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2Department of Physics, Koç University, Sarıyer 34450, Istanbul, Turkey,
3Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, U.S.A.,

4Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S.A.,
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The renormalization-group theory of the d = 3 tJ model is extended to further-neighbor an-
tiferromagnetic or electron-hopping interactions, including the ranges of frustration. The global
phase diagram of each model is calculated for the entire range of temperatures, electron densities,
further/first-neighbor interaction strength ratios. In addition to the τtJ phase seen in earlier studies
of the nearest-neighbor d = 3 tJ model, the τHb phase seen before in the d = 3 Hubbard model
appears both near and away from half-filling. These distinct τ phases potentially correspond to
different (BEC-like and BCS-like) superconducting phases.
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I. INTRODUCTION

High-Tc superconductivity, discovered by Bednorz and
Müller in 1986 [1], comes out as an effect of strongly cor-
related electrons in narrow energy bands.[2] This type of
superconductivity is observed in antiferromagnetic Mott
insulators which, despite partially filled d-orbitals, have
strong Coulomb repulsion effects. A simple model that
embodies this effect, by an on-site Coulomb repulsion, is
the Hubbard model [3]. In the limit of very strong on-site
Coulomb repulsion, second-order perturbation theory on
the Hubbard model yields the tJ model [4, 5], in which
sites doubly occupied by electrons do not exist.

Studies of the Hubbard model [6] and of the tJ model
[7], including spatial anisotropy [8] and quenched non-
magnetic impurities [9] in good agreement with experi-
ments, have shown the effectiveness of renormalization-
group theory, especially in calculating phase diagrams at
finite temperatures for the entire range of electron den-
sities in d = 3. These calculations have revealed new
phases, dubbed the τ phases, which occur only in these
electronic conduction models under doping conditions.
The telltale characteristics of the τ phases are, in contrast
to all other phases of the systems, a non-zero electron-
hopping probability at the largest length scales (at the
renormalization-group thermodynamic sink fixed points)
and the divergence of the electron-hopping constant t
under repeated rescalings. Furthermore, the phase di-
agram topologies, the doping ranges, and the contrast-
ing quantitative τ and antiferromagnetic behaviors un-
der quenched impurities [9] have all justified the obvious
suspicion that the τ phases correspond to the supercon-
ducting phases in high-Tc materials [10, 11]. Two distinct
τ phases have been found in the Hubbard model [6], τHb
and τtJ , respectively occurring at weak and strong cou-
pling. Specific heat calculations [6] have pointed to BCS-
like and BEC-like superconductivity, respectively. Only

the τtJ phase was found in the tJ model.
The current work addresses the issue of whether

both τ phases can be found in the tJ model, via
the inclusion of further-neighbor antiferromagnetic (J2)
or further-neighbor electron hopping (t2) interactions,
which are also dictated by experimental systems. We find
that, depending on the temperature and doping level,
the further-neighbor interactions may compete with the
further-neighbor effects of the nearest-neighbor interac-
tions, namely that frustration occurs as a function of
temperature and doping level. This competition (or rein-
forcement) between the interactions of successive length
scales underpins the calculated evolution of the phase di-
agrams. Global phase diagrams are obtained for the en-
tire ranges of each type of further-neighbor interaction.
Both τHb and τtJ phases are indeed found to occur in the
tJ model with the inclusion of these further-neighbor in-
teractions. Furthermore, distinctive lamellar phase dia-
gram structures of antiferromagnetism interestingly sur-
round the τ phases in the doped regions.

II. THE tJ HAMILTONIAN

On a d-dimensional hypercubic lattice, the tJ model is
defined by the Hamiltonian

− βH = P



−t
∑

〈ij〉,σ

(

c†iσcjσ + c†jσciσ
)

−J
∑

〈ij〉
Si · Sj + V

∑

〈ij〉
ninj + µ̃

∑

i

ni



P , (1)

where β = 1/kBT and, with no loss of generality [7],

t ≥ 0 is used. Here c†iσ and cjσ are the creation and
annihilation operators for an electron with spin σ =↑ or
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↓ at lattice site i, obeying anticommutation rules, ni =

ni↑ + ni↓ are the number operators where niσ = c†iσciσ,

and Si =
∑

σσ′ c
†
iσsσσ′ciσ′ is the single-site spin opera-

tor, with s the vector of Pauli spin matrices. The projec-
tion operator P =

∏

i(1 − ni↓ni↑) projects out all states
with doubly-occupied sites. The interaction constants
t, J , V and µ̃ correspond to electron hopping, nearest-
neighbor antiferromagnetic coupling (J > 0), nearest-
neighbor electron-electron interaction, and chemical po-
tential, respectively. From rewriting the tJ Hamiltonian
as a sum of pair Hamiltonians −βH(i, j), Eq. (1) becomes

−βH =
∑

〈ij〉
P

[

−t
∑

σ

(

c†iσcjσ + c†jσciσ
)

− JSi · Sj + V ninj + µ(ni + nj)

]

P

≡
∑

〈ij〉
{−βH(i, j)} ,

(2)

where µ = µ̃/2d. The standard tJ Hamiltonian is a spe-
cial case of Eq. (2) with V/J = 1/4, which stems from
second-order perturbation theory on the Hubbard model
[4, 5].

III. RENORMALIZATION-GROUP

TRANSFORMATION

A. d = 1 Recursion Relations

In d = 1, the Hamiltonian of Eq. (2) is

− βH =
∑

i

{−βH(i, i+ 1)} . (3)

A decimation eliminates every other one of the successive
degrees of freedom arrayed in a linear chain, with the
partition function being conserved, leading to a length
rescaling factor b = 2. By neglecting the noncommuta-
tivity of the operators beyond three consecutive lattice
sites, a trace over all states of even-numbered sites can
be performed [12, 13],

Trevene
−βH = Tr evene

P

i{−βH(i,i+1)}

= Trevene
P

even

i
{−βH(i−1,i)−βH(i,i+1)}

≃
even
∏

i

Trie
{−βH(i−1,i)−βH(i,i+1)} =

even
∏

i

e−β
′H′(i−1,i+1)

≃e
P

even

i {−β′H′(i−1,i+1)} = e−β
′H′

,

(4)

where −β′H ′ is the renormalized Hamiltonian. This ap-
proach, where the two approximate steps labeled with ≃
are in opposite directions, has been successful in the de-
tailed solutions of quantum spin [12, 13, 14, 15, 16, 17, 18]
and electronic [6, 7, 8, 9] systems. The anticommutation

rules are correctly accounted within the three-site seg-
ments, at all successive length scales, in the iterations of
the renormalization-group transformation.

The algebraic content of the decimation in Eq. (4) is

e−β
′H′(i,k) = Trje

−βH(i,j)−βH(j,k), (5)

where i, j, k are three consecutive sites of the unrenor-
malized linear chain. The renormalized Hamiltonian is
given by

−β′H ′(i, k) = P

[

−t′
∑

σ

(

c†iσckσ + c†kσciσ
)

− J ′
Si · Sk + V ′nink + µ′(ni + nk) +G′

]

P ,

(6)

where G′ is the additive constant per bond, which is
always generated in renormalization-group transforma-
tions, does not affect the flow of the other interaction
constants, and is necessary in the calculation of expec-
tation values. The values of the renormalized (primed)
interaction constants appearing in −β′H ′ are given by
the recursion relations extracted from Eq. (5), which will
be given here in closed form, while Appendix A details
the derivation of Eq. (7) from Eq. (5):

t′ =
1

2
ln
γ4

γ2
, J ′ = ln

γ6

γ7
, V ′ =

1

4
ln
γ4
1γ6γ

3
7

γ4
2γ

4
4

,

µ′ = µ+
1

2
ln

(

γ2γ4

γ2
1

)

, G′ = bdG+ ln γ1 , (7)

where γ1 = 1 + 2u3f(
µ

2
) ,

γ2 = uf
(

−µ
2

)

+
1

2
u2x2 +

3

2
u2vf

(

−J
8

+
V

2
+
µ

2

)

,

γ4 = 1 +
3

2
u2v2 +

1

2
u2xf

(

3J

8
+
V

2
+
µ

2

)

,

γ6 = 2v3x+ xf

(

−3J

8
− V

2
− µ

2

)

,

γ7 =
2

3
vx3 +

4

3
v4 + vf

(

J

8
− V

2
− µ

2

)

, (8)

and v = exp (−J/8 + V/2 + µ/2) ,

x = exp (3J/8 + V/2 + µ/2) , u = exp (µ/2) ,

f(A) = cosh
√

2t2 +A2 +
A√

2t2 +A2
sinh

√

2t2 +A2 .

(9)
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B. d > 1 Recursion Relations

The Migdal-Kadanoff renormalization-group proce-
dure generalizes our transformation to d > 1 through
a bond-moving step [19, 20]. Eq. (7) can be expressed as
a mapping of interaction constants K = {G, t, J, V, µ}
onto renormalized interaction constants, K

′ = R(K).
The Migdal-Kadanoff procedure strengthens by a factor
of bd−1 the bonds of linear decimation, to obtain the re-
cursion relations for d > 1,

K
′ = bd−1

R(K). (10)

This approach has been successfully employed in studies
of a large variety of quantum mechanical and classical
(e.g., references in [6]) systems.

C. Calculation of Phase Diagrams

and Expectation Values

The global flows of Eq. (10), controlled by stable and
unstable fixed points, yield the phase diagrams in tem-
perature versus chemical potential: The basin of attrac-
tion of each fixed point corresponds to a single thermo-
dynamic phase or to a single type of phase transition,
according to whether the fixed point is completely stable
(a phase sink) or unstable. Eigenvalue analysis of the re-
cursion matrix at an unstable fixed point determines the
order and critical exponents of the phase transitions at
the corresponding basin.

Table I gives the interaction constants t, J, V, µ at the
tJ model phase sinks. The τtJ and τHb phases are the
only regions where the electron-hopping term t does not
renormalize to zero at the phase sinks. On the contrary,
in these phases, t→ ∞ and t→ −∞, respectively.

Phase Interaction constants at sink

t µ J V

d (dilute disordered) 0 −∞ 0 0

D (dense disordered) 0 ∞ 0 0

AF 0 ∞ −∞ −∞

(antiferromagnetic) V
J

→ 1

4

τtJ ∞ ∞ ∞ −∞

(BEC-like superconductor) t
µ
→ 1 J

µ
→ 2 V

J
→ − 3

4

τHb −∞ ∞ −∞ −∞

(BCS-like superconductor) t
µ
→ −1 J

µ
→ −2 V

J
→ 1

4

TABLE I: Interaction constants at the phase sinks.

To compute temperature versus electron-density (dop-
ing) phase diagrams, thermodynamic densities are cal-
culated by summing along entire renormalization-group
flow trajectories.[21] A density, namely the expectation
value of an operator in the Hamiltonian, is given by

Mα =
1

Nd

∂ lnZ

∂Kα

, (11)

where Kα is an element of K = {Kα}, Z is the parti-
tion function, and N is the number of lattice sites. The
recursion relations for densities are

Mα = b−d
∑

β

M ′
βTβα , where Tβα ≡

∂K ′
β

∂Kα

. (12)

In terms of the density vector M = {Mα} and the recur-
sion matrix T = {Tβα},

T =

















bd ∂G′

∂t
∂G′

∂J
∂G′

∂V
∂G′

∂µ

0 ∂t′

∂t
∂t′

∂J
∂t′

∂V
∂t′

∂µ

0 ∂J′

∂t
∂J′

∂J
∂J′

∂V
∂J′

∂µ

0 ∂V ′

∂t
∂V ′

∂J
∂V ′

∂V
∂V ′

∂µ

0 ∂µ′

∂t
∂µ′

∂J
∂µ′

∂V
∂µ′

∂µ

















, (13)

Eq. (12) simply is

M = b−dM′ ·T . (14)

At a fixed point, the density vector Mα = M ′
α ≡ M∗

α is
the left eigenvector, with eigenvalue bd, of the fixed-point
recursion matrix T

∗ (Table II). For non-fixed-points, it-
erating Eq. (14) n times,

M = b−ndM(n) · T(n) · T(n−1) · · · · ·T(1) , (15)

where, for n large enough, the trajectory arrives as close
as desired to a completely stable (phase-sink) fixed point
and M

(n) ≃ M
∗.

Phase sinks Expectation values at sink
P

σ
〈c†iσcjσ + c†jσciσ〉 〈ni〉 〈Si · Sj〉 〈ninj〉

d 0 0 0 0

D 0 1 0 1

AF 0 1 1

4
1

τtJ − 2

3

2

3
− 1

4

1

3

τHb 0.664 0.668 0.084 0.336

TABLE II: Expectation values at the phase sinks. The ex-
pectation values at a sink epitomize the expectation values
throughout its corresponding phases, because, as explained
in Sec. IIIC, the expectation values at the phase sink under-
pin the calculation of the expectation values throughout the
corresponding phase which is constituted from the basin of
attraction of the sink.

IV. FURTHER-NEIGHBOR INTERACTIONS,

TEMPERATURE- AND DOPING-DEPENDENT

FRUSTRATION AND GLOBAL PHASE

DIAGRAMS

For the results presented below, we use the theoret-
ically and experimentally dictated initial conditions of
V/J = 1/4 and t/J = 2.25.
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K
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FIG. 1: Construction of the further-neighbor models. Part of
a single plane of the three-dimensional model studied here is
shown.

The details of the thermodynamic phases found in this
work, listed in Tables I and II, have been discussed previ-
ously within context of the nearest-neighbor tJ [7, 8, 9]
and, for the τHb phase, Hubbard [6] models. The τHb
phase is seen here in the tJ model with the inclusion
of the further-neighbor antiferromagnetic or electron-
hopping interaction. Suffice it to recall here that the
τ phases are the only phases in which: (1) the electron-
hopping strength does not renormalize to zero, but to
infinity; (2) the electron density does not renormalize
to complete emptiness or complete filling, but to partial
emptiness/filling, leaving room for electron/hole conduc-
tivity; (3) the nearest-neighbor electron occupation prob-
ability does not renormalize to zero or unity, again leav-
ing room for conductivity at the largest length scales;
(4) the electron-hopping expectation value is non-zero at
the largest length scales; (5) the experimentally observed
chemical potential shift as a function of doping occurs
[8]; and (6) a low level (∼ 6%) of quenched non-magnetic
impurities causes total disappearance, in contrast to the
antiferromagnetic phase (∼ 40% for total disappearance)
[9], again as seen experimentally. The evidence in fa-
vor of the superconducting phase identification is quite
indicative.

A. The t2 Model

The t2 model includes further-neighbor electron-
hopping interaction, as shown in Fig. 1. The three-
site Hamiltonian, between the lattice nodes at the lowest
length scale, has the form:

−βH(i, j, k) = − βH(i, j) − βH(j, k)

− t2
∑

σ

(

c†iσckσ + c†kσciσ
)

, (16)

where −βH(i, j) is given in Eq. (2), so that the first
equation of Eq. (7) gets modified as

t′ =
1

2
ln
γ4

γ2
+ t2 , (17)

only for the first renormalization. (1) If the two terms
in Eq. (17) are of the same sign, the nearest-neighbor
and further-neighbor electron hopping terms of the orig-
inal system reinforce each other and the τ phases are
enhanced. (2) If the two terms are of opposite signs, the
nearest-neighbor and further-neighbor electron hopping
terms of the original system compete with each other
and, with the introduction of further-neighbor electron
hopping, the τ phases are initially suppressed, but en-
hanced as further-neighbor hopping becomes dominant.
The two regimes (1) and (2) are separated by the thick
full lines in the phase diagrams in Figs. 2 and 3. In
the case (2) of opposite signs, when the two terms cancel
out each other, the system is frustrated, in which case,
after the first renormalization, there is no electron hop-
ping in the system. Since this condition is closed under
renormalization, both on physical grounds and of course
in our recursion relations (Eq. (7)), no τ phase can oc-
cur in such a system. The dash-dotted curves in Figs. 2
and 3 indeed show such systems. These competition, re-
inforcement, and frustration effects are temperature and
doping dependent. These, and all other physical effects,
do not depend on the sign of nearest-neighbor t of the
original unrenormalized system, due to the symmetry of
hypercubic lattices [7] and as seen in Eq. (9).

Figs. 2 and 3 give the global phase diagram of the
t2 model, as a function of temperature, electron density,
chemical potential, and t2/t. The cross-section t2 = 0 is
the phase diagram obtained in previous work [7]. This di-
agram contains the τtJ phase between 33−37% hole dop-
ing away from half-filling and at temperatures 1/t < 0.12.
The thick full curve here gives the systems devoid of elec-
tron hopping due to the combined effects of temperature
and doping on a nearest-neighbor-only interaction sys-
tem. The first term of Eq. (17) is positive on the high
density/chemical potential, low temperature side of the
thick full curve and negative on the low chemical poten-
tial/density, high temperature side of the thick full curve.
Thus, the inclusion of t2 > 0 will create competition and
frustration (respectively reducing and eliminating the τ
phases) on the low chemical potential/density, high tem-
perature side of the curve discussed here, reinforcement
(enhancing the τ phases) on the high chemical poten-
tial/density, low temperature side of the same curve. The
opposite occurs at t2 < 0. The thick full (no-hopping)
curve of t2 = 0 is included, again as thick and full, in
the t2 6= 0 phase diagrams and the effects discussed here
are seen in the evolution, in both directions, of the global
phase diagram.

Pursuing the negative values of t2, we see at t2/t =
−0.0625 that the τtJ phase, being below the thick full
curve, is indeed reduced and bisected into two discon-
nected regions by the frustration (dash-dotted) curve. At
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the more negative value of t2/t = -0.125, only the higher
doping region of the τtJ phase remains and is enhanced
as explained after Eq. (17), extending through a wider
range to 45 − 55% hole doping. The antiferromagnetic
and disordered phases take part in a complex lamellar
structure, in a narrow band between 35− 45% hole dop-
ing at low temperatures. At the even more negative val-
ues of t2/t = −0.25 and −0.5, the τtJ phase appears in
a wide range of hole doping, between 35 − 55%. Besides
the complex lamellar structure of antiferromagnetic and
disordered phases, we also see that the τHb phase par-
ticipates in the lamellar phase structure and, separately,
appears adjacently to the antiferromagnetic phase near
half-filling. Particularly near half-filling, the τHb phase
which evolves adjacently to the antiferromagnetic phase
reaches to the higher temperatures of 1/t ∼ 0.5. This
topology is identical to that obtained for the Hubbard
model [6].

For the positive values of t2/t, the τ phases are en-
hanced as explained after Eq. (17) and the topology
quickly evolves to that encountered in the Hubbard
model. The τtJ is not bisected by the frustration (dash-
dotted) curve and appears between 33 − 37% hole dop-
ing as a continuation of the structure at t2 = 0. The
τHb phase occurs again in two distinct regions and the
one which lies nearer to half-filling again extends to high
temperatures.

B. The J2 Model

The J2 model includes further-neighbor antiferromag-
netic interaction, as shown in Fig. 1. The three-site
Hamiltonian, between the lattice nodes at the lowest
length scale, has the form:

−βH(i, j, k) = − βH(i, j) − βH(j, k)

− J2

∑

〈ik〉
Si · Sk , (18)

where −βH(i, j) is given in Eq. (2), so that the second
equation of Eq. (7) gets modified as

J ′ = ln
γ6

γ7
+ J2 , (19)

only for the first renormalization. Reinforcement or com-
petition occurs when J2 is, respectively, of same or oppo-
site sign as the first term in Eq. (19). These two regimes
are again separated by the thick full lines in the phase
diagrams of Figs. 3 and 4, while again frustration occurs
on the dash-dotted lines. In the reinforcement regime,
we expect a large extent of the antiferromagnetic phase.
The τHb phase is also expected to grow in the reinforced
region, for it is found along the temperature extent of the
antiferromagnetic phase.

Figs. 4 and 5 show the global phase diagram of the
J2 model, as a function of temperature, electron den-
sity, chemical potential, and J2/J . For negative values of

J2/J , the antiferromagnetic phase is enhanced, both near
half-filling by the mechanism explained after Eq. (19)
and, separately and to a lesser extent, displacing the τtJ
phase. The latter behavior is similar to that seen under
the introduction of quenched impurities, both experimen-
tally [22, 23, 24] and from renormalization-group theory
[9]. The τHb phase improves near the large antiferromag-
netic region near half-filling. At J2/J = −2, the τHb
phase is found in a wide range of hole doping, namely
between 15− 30%. Another interesting result is that the
τtJ phase is depressed in temperature but remains stable
in the interval of 33 − 37% hole doping.

For positive values of J2/J , the antiferromagnetic
phase is reduced in the region near half-filling and en-
hanced in the region near the τtJ phase, for reasons
explained after Eq. (19). The τHb phase grows adja-
cently to the enhanced antiferromagnetic region, being
located above the τtJ phase, causing a complex structure
at higher hole dopings and low temperatures.
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APPENDIX A: DERIVATION OF THE

DECIMATION RELATIONS

The derivation of Eq. (7), first done in Ref.[7], is given
in this Appendix. In Eq. (5) the operators −β′H ′(i, k)
and −βH(i, j) − βH(j, k) act on two-site and three-site
states, respectively, where at each site an electron may
be either with spin σ =↑ or ↓, or may not exist (0 state).
In terms of matrix elements,

〈uivk|e−β
′H′(i,k)|ūiv̄k〉 =

∑

wj

〈uiwj vk|e−βH(i,j)−βH(j,k)|ūiwj v̄k〉 , (A1)

where ui, wj , vk, ūi, v̄k are single-site state variables, so
that the left-hand side reflects a 9×9 and the right-hand
side a 27× 27 matrix. Basis states that are simultaneous
eigenstates of total particle number (n), parity (p), to-
tal spin magnitude (s), and total spin z-component (ms)
block-diagonalize Eq. (A1) and thereby make it man-
ageable. These sets of 9 two-site and 27 three-site eigen-
states, denoted by {|φp〉} and {|ψq〉} respectively, are
given in Tables III and IV. Eq. (A1) is thus rewritten as

〈φp|e−β
′H′(i,k)|φp̄〉 =

∑

u,v,ū,
v̄,w

∑

q,q̄

〈φp|uivk〉〈uiwjvk|ψq〉〈ψq |e−βH(i,j)−βH(j,k)|ψq̄〉·

〈ψq̄|ūiwj v̄k〉〈ūiv̄k|φp̄〉 . (A2)
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There are five independent elements for
〈φp|e−β

′H′(i,k)|φp̄〉 in Eq.(A2) (thereby leading to five
renormalized interaction constants {t′, J ′, V ′, µ′, G′}),
which we label γp,

γp ≡ 〈φp|e−β
′H′(i,k)|φp〉 for p = 1, 2, 4, 6, 7 . (A3)

The diagonal matrix 〈φp|−β′H ′(i, k)|φp̄〉 is given in Table
V. The exponential of this matrix yields the five renor-
malized interaction constants in terms of γp, as given in
Eq. (7). Furthermore, according to Eq. (A2), each γp is

a linear combination of some 〈ψq|e−βH(i,j)−βH(j,k)|ψq̄〉,

γ1 = 〈ψ1||ψ1〉+〈ψ2||ψ2〉+〈ψ4||ψ4〉 ,

γ2 = 〈ψ3||ψ3〉+
1

2
〈ψ8||ψ8〉+〈ψ12||ψ12〉+

1

2
〈ψ13||ψ13〉 ,

γ4 = 〈ψ6||ψ6〉+
1

2
〈ψ9||ψ9〉+〈ψ17||ψ17〉+

1

2
〈ψ18||ψ18〉 ,

γ6 = 〈ψ10||ψ10〉+2〈ψ22||ψ22〉 ,

γ7 = 〈ψ11||ψ11〉+
2

3
〈ψ20||ψ20〉+

4

3
〈ψ24||ψ24〉 ,

where 〈ψq||ψq〉 ≡ 〈ψq|e−βH(i,j)−βH(j,k)|ψq〉. In order to

calculate 〈ψq|e−βH(i,j)−βH(j,k)|ψq̄〉 the matrix blocks in
Table VI are numerically exponentiated.

n p s ms Two-site eigenstates

0 + 0 0 |φ1〉 = | ◦ ◦〉

1 + 1/2 1/2 |φ2〉 = 1√
2
{| ↑ ◦〉 + |◦ ↑〉}

1 − 1/2 1/2 |φ4〉 = 1√
2
{| ↑ ◦〉 − |◦ ↑〉}

2 − 0 0 |φ6〉 = 1√
2
{| ↑↓〉 − | ↓↑〉}

2 + 1 1 |φ7〉 = | ↑↑〉

2 + 1 0 |φ9〉 = 1√
2
{| ↑↓〉 + | ↓↑〉}

TABLE III: The two-site basis states, with the corresponding
particle number (n), parity (p), total spin (s), and total spin
z-component (ms) quantum numbers. The states |φ3〉, |φ5〉,
and |φ8〉 are obtained by spin reversal from |φ2〉, |φ4〉, and
|φ7〉, respectively.
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n p s ms Three-site eigenstates

0 + 0 0 |ψ1〉 = | ◦ ◦ ◦〉

1 + 1/2 1/2 |ψ2〉 = |◦ ↑ ◦〉, |ψ3〉 = 1√
2
{| ↑ ◦ ◦〉 + | ◦ ◦ ↑〉}

1 − 1/2 1/2 |ψ6〉 = 1√
2
{| ↑ ◦ ◦〉 − | ◦ ◦ ↑〉}

2 + 0 0 |ψ8〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 − |◦ ↑↓〉 + |◦ ↓↑〉}

2 − 0 0 |ψ9〉 = 1

2
{| ↑↓ ◦〉 − | ↓↑ ◦〉 + |◦ ↑↓〉 − |◦ ↓↑〉},

|ψ10〉 = 1√
2
{| ↑ ◦ ↓〉 − | ↓ ◦ ↑〉}

2 + 1 1 |ψ11〉 = | ↑ ◦ ↑〉, |ψ12〉 = 1√
2
{| ↑↑ ◦〉 + |◦ ↑↑〉}

2 + 1 0 |ψ13〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 + |◦ ↑↓〉 + |◦ ↓↑〉},

|ψ14〉 = 1√
2
{| ↑ ◦ ↓〉 + | ↓ ◦ ↑〉}

2 − 1 1 |ψ17〉 = 1√
2
{| ↑↑ ◦〉 − |◦ ↑↑〉}

2 − 1 0 |ψ18〉 = 1

2
{| ↑↓ ◦〉 + | ↓↑ ◦〉 − |◦ ↑↓〉 − |◦ ↓↑〉}

3 + 1/2 1/2 |ψ20〉 = 1√
6
{2| ↑↓↑〉 − | ↑↑↓〉 − | ↓↑↑〉}

3 − 1/2 1/2 |ψ22〉 = 1√
2
{| ↑↑↓〉 − | ↓↑↑〉}

3 + 3/2 3/2 |ψ24〉 = | ↑↑↑〉

3 + 3/2 1/2 |ψ25〉 = 1√
3
{| ↑↓↑〉 + | ↑↑↓〉 + | ↓↑↑〉}

TABLE IV: The three-site basis states, with the correspond-
ing particle number (n), parity (p), total spin (s), and total
spin z-component (ms) quantum numbers. The states |ψ4−5〉,
|ψ7〉, |ψ15−16〉, |ψ19〉, |ψ21〉, |ψ23〉, |ψ26−27〉 are obtained by
spin reversal from |ψ2−3〉, |ψ6〉, |ψ11−12〉, |ψ17〉, |ψ20〉, |ψ22〉,
|ψ24−25〉, respectively.

φ1 φ2 φ4 φ6 φ7 φ9

φ1 G′

φ2
−t′ +
µ′ +G′ 0

φ4 t′+µ′+G′

φ6

3

4
J′ + V ′ +

2µ′ +G′

φ7 0
− 1

4
J′ +

V ′ +
2µ′ +G′

φ9

− 1

4
J′ +

V ′ +
2µ′ +G′

TABLE V: Block-diagonal matrix of the renormalized two-site
Hamiltonian −β′H ′(i, k). The Hamiltonian being invariant
under spin-reversal, the spin-flipped matrix elements are not
shown.
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ψ1

ψ1 0

ψ2 ψ3

ψ2 2µ −
√

2t

ψ3 −
√

2t µ

ψ6 ψ8

ψ6 µ 0

ψ8 0 3

4
J + V + 3µ

ψ9 ψ10

ψ9
3

4
J + V + 3µ −

√
2t

ψ10 −
√

2t 2µ

ψ11 ψ12

ψ11 2µ −
√

2t

ψ12 −
√

2t − 1

4
J + V + 3µ

ψ13 ψ14

ψ13 − 1

4
J + V + 3µ −

√
2t

ψ14 −
√

2t 2µ

ψ17 ψ18

ψ17 − 1

4
J + V + 3µ 0

ψ18 0 − 1

4
J + V + 3µ

ψ20

ψ20 J + 2V + 4µ

ψ22

ψ22 2V + 4µ

ψ24

ψ24 − 1

2
J + 2V + 4µ

ψ25

ψ25 − 1

2
J + 2V + 4µ

TABLE VI: Diagonal matrix blocks of the unrenormalized
three-site Hamiltonian −βH(i, j) − βH(j, k). The Hamilto-
nian being invariant under spin-reversal, the spin-flipped ma-
trix elements are not shown.


