of p.

In the magnetization, with increasing p from p = 0, the
critical exponent β continuously increases from its p =
0 value of 0.162. Thus, the slope at criticality changes
from infinity to zero at p = 0.363 as β crosses 1, but all
higher derivatives of the magnetization remain divergent.
The second derivative at criticality also becomes zero, all
higher derivatives remaining divergent, at p = 0.424 as β
crosses 2. At each crossing of a positive integer by β, at
p = 0.363, 0.424, 0.446, 0.457, . . ., the zeros extend to one
higher derivative and the divergence begins at one higher
derivative, until the accumulation point at p = 0.494,
where β reaches ∞, and the essential singularity occurs
for the higher values of p.
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APPENDIX A: DERIVATION OF NETWORK

CHARACTERISTICS

1. Average clustering coefficient Cm

Consider a site in the infinite lattice with knn = 2m,
kld = 2m−2, and m > 1, its possibly connected sites, and
all possible bonds among those sites. The m = 4 case is
shown in Fig. 17. To calculate the average clustering co-
efficient Cm of such a site, we must consider the various
configurations of long-range bonds among the possibly
connected sites. The 2m − 2 potential long-range bonds
emanating from the original site we divide into two cate-
gories: the 2m−1 “shortest” ones (to the sites marked as
squares in Fig. 17), and the remaining 2m−1 − 2 bonds
(to the sites marked as triangles in Fig. 17). The prob-
ability for r bonds of the first category and r′ bonds of
the second category is

Pr,r′ =

(

2m−1

r

)(

2m−1 − 2

r′

)

pr+r′
(1− p)2

m−2−r−r′
.

(A1)
For a given r and r′, the site has kr,r′ = 2m + r + r′

connected sites, so its average clustering coefficient is

Cm =
2m−1
∑

r=0

2m−1−2
∑

r′=0

Pr,r′
Br,r′

kr,r′(kr,r′ − 1)/2
, (A2)

where Br,r′ is the average number of bonds which actu-
ally exist among the kr,r′ sites connected to the original
site. Each of the r bonds of the first category contributes
two to Br,r′ , as can be seen in Fig. 17, where there are
nearest-neighbor bonds connecting every square site to

two of the 2m filled circle sites. There are
(

r+r′

2

)

ways
of choosing pairs among the r + r′ neighbors connected
to the main site by long-range bonds, but of these pairs,

only a fraction (2m − 3)/
(

2m−2
2

)

corresponds to possible
long-range bonds between those neighbors, and of these
possible bonds on average only a fraction p will actually
exist. So the total expression for Br,r′ is

Br,r′ = 2r + p

(

r + r′

2

)

2m − 3
(

2m−2
2

) . (A3)

Putting together Eqs. (A1)-(A3) yields the expression for
Cm in Eq. (4).
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FIG. 17: The open circle on top represents a site with knn =
2m, kld = 2m − 2, for m = 4, and the figure shows all possible
neighbors of this site, together with the possible bonds among
those neighbors. The 2m sites connected to the top site by
nearest-neighbor bonds are drawn as filled circles, the 2m−1

sites potentially connected to the top site by the shortest long-
range bonds are drawn as squares, and the other 2m−1 − 2
potential neighbors as triangles.

2. Average shortest-path length ℓn

for p = 0 and p = 1

Let us denote the set of sites making up the lattice after
n construction steps as Ln. Then the average shortest-
path length for Ln is defined to be:

ℓn =
Sn

Nn(Nn − 1)/2
, (A4)

where

Sn =
∑

i,j∈Ln

dij , (A5)

and dij is the length of the shortest path between sites
i and j. For the cases p = 0 and p = 1, the lattice
has a self-similar structure that allows one to calculate
ℓn analytically. As shown in Fig. 18, the lattice Ln+1 in
these cases is composed of four copies of Ln connected

at the edges, which we label L
(α)
n , α = 1, . . . , 4. We can

write the sum over all shortest paths Sn+1 as

Sn+1 = 4Sn + ∆n , (A6)

where ∆n is the sum over all shortest paths whose end-
points are not in the same Ln branch. The solution of
Eq. (A6) is

Sn = 4n−1S1 +

n−1
∑

m=1

4n−m−1∆m . (A7)

The paths that contribute to ∆n must all go through at
least one of the four edge sites (A, B, C, D) at which
the different Ln branches are connected. The analytical
expression for ∆n, which we call the crossing paths, are
found below for p = 0 and p = 1.

FIG. 18: For p = 0 or p = 1, the lattice after n+1 construction
steps, Ln+1, is composed of four copies of Ln connected to one
another as above. The p = 1 case is shown above; for p = 0
the horizontal long-range bond is absent.

a. Crossing paths ∆n for p = 0

Let ∆α,β
n denote the sum of all shortest paths with

endpoints in L
(α)
n and L

(β)
n . If L

(α)
n and L

(β)
n meet at

an edge site, ∆α,β
n excludes paths where either endpoint

is that shared edge site. If L
(α)
n and L

(β)
n do not meet,

∆α,β
n excludes paths where either endpoint is any edge

site. Then the total sum ∆n is given by

∆n =∆1,2
n + ∆2,3

n + ∆3,4
n + ∆4,1

n + ∆1,3
n + ∆2,4

n

− 2 · 2n+1 . (A8)

The last term at the end compensates for the overcount-
ing of certain paths: the shortest path between A and
C, with length 2n+1, is included in both ∆2,3

n and ∆4,1
n .

Similarly the shortest path between B and D, also with
length 2n+1, is included in both ∆1,2

n and ∆3,4
n .

By symmetry, ∆1,2
n = ∆2,3

n = ∆3,4
n = ∆4,1

n and ∆1,3
n =

∆2,4
n , so that

∆n = 4∆1,2
n + 2∆1,3

n − 2 · 2n+1 . (A9)

∆1,2
n is given by the sum

∆1,2
n =

∑

i∈L(1)
n , j∈L(2)

n
i,j 6=A

dij

=
∑

i∈L(1)
n , j∈L(2)

n
i,j 6=A

(diA + dAj)

= (Nn − 1)
∑

i∈L
(1)
n

diA + (Nn − 1)
∑

j∈L
(2)
n

dAj

= 2(Nn − 1)
∑

i∈L
(1)
n

diA , (A10)
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where we have used
∑

i∈L
(1)
n

diA =
∑

j∈L
(2)
n

dAj . To find
∑

i∈L
(1)
n

diA, we examine the structure of the hierarchical

lattice at the nth level. L
(1)
n contains νn(m) points with

diA = m, where 1 ≤ m ≤ 2n, and νn(m) can be written
recursively as follows:

νn(m) =

{

2n if m is odd ,

νn−1(m/2) if m is even .
(A11)

Expressing
∑

i∈L
(1)
n

diA in terms of νn(m),

fn ≡
∑

i∈L
(1)
n

diA =

2n
∑

m=1

mνn(m) . (A12)

Eqs. (A11) and (A12) relate fn and fn−1, allowing the
solution of fn by induction:

fn =

2n−1
∑

k=1

(2k − 1)2n +

2n−1
∑

k=1

2kνn−1(k)

= 23n−2 + 2fn−1

=
n−2
∑

k=0

2k23(n−k)−2 + 2n−1f1

=
1

3
2n(2 + 4n) , (A13)

where we have used f1 = ν1(1)+2ν1(2) = 4. Substituting
Eq. (A13) and Nn = 2

3 (2 + 4n) into Eq. (A10),

∆1,2
n =

1

9
21+n(1 + 21+2n)(2 + 4n) . (A14)

Proceeding similarly,

∆1,3
n =

∑

i∈L(1)
n , j∈L(3)

n
i6=A,D, j 6=B,C

dij

=
∑

i∈L(1)
n , j∈L(3)

n

i6=A, j 6=B, diA+djB<2n

(diA + 2n + djB)

+
∑

i∈L(1)
n , j∈L(3)

n

i6=D, j 6=C, diD+djC<2n

(diD + 2n + djC)

+
∑

i∈L(1)
n , j∈L(3)

n
i6=A, j 6=B, diA+djB=2n

2n+1 . (A15)

The first and second terms are equal and denoted by gn,
and the third term is denoted by hn, so that ∆1,3

n =

2gn + hn. The quantity gn is evaluated as follows:

gn =

2n−2
∑

m=1

2n−1−m
∑

m′=1

νn(m)νn(m′)(m + 2n + m′)

=
2n−1−2
∑

k=1

2n−1−1−k
∑

k′=1

νn−1(k)νn−1(k
′)(2k + 2n + 2k′)

+

2n−1−1
∑

k=1

2n−1−k
∑

k′=1

νn−1(k)2n(2k + 2n + 2k′ − 1)

+

2n−1−1
∑

k=1

2n−1−k
∑

k′=1

2nνn−1(k
′)(2k − 1 + 2n + 2k′)

+

2n−1−1
∑

k=1

2n−1−k
∑

k′=1

22n(2k − 1 + 2n + 2k′ − 1) .

(A16)

The fourth term can be summed directly, yielding

8n−1(2n − 2)(5 · 2n − 2)/3 . (A17)

The second and third terms in Eq. (A16) are equal and
can be simplified by first summing over k′, yielding

2n−2
2n−1−1
∑

k=1

νn−1(k)(3 · 4n − 2n+2k − 4k2) . (A18)

For use in Eq. (A18),
∑2n−1−1

k=1 νn−1(k) = Nn−1 − 2, and
using Eq. (A13),

2n−1−1
∑

k=1

kνn−1(k) =

2n−1
∑

k=1

kνn−1(k)− 2n−1

= 2n−1(4n−1 − 1)/3 . (A19)

Analogously to Eq. (A13), we find

2n−1−1
∑

k=1

k2νn−1(k) =
1

9
22n−3(14 + 4n − 3n− 3)− 2n .

(A20)

With the latter results, Eq. (A18) becomes

8n−1(−23 + 5 · 4n + 3n)/9 . (A21)

With Eqs. (A17) and (A21), Eq. (A16) becomes

gn = 2gn−1 + 8n−1(−34− 9 · 2n+2 + 25 · 4n + 6n)/9 .
(A22)

Using g1 = 0, Eq. (A22) is solved inductively:

gn = 2n(164− 126 · 4n − 108 · 8n + 70 · 16n

+ 21 · 4nn)/189 . (A23)
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All that is left to find an expression for ∆1,3
n is to evaluate

hn = 2n+1
2n−1
∑

m=1

νn(m)νn(2n −m)

= 2n+1
2n−1
∑

m=1

ν2
n(m)

= 2n+1





2n−1
∑

k=1

4n +

2n−1−1
∑

k=1

ν2
n−1(k)





= 16n + 2hn−1 , (A24)

where the symmetry νn(m) = νn(2n −m) was used. Us-
ing h1 = 16, Eq. (A24) is solved inductively:

hn = 2n+3(8n − 1)/7 . (A25)

From Eqs. (A23) and (A25),

∆1,3
n = 2n+1(8− 18 · 4n + 10 · 16n + 3 · 4nn)/27 .

(A26)

Substituting Eqs. (A14) and (A26) into Eq. (A9), we ob-
tain the final expression for the crossing paths ∆n when
p = 0:

∆n = 22+n(−7 + 3(4 + n)4n + 22 · 16n)/27 . (A27)

b. Crossing paths ∆n for p = 1

In the p = 1 case, ∆n is

∆1,2
n + ∆2,3

n + ∆3,4
n + ∆4,1

n + ∆1,3
n + ∆2,4

n − 3 . (A28)

The last term compensates for the overcounting of the
shortest path between A and C, with length 2, and the
shortest path between B and D, with length 1.

Again by symmetry, ∆1,2
n = ∆3,4

n , ∆2,3
n = ∆4,1

n , and
∆1,3

n = ∆2,4
n , so that

∆n = 2∆1,2
n + 2∆2,3

n + 2∆1,3
n − 3 . (A29)

We define

dtot
n ≡

∑

i∈L
(1)
n

diA ,

dnear
n ≡

∑

i∈L(1)
n

diA<diD

diA , Nnear
n ≡

∑

i∈L(1)
n

diA<diD

1 ,

dmid
n ≡

∑

i∈L(1)
n

diA=diD

diA , Nmid
n ≡

∑

i∈L(1)
n

diA=diD

1 ,

dfar
n ≡

∑

i∈L(1)
n

diA>diD

diA , N far
n ≡

∑

i∈L(1)
n

diA>diD

1 , (A30)

so that dtot
n = dnear

n +dmid
n +dfar

n and Nn = Nnear
n +Nmid

n +
N far

n . By symmetry Nnear
n = N far

n . Thus,

∆1,2
n =

∑

i∈L
(1)
n , j∈L

(2)
n

i,j 6=A

dij =
∑

i∈L
(1)
n , j∈L

(2)
n

i,j 6=A, diA≤diD

(diA + dAj)

+
∑

i∈L
(1)
n , j∈L

(2)
n , i,j 6=A

diA>diD, djA≤djB

(diA + dAj)

+
∑

i∈L
(1)
n , j∈L

(2)
n , i,j 6=A

diA>diD, djA>djB

(diD + 1 + dBj)

=
∑

i∈L
(1)
n , i6=A

diA≤diD

[

(Nn − 1)diA + d
tot
n

]

+
∑

i∈L
(1)
n , i6=A

diA>diD

[

(Nnear
n + N

mid
n − 1)diA + d

near
n + d

mid
n

]

+
∑

i∈L
(1)
n , i6=A

diA>diD

[Nnear
n (diD + 1) + d

near
n ]

= (Nn − 1)(dnear
n + d

mid
n ) + (Nnear

n + N
mid
n − 1)dtot

n

+ (Nnear
n + N

mid
n − 1)dfar

n + N
near
n (dnear

n + d
mid
n )

+ N
near
n (dnear

n + N
near
n ) + N

near
n d

near
n . (A31)

The horizontal long-range bond does not affect ∆2,3
n , so

that Eq. (A10) still holds, ∆2,3
n = 2(Nn− 1)dtot

n . Finally,

∆1,3
n =

∑

i∈L
(1)
n , j∈L

(3)
n

i6=A,D, j 6=B,C

dij =
∑

i∈L
(1)
n , j∈L

(3)
n

i6=A,D, j 6=B,C, djB>djC

(diD + 1 + dCj)

+
∑

i∈L
(1)
n , j∈L

(3)
n , i6=A,D

j 6=B,C, diA≥diD , djB≤djC

(diD + 1 + dBj)

+
∑

i∈L
(1)
n , j∈L

(3)
n , i6=A,D

j 6=B,C, diA<diD , djB≤djC

(diA + 1 + dBj )

=
∑

i∈L
(1)
n , i6=A,D

[(Nnear
n − 1)(diD + 1) + d

near
n ]

+
∑

i∈L
(1)
n , i6=A,D

diA≥diD

[

(Nnear
n + N

mid
n − 1)(diD + 1)

+d
near
n + d

mid
n

]

+
∑

i∈L
(1)
n , i6=A,D

diA<diD

[

(Nnear
n + N

mid
n − 1)(diA + 1)

+d
near
n + d

mid
n

]

= (Nnear
n − 1)(dtot

n − 1 + Nn − 2) + (Nn − 2)dnear
n

+ (Nnear
n + N

mid
n − 1)(dnear

n + d
mid
n + N

near
n + N

mid
n − 1)

+ (Nnear
n + N

mid
n − 1)(dnear

n + d
mid
n )

+ (Nnear
n + N

mid
n − 1)(dnear

n + N
near
n − 1)

+ (Nnear
n − 1)(dnear

n + d
mid
n ) . (A32)

Having ∆1,2
n , ∆2,3

n , and ∆1,3
n in terms of the quantities in

Eq. (A30), the next step is to explicitly determine these
quantities.

We consider a site i ∈ L
(1)
n and the shortest-path dis-

tances to the edges, diA and diD. If the site was added
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FIG. 19: The first three construction steps of the lattice with
p = 1, with the sites labeled by ordered pairs denoting the
shortest-path distance to the left and right edge sites.

to the lattice at the nth construction step, the values
of diA and diD do not change at subsequent steps, since
the shortest path to the edge sites is always along the
bonds added earliest. We see this in Fig. 19, where the
sites are labeled by the ordered pairs diD, diA, for the
first three construction steps. We denote by an

m,m′ the
number of sites added at the nth construction step which
have diA = m, diD = m′. Since A and D are connected
by a long-range bond, m′ and m can differ by at most
1. Thus for a given m there are three categories of sites

added at step n, respectively numbering an
m,m+1, a

n
m,m,

and an
m+1,m. By symmetry an

m+1,m = an
m,m+1. The m,

m′ values of sites added at step n depend on the neigh-
boring sites, which were added at previous construction
steps. For example, there are 2n sites added at the nth
step (n ≥ 2) which are nearest-neighbors of site A, so
these new sites have m = 1, m′ = 2, giving an

1,2 = 2n.
Sites with m = 1, m′ = 2 will in turn get neighbors with
m = 2, m′ = 3 in subsequent steps. The relationship
between an

2,3 and ak
1,2 for k < n is

an
2,3 =

n−2
∑

k=2

2n+1−kak
1,2 = 2n+1(n− 3) . (A33)

Similarly,

an
3,4 =

n−2
∑

k=4

2n+1−kak
2,3 = 2n+1(n− 4)(n− 5) . (A34)

Since sites with distances m, m + 1 do not appear before
the construction step n = 2m, the sum over ak

2,3 starts
at k = 4. Proceeding in this manner, for general m ≥ 1
and n ≥ 2m,

an
m,m+1 =

n−2
∑

k=2(m−1)

2n+1−kak
m−1,m

=
2m−12n(n−m− 1)!

(m− 1)!(n− 2m)!
. (A35)

The value of an
0,1 is 1 for n = 0 and 0 for n > 0. Analo-

gously, for general m ≥ 2 and n ≥ 2m− 1,

an
m,m =

2m−12n(n−m− 1)!

(m− 2)!(n− 2m + 1)!
. (A36)

The value of an
1,1 is 2 for n = 1 and 0 for n > 1.

Thus we obtain the quantities in Eq. (A30),

N
near
n =

n
∑

n′=1

⌊n′/2⌋
∑

k=1

a
k
m,m+1 =

{

1 + 2
9
(2n + 4n − 2)

1 + 2
9
(2n − 2)(2n + 1)

N
mid
n =

n
∑

n′=1

⌊(n′+1)/2⌋
∑

k=1

a
k
m,m =

{

2
9
(2n − 1)2

2
9
(2n + 1)2

d
near
n =

n
∑

n′=1

⌊n′/2⌋
∑

k=1

ma
k
m,m+1 =

{

2
81

(2n + 2)(2n + 3 · 2n
n− 1)

2
81

(2n − 2)(2n + 3 · 2nn + 1)

d
mid
n =

n
∑

n′=1

⌊(n′+1)/2⌋
∑

k=1

ma
k
m,m

=

{

2
81

[

−2n+3 − 12 · 2n
n + (3n + 7)4n + 1

]

2
81

[

2n+3 + 7 · 4n + 3n(22+n + 4n) + 1
]

(A37)

where ⌊x⌋ denotes the largest integer ≤ x and the dif-
ferent results for n even and odd are given consecutively,
and

d
far
n =

n
∑

n′=1

⌊n′/2⌋
∑

k=1

(m + 1)ak
m,m+1 = d

near
n + N

near
n . (A38)
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Substituting the results of Eq. (A37) into Eqs. (A31)-
(A32), for p = 1,

∆n =
1

27
[−23− 8(−2)n + 8 · 4n + (104 + 48n)16n] .

(A39)

Substituting Eqs. (A27) and (A39) for ∆m into

Eq. (A7), and using S1 = 8, 7 for p = 0, 1,

Sn =

{

2n

189 [98 + 27 · 2n + (42 + 21n)4n + 22 · 16n]
1
81 [23 + 4(−2)n + (44 + 6n)4n + (10 + 12n)16n]

(A40)
Eq. (A40) in Eq. (A4) yields the analytical expressions
for ℓn in Eqs. (7) and (8).
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