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Chaotic Spin Correlations in Frustrated Ising Hierarchical Lattices
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Spin-spin correlations are calculated in frustrated hierarchical Ising models that exhibit chaotic
renormalization-group behavior. The spin-spin correlations, as a function of distance, behave chaot-
ically. The far correlations, but not the near correlations, are sensitive to small changes in tem-
perature or frustration, with temperature changes having a larger effect. On the other hand, the
calculated free energy, internal energy, and entropy are smooth functions of temperature. The
recursion-matrix calculation of thermodynamic densities in a chaotic band is demonstrated. The
spectrum of Lyapunov exponents is calculated as a function of frustration.
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Introduction. It was shown some time ago that frus-
trated Ising spin magnetic systems exhibit chaotic behav-
ior of the interaction constants under renormalization-
group transformations, which readily leads to the de-
scription of a spin-glass phase.|l] This chaotic rescaling
behavior was originally demonstrated in frustrated, but
non-random systems. It was subsequently shown that
the same chaotic rescaling behavior occurs in quenched
random spin glasses.|2] Chaotic rescaling behavior has
now been established as the signature of a spin-glass
phase.|3, 4, 15, 16, 7, I8, 19, [10, 11, [12] Although the chaotic
behavior of the interaction constants was demonstrated
in frustrated systems, the behavior of spin-spin correla-
tion functions and the instabilities to initial conditions
had not been calculated to-date. This study presents
such results, yielding both smooth and unsmooth behav-
iors, as seen below. In this process, the recursion-matrix
calculation of thermodynamic densities in a chaotic band
is demonstrated.

Hierarchical models are exactly soluble models that ex-
hibit non-trivial cooperative and phase transition behav-
iors [13, 114, [15] and have therefore become the testing
grounds for a large variety of phenomena, as also seen in
recent works. [16, [17, [18, 119, 20, 21, 122, 23, 24, 25, 126, [27].
The hierarchical models in which the chaotic rescaling
behavior of the interaction constants under frustration
was seen [1] are defined in Figll The two units [Fig[l(a)
and (b)] assembled in the construction of these lattices
a priori represent the generically distinct local effects
of frustration occurring in spin-glass systems on conven-
tional lattices: In Figllia), correlation at the small scale
(vertical bonds) inhibit at low temperatures the propaga-
tion of correlation at the larger scale (horizontally across
the unit), namely causing a disordering by ordering. In
Figll(b), competition between paths of different lengths
weakens but does not eliminate the propagation of cor-
relation across the unit. These two generic effects are
incorporated into the hierarchical lattices of Figlll No
other such generic effects occur in spin glasses.
Renormalization-Group Transformation.  Hierarchical
lattices are constructed by the repeated self-imbedding
of graphs.|[13, 14, [15] Their solution, by renormalization-
group theory, consists of the reverse procedure. The

FIG. 1: The family of hierarchical models from Ref.[l]. In
unit (a), there are p cross bonds. In unit (b), two paths,
consisting of m1 and mz2 > m; bonds in series, are in parallel.
In (c), the final graph of the model is assembled with p, and
pc of each unit in parallel. Each wiggly bond, representing an
infinite antiferromagnetic coupling, has the effect of reversing
the sign of an adjoining bond.

number of bonds of the imbedding graph gives the vol-
ume rescaling factor, b = (4 + p)py + (M1 + m2)p. in
the current case, and the shortest path length across the
imbedding graph gives the length rescaling factor, b = 2
here, leading here to a dimensionality d that is greater
than 2. Each straight line segment in Fig[l] corresponds
to an interaction —GH;; = Ko;0; + G with K > 0 be-
tween Ising spins o; = +1 at vertices ¢. Frustration is
introduced by the wiggly bonds. The additive constant
G is generated by the renormalization-group transforma-
tion and enters the calculation of the thermodynamic
functions and correlations of the original, unrenormalized
system.|29]. The renormalization-group transformation
consists in summing, in the partition function, over the
internal spins of the innermost imbedding graphs, which


http://arXiv.org/abs/0810.4586v1

are thereby replaced by a renormalized bond with

K' = pytanh™ £, 4+ p.(tanh ™' t™ — tanh ™! ¢™2),
ty = 262(1 — 1)/ (1 + t* — 2£%F),

G’ = b2G + [2py + (m1 + Mo — 2)p]In 2 — pypK
po, (L4122 =42t po, (1 —t2ma)(1 —¢2m2)
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with ¢ = tanh K and f = tanh(pK).
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FIG. 2: Renormalization-group flow topologies and Lyapunov
exponents, as Hamiltonian parameters are scanned. In both
examples, p = 5,p. = 1, m2 = m1 + 5. In the upper panels,
the lower curve, visible on the left, is a line of unstable fixed
points, giving the second-order phase transition between the
paramagnetic (below) and ordered (above) phases. In the
ordered phase, only fixed points, limit cycles, and chaotic
bands that are stable (attractive) are shown. Left panels:
Scanning pp, which increases the disordering by ordering ef-
fect, at m1 = 5. Right panels: Scanning mi, which increases
the ground-state entropy of per first renormalized bond, at
Py = 50.

Results: Self-Similar Chaotic Bands. When this fam-
ily of models is scanned as a function of p or my, re-
spectively increasing the disordering by ordering effect or
the ground-state entropy per first renormalized bond, the
chaotic behavior of the renormalization-group is entered,
in the low-temperature phase, via the series of period-
doubling bifurcations, with the Feigenbaum exponent of
4.669 [1], as shown in Figlll An example of the chaotic
bands of the interaction constant is shown in FigBl(a).
Discovery of these chaotic bands immediately led to a
spin-glass interpretation: Under repeated scale changes,
the entire band is visited by the effective coupling of the
length scales that are reached after each renormalization-
group transformation. This random, but deterministic
sequence of hopping visits, stretches from the strong cou-
pling to the weak coupling edges of the band. This sig-
nifies that, as the system is viewed at successive length
scales, strong and weak correlations are encountered in a
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FIG. 3: (a) Number of visits per interaction interval At =
0.005, for 5000 chaotic iterations in the trajectory starting at
t© = 0.5, for p=4,pp = 40, pc = 1,m1 = 4.7,m2 = m1 + 1.
(b) Number of visits per correlation interval A < s;s; > =
0.005 for the trajectory in (a)
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FIG. 4: Overlaps between consecutive groups of N itera-
tions for the trajectory in Fig.3(a). The relative difference
ﬁEfﬂ%AmVﬁh between two consecutive groups, in the
number of visits n; to each of the 200 interaction intervals
i is shown as a function of group size N.
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FIG. 5: The spin-spin correlation function < s;s; > for spins

separated by a distance 2", for K = 2.5,p = 4,p, = 40,p. =
1,mi1 =3.7,4.7,5.7,me = m1 + 1.

frozen but chaotic sequence, meaning a spin-glass phase.
This interpretation had not been followed by an actual
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FIG. 6: Deviations, for small temperature or frustration
change, in the spin-spin correlation function < s;s; > for
spins separated by a distance 2", for K = 0.8,p = 4,p, =
40,p. = 1,m1 = 8, m2 =m1 + 1. In (a) and (b), between the
two trajectories, AK = 0.001 and Ap, = 0.001 respectively.

calculation of these spin-spin correlations, which is done
in the current study.

Also shown in FigPlc) are the Lyapunov exponents
(M), used to describe the behavior of a dynamical system
that starts at z¢ and evolves for n iterations, x;41 =

f(@s),
1 n—1
A= LS il ). 2)
1=0

The iteration function f may depend on different param-
eters, as our iteration function K'(K’) depends on m; and
pp- Such an iterated map function has a chaotic trajec-
tory for a particular parameter value if the Lyapunov
exponent is positive. Conversely, a negative A indicates
eventual attraction to a fixed point or a limit cycle. A bi-
furcation point, where a period doubling occurs, is iden-
tified with A being zero.[2§]

An important characteristic of the chaotic bands is
that they are self-similar: After the transient behavior
of a number of renormalization-group transformations,
the profile of the chaotic band formed by each successive
group of N renormalization-group calculations becomes
identical in the limit of large N. The overlaps between
such successively formed bands is shown as a function of
N in Fig.4. Physically, this signifies that a geometrically
coarse-grained spin-glass phase is self-similar. This prop-
erty of the chaotic bands is important in the calculation
of the correlation functions.

Results: Calculation of the Correlation Functions. The
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FIG. 7: For model parameters p = 4,p, = 10,p. = 1,m1 =
7,m2 = m1 + 1, (a) Free energy per bond, F' = In Z/Npond,
(b) internal energy, U =< s;s; >, (c) entropy per bond, S =
In Z/Nyona — K < sisj >, versus temperature K

recursion relations for the densities is [29]

d 9G’
[1,< 8485 >] = b1, < 48 >] (bo K, ) .3
0K

D

In an ordinary renormalization-group analysis, this den-
sity recursion relation is iterated,

[1, < 8485 >] = b_dn[l, < 8485 >(n)] T(n) 'T(n_l) e 'T(l),

(4)
until the (n)th renormalized system is as close as one
desires to a sink fixed point, and the renormalized den-
sities [1, < s;5; >(™)] are inserted as the left eigenvector
of T with eigenvalue b%.[29] In the current calculation,
this cannot be done, since the renormalization-group tra-
jectory does not approach a sink fixed point, but chaoti-
cally wanders inside a band. On the other hand, in this
chaotic-band sink, we obtain the limiting behavior, due
to the self-similarity property of the chaotic band,

podng(m) =1 () o (é )o() G

so that X =< s;s; > and this result is independent of
the chaotic-band terminus < s;s; > The disappear-
ance of the lower diagonal reflects OK'/OK < b?, itself
due to sequential non-infinite bonds and frustration in
the chaotic-band sink. Alternately, < s;s; > can be cal-
culated from numerical differentiation of the free energy



obtained from the renormalization of the additive con-
stant G.

The calculated spin-spin correlations as a function of

spin separation are shown in Figll It is seen that
the spin-spin correlations behave chaotically, for all dis-
tances, between strong and weak correlations, numeri-
cally justifying the spin-glass phase interpretation. Thus,
spin-spin correlations also span chaotic bands, as illus-
trated in FigBl(b). Curiously enough, the chaotic band
structure of the correlations differs from the chaotic band
structure of the interaction constants. For example, in
Fig[(a), the chaotic structure of the interactions is com-
posed of 4 bands, whereas in FigBl(b), for the same sys-
tem, the chaotic band structure of the correlations is
composed of 3 bands.
Results: Unsmooth and smooth behaviors. Figll shows
the behavior, at all distances, of the spin-spin correla-
tions under small changes in temperature or frustration.
It seen that the near correlations are unaffected, whereas
the far correlations are strongly affected, namely ran-
domly changed.

Finally, the free energy, calculated from summing
the additive constants generated by the successive
renormalization-group transformations, the internal en-
ergy, calculated from the nearest-neighbor spin-spin cor-
relation, and the entropy are shown in Figs[f(a-c) as a
function of temperature. They exhibit smooth behaviors.
Zero-temperature entropy|30], due to frustration, is seen.

In closing, we note that other forms of chaotic be-
havior, namely as a function of system size [31] or
as the chaos of near-neighbor correlations in the zero-
temperature limit for appropriately chosen interactions
[32], intriguingly occur in spin-glass systems.
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